1
|
Lim YJ, Duckworth AD, Clarke K, Kennedy P, Karpha I, Oates M, Gornall M, Kalakonda N, Slupsky JR, Pettitt AR. Influence of polyfunctional Tbet + T cells on specific clinical events in chronic lymphocytic leukaemia. Front Immunol 2025; 16:1528405. [PMID: 40313965 PMCID: PMC12043603 DOI: 10.3389/fimmu.2025.1528405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/18/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction T-cell dysfunction is a hallmark of chronic lymphocytic leukemia (CLL), but the extent to which individual CD4+ or CD8+ T-cell subpopulations influence specific clinical events remains unclear. To address this knowledge gap, we utilised high-dimensional mass cytometry to profile circulating CD4+ and CD8+ T-cells in pre-treatment samples from a well-defined cohort of CLL patients undergoing initial therapy as part of a clinical trial. Methods Pre-treatment blood samples from 138 CLL patients receiving initial chemoimmunotherapy containing bendamustine or chlorambucil in the NCRI RIAltO trial (NCT01678430; EudraCT 2011-000919-22) were subjected to deep immunophenotyping by mass cytometry using a bespoke panel of 37 antibodies. T-cell clusters were identified through unsupervised clustering and related to treatment outcomes. Additionally, a randomly selected cohort of 30 CLL patients underwent T-cell stimulation with anti-CD3/CD28 microbeads, followed by cytokine analysis using a separate 36-antibody panel, which included seven cytokines. Results Seventeen CD4+ and 22 CD8+ T-cell clusters were identified in a discovery cohort of 79 patients. Three of these clusters, measured as a proportion of their parental CD4+ or CD8+ populations, correlated with a reduced risk of grade ≥3 infection, grade ≥3 second primary malignancy (SPM) and death, respectively. Three corresponding T-cell subpopulations prospectively defined by non-redundant markers and Boolean gating (ICOS+HLA-DR+PD1+TIGIT+Tbet+CD4+ T-helper cells; CD27+CD28-PD1+Tbet+Eomes+CD8+ cells; and CD27+CD28-GrymB+Tbet+Eomes+CD8+ terminal effector cells) showed the same clinical correlations as the clusters on which they were based. With the exception of SPM for which there were insufficient events, these correlations were confirmed in a separate validation cohort of 59 patients. In-vitro stimulation of a subset of CLL patients in the discovery cohort showed an enrichment of primed and polyfunctional cells in all three Tbet+ T-cell subpopulations of interest. Conclusion Our study provides new insights into the potential for Tbet+ T-cell subpopulations to influence and predict specific clinical events in CLL. This, in turn, raises the possibility that these respective subpopulations could play an important role in controlling infection, solid tumours and CLL itself. Clinical Trial Registration https://www.clinicaltrials.gov/, identifier NCT01678430; https://www.isrctn.com/ISRCTN09988575, identifier EudraCT 2011-000919-22.
Collapse
Affiliation(s)
- Yeong Jer Lim
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Andrew D. Duckworth
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kim Clarke
- Computational Biology Facility, University of Liverpool, Liverpool, United Kingdom
| | - Paul Kennedy
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Indrani Karpha
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Melanie Oates
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Matthew Gornall
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, United Kingdom
| | - Nagesh Kalakonda
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Joseph R. Slupsky
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Andrew R. Pettitt
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
2
|
Baker CN, Duso D, Kothapalli N, Hart T, Casey S, Cookenham T, Kummer L, Hvizdos J, Lanzer K, Vats P, Shanbhag P, Bell I, Tighe M, Travis K, Szaba F, Harder JM, Bedard O, Oberding N, Ward JM, Adams MD, Lutz C, Bradrick SS, Reiley WW, Rosenthal NA. Characterization of Collaborative Cross mouse founder strain CAST/EiJ as a novel model for lethal COVID-19. Sci Rep 2024; 14:25147. [PMID: 39448712 PMCID: PMC11502910 DOI: 10.1038/s41598-024-77087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Mutations in SARS-CoV-2 variants of concern (VOCs) have expanded the viral host range beyond primates, and a few other mammals, to mice, affording the opportunity to exploit genetically diverse mouse panels to model the broad spectrum of responses to infection in patient populations. Here we surveyed responses to VOC infection in genetically diverse Collaborative Cross (CC) founder strains. Infection of wild-derived CC founder strains produced a broad range of viral burden, disease susceptibility and survival, whereas most other strains were resistant to disease despite measurable lung viral titers. In particular, CAST/EiJ, a wild-derived strain, developed high lung viral burdens, more severe lung pathology than seen in other CC strains, and a dysregulated cytokine profile resulting in morbidity and mortality. These inbred mouse strains may serve as a valuable platform to evaluate therapeutic countermeasures against severe COVID-19 and other coronavirus pandemics in the future.
Collapse
Affiliation(s)
| | - Debra Duso
- Trudeau Institute, Saranac Lake, NY, USA
| | | | | | - Sean Casey
- Trudeau Institute, Saranac Lake, NY, USA
| | | | | | | | | | - Purva Vats
- The Jackson Laboratory, Farmington, CT, USA
| | | | - Isaac Bell
- The Jackson Laboratory, Farmington, CT, USA
| | - Mike Tighe
- Trudeau Institute, Saranac Lake, NY, USA
| | | | | | | | | | | | | | | | | | | | | | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA.
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
3
|
Baker CN, Duso D, Kothapalli N, Hart T, Casey S, Cookenham T, Kummer L, Hvizdos J, Lanzer K, Vats P, Shanbhag P, Bell I, Tighe M, Travis K, Szaba F, Bedard O, Oberding N, Ward JM, Adams MD, Lutz C, Bradrick SS, Reiley WW, Rosenthal N. Characterization of Collaborative Cross mouse founder strain CAST/EiJ as a novel model for lethal COVID-19. RESEARCH SQUARE 2024:rs.3.rs-4675061. [PMID: 39149485 PMCID: PMC11326417 DOI: 10.21203/rs.3.rs-4675061/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Mutations in SARS-CoV-2 variants of concern (VOCs) have expanded the viral host range beyond primates, and a limited range of other mammals, to mice, affording the opportunity to exploit genetically diverse mouse panels to model the broad range of responses to infection in patient populations. Here we surveyed responses to VOC infection in genetically diverse Collaborative Cross (CC) founder strains. Infection of wild-derived CC founder strains produced a broad range of viral burden, disease susceptibility and survival, whereas most other strains were resistant to disease despite measurable lung viral titers. In particular, CAST/EiJ, a wild-derived strain, developed high lung viral burdens, more severe lung pathology than seen in other CC strains, and a dysregulated cytokine profile resulting in morbidity and mortality. These inbred mouse strains may serve as a valuable platform to evaluate therapeutic countermeasures against severe COVID-19 and other coronavirus pandemics in the future.
Collapse
|
4
|
Holt EA, Tyler A, Lakusta-Wong T, Lahue KG, Hankes KC, Teuscher C, Lynch RM, Ferris MT, Mahoney JM, Krementsov DN. Probing the basis of disease heterogeneity in multiple sclerosis using genetically diverse mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597205. [PMID: 38895248 PMCID: PMC11185616 DOI: 10.1101/2024.06.03.597205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Multiple sclerosis (MS) is a complex disease with significant heterogeneity in disease course and progression. Genetic studies have identified numerous loci associated with MS risk, but the genetic basis of disease progression remains elusive. To address this, we leveraged the Collaborative Cross (CC), a genetically diverse mouse strain panel, and experimental autoimmune encephalomyelitis (EAE). The thirty-two CC strains studied captured a wide spectrum of EAE severity, trajectory, and presentation, including severe-progressive, monophasic, relapsing remitting, and axial rotary (AR)-EAE, accompanied by distinct immunopathology. Sex differences in EAE severity were observed in six strains. Quantitative trait locus analysis revealed distinct genetic linkage patterns for different EAE phenotypes, including EAE severity and incidence of AR-EAE. Machine learning-based approaches prioritized candidate genes for loci underlying EAE severity ( Abcc4 and Gpc6 ) and AR-EAE ( Yap1 and Dync2h1 ). This work expands the EAE phenotypic repertoire and identifies novel loci controlling unique EAE phenotypes, supporting the hypothesis that heterogeneity in MS disease course is driven by genetic variation. Summary The genetic basis of disease heterogeneity in multiple sclerosis (MS) remains elusive. We leveraged the Collaborative Cross to expand the phenotypic repertoire of the experimental autoimmune encephalomyelitis (EAE) model of MS and identify loci controlling EAE severity, trajectory, and presentation.
Collapse
|
5
|
Nagarajan A, Scoggin K, Gupta J, Aminian M, Adams LG, Kirby M, Threadgill D, Andrews-Polymenis H. Collaborative Cross mice have diverse phenotypic responses to infection with Methicillin-resistant Staphylococcus aureus USA300. PLoS Genet 2024; 20:e1011229. [PMID: 38696518 PMCID: PMC11108197 DOI: 10.1371/journal.pgen.1011229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/21/2024] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing diseases ranging from mild skin infections to life threatening conditions, including endocarditis, pneumonia, and sepsis. To identify host genes modulating this host-pathogen interaction, we infected 25 Collaborative Cross (CC) mouse strains with methicillin-resistant S. aureus (MRSA) and monitored disease progression for seven days using a surgically implanted telemetry system. CC strains varied widely in their response to intravenous MRSA infection. We identified eight 'susceptible' CC strains with high bacterial load, tissue damage, and reduced survival. Among the surviving strains, six with minimal colonization were classified as 'resistant', while the remaining six tolerated higher organ colonization ('tolerant'). The kidney was the most heavily colonized organ, but liver, spleen and lung colonization were better correlated with reduced survival. Resistant strains had higher pre-infection circulating neutrophils and lower post-infection tissue damage compared to susceptible and tolerant strains. We identified four CC strains with sexual dimorphism: all females survived the study period while all males met our euthanasia criteria earlier. In these CC strains, males had more baseline circulating monocytes and red blood cells. We identified several CC strains that may be useful as new models for endocarditis, myocarditis, pneumonia, and resistance to MRSA infection. Quantitative Trait Locus (QTL) analysis identified two significant loci, on Chromosomes 18 and 3, involved in early susceptibility and late survival after infection. We prioritized Npc1 and Ifi44l genes as the strongest candidates influencing survival using variant analysis and mRNA expression data from kidneys within these intervals.
Collapse
Affiliation(s)
- Aravindh Nagarajan
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Kristin Scoggin
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jyotsana Gupta
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Manuchehr Aminian
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Mathematics and Statistics, California State Polytechnic University, Pomona, California, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Kirby
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America
| | - David Threadgill
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Helene Andrews-Polymenis
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
6
|
Graham JB, Swarts JL, Leist SR, Schäfer A, Bell TA, Hock P, Farrington J, Shaw GD, Ferris MT, Pardo-Manuel de Villena F, Baric RS, Lund JM. Unique immune profiles in collaborative cross mice linked to survival and viral clearance upon infection. iScience 2024; 27:109103. [PMID: 38361611 PMCID: PMC10867580 DOI: 10.1016/j.isci.2024.109103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
The response to infection is generally heterogeneous and diverse, with some individuals remaining asymptomatic while others present with severe disease or a diverse range of symptoms. Here, we address the role of host genetics on immune phenotypes and clinical outcomes following viral infection by studying genetically diverse mice from the Collaborative Cross (CC), allowing for use of a small animal model with controlled genetic diversity while maintaining genetic replicates. We demonstrate variation by deeply profiling a broad range of innate and adaptive immune cell phenotypes at steady-state in 63 genetically distinct CC mouse strains and link baseline immune signatures with virologic and clinical disease outcomes following infection of mice with herpes simplex virus 2 (HSV-2) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This work serves as a resource for CC strain selection based on steady-state immune phenotypes or disease presentation upon viral infection, and further, points to possible pre-infection immune correlates of survival and early viral clearance upon infection.
Collapse
Affiliation(s)
- Jessica B. Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jessica L. Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy A. Bell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joe Farrington
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Silva EE, Moioffer SJ, Hassert M, Berton RR, Smith MG, van de Wall S, Meyerholz DK, Griffith TS, Harty JT, Badovinac VP. Defining Parameters That Modulate Susceptibility and Protection to Respiratory Murine Coronavirus MHV1 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:563-575. [PMID: 38149923 PMCID: PMC10872354 DOI: 10.4049/jimmunol.2300434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Patients infected with SARS-CoV-2 experience variable disease susceptibility, and patients with comorbidities such as sepsis are often hospitalized for COVID-19 complications. However, the extent to which initial infectious inoculum dose determines disease outcomes and whether this can be used for immunological priming in a genetically susceptible host has not been completely defined. We used an established SARS-like murine model in which responses to primary and/or secondary challenges with murine hepatitis virus type 1 (MHV-1) were analyzed. We compared the response to infection in genetically susceptible C3H/HeJ mice, genetically resistant C57BL/6J mice, and genetically diverse, variably susceptible outbred Swiss Webster mice. Although defined as genetically susceptible to MHV-1, C3H/HeJ mice displayed decreasing dose-dependent pathological changes in disease severity and lung infiltrate/edema, as well as lymphopenia. Importantly, an asymptomatic dose (500 PFU) was identified that yielded no measurable morbidity/mortality postinfection in C3H/HeJ mice. Polymicrobial sepsis induced via cecal ligation and puncture converted asymptomatic infections in C3H/HeJ and C57BL/6J mice to more pronounced disease, modeling the impact of sepsis as a comorbidity to β-coronavirus infection. We then used low-dose infection as an immunological priming event in C3H/HeJ mice, which provided neutralizing Ab-dependent, but not circulating CD4/CD8 T cell-dependent, protection against a high-dose MHV-1 early rechallenge. Together, these data define how infection dose, immunological status, and comorbidities modulate outcomes of primary and secondary β-coronavirus infections in hosts with variable susceptibility.
Collapse
Affiliation(s)
- Elvia E Silva
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | - Mariah Hassert
- Department of Pathology, University of Iowa, Iowa City, IA
| | - Roger R Berton
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Matthew G Smith
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | | | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN
| | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
8
|
Zhang J, Rissmann M, Kuiken T, Haagmans BL. Comparative Pathogenesis of Severe Acute Respiratory Syndrome Coronaviruses. ANNUAL REVIEW OF PATHOLOGY 2024; 19:423-451. [PMID: 37832946 DOI: 10.1146/annurev-pathol-052620-121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Over the last two decades the world has witnessed the global spread of two genetically related highly pathogenic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. However, the impact of these outbreaks differed significantly with respect to the hospitalizations and fatalities seen worldwide. While many studies have been performed recently on SARS-CoV-2, a comparative pathogenesis analysis with SARS-CoV may further provide critical insights into the mechanisms of disease that drive coronavirus-induced respiratory disease. In this review, we comprehensively describe clinical and experimental observations related to transmission and pathogenesis of SARS-CoV-2 in comparison with SARS-CoV, focusing on human, animal, and in vitro studies. By deciphering the similarities and disparities of SARS-CoV and SARS-CoV-2, in terms of transmission and pathogenesis mechanisms, we offer insights into the divergent characteristics of these two viruses. This information may also be relevant to assessing potential novel introductions of genetically related highly pathogenic coronaviruses.
Collapse
Affiliation(s)
- Jingshu Zhang
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Melanie Rissmann
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Thijs Kuiken
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| |
Collapse
|
9
|
Cruz Cisneros MC, Anderson EJ, Hampton BK, Parotti B, Sarkar S, Taft-Benz S, Bell TA, Blanchard M, Dillard JA, Dinnon KH, Hock P, Leist SR, Madden EA, Shaw GD, West A, Baric RS, Baxter VK, Pardo-Manuel de Villena F, Heise MT, Ferris MT. Host Genetic Variation Impacts SARS-CoV-2 Vaccination Response in the Diversity Outbred Mouse Population. Vaccines (Basel) 2024; 12:103. [PMID: 38276675 PMCID: PMC10821422 DOI: 10.3390/vaccines12010103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. However, there is significant individual-to-individual variation in vaccine efficacy due to factors including viral variants, host age, immune status, environmental and host genetic factors. Understanding those determinants driving this variation may inform the development of more broadly protective vaccine strategies. While host genetic factors are known to impact vaccine efficacy for respiratory pathogens such as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. To model the impact of host genetic variation on SARS-CoV-2 vaccine efficacy, while controlling for the impact of non-genetic factors, we used the Diversity Outbred (DO) mouse model. We found that DO mice immunized against SARS-CoV-2 exhibited high levels of variation in vaccine-induced neutralizing antibody responses. While the majority of the vaccinated mice were protected from virus-induced disease, similar to human populations, we observed vaccine breakthrough in a subset of mice. Importantly, we found that this variation in neutralizing antibody, virus-induced disease, and viral titer is heritable, indicating that the DO serves as a useful model system for studying the contribution of genetic variation of both vaccines and disease outcomes.
Collapse
Affiliation(s)
- Marta C. Cruz Cisneros
- Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.C.C.); (B.K.H.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Elizabeth J. Anderson
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.J.A.); (V.K.B.)
| | - Brea K. Hampton
- Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.C.C.); (B.K.H.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Breantié Parotti
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sharon Taft-Benz
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Timothy A. Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Matthew Blanchard
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Jacob A. Dillard
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Kenneth H. Dinnon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Emily A. Madden
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Victoria K. Baxter
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.J.A.); (V.K.B.)
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark T. Heise
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| |
Collapse
|
10
|
Tyler AL, Spruce C, Kursawe R, Haber A, Ball RL, Pitman WA, Fine AD, Raghupathy N, Walker M, Philip VM, Baker CL, Mahoney JM, Churchill GA, Trowbridge JJ, Stitzel ML, Paigen K, Petkov PM, Carter GW. Variation in histone configurations correlates with gene expression across nine inbred strains of mice. Genome Res 2023; 33:857-871. [PMID: 37217254 PMCID: PMC10519406 DOI: 10.1101/gr.277467.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The Diversity Outbred (DO) mice and their inbred founders are widely used models of human disease. However, although the genetic diversity of these mice has been well documented, their epigenetic diversity has not. Epigenetic modifications, such as histone modifications and DNA methylation, are important regulators of gene expression and, as such, are a critical mechanistic link between genotype and phenotype. Therefore, creating a map of epigenetic modifications in the DO mice and their founders is an important step toward understanding mechanisms of gene regulation and the link to disease in this widely used resource. To this end, we performed a strain survey of epigenetic modifications in hepatocytes of the DO founders. We surveyed four histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac), as well as DNA methylation. We used ChromHMM to identify 14 chromatin states, each of which represents a distinct combination of the four histone modifications. We found that the epigenetic landscape is highly variable across the DO founders and is associated with variation in gene expression across strains. We found that epigenetic state imputed into a population of DO mice recapitulated the association with gene expression seen in the founders, suggesting that both histone modifications and DNA methylation are highly heritable mechanisms of gene expression regulation. We illustrate how DO gene expression can be aligned with inbred epigenetic states to identify putative cis-regulatory regions. Finally, we provide a data resource that documents strain-specific variation in the chromatin state and DNA methylation in hepatocytes across nine widely used strains of laboratory mice.
Collapse
Affiliation(s)
- Anna L Tyler
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Catrina Spruce
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Annat Haber
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Robyn L Ball
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Wendy A Pitman
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Alexander D Fine
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | | | - Michael Walker
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Vivek M Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | | | - J Matthew Mahoney
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Gary A Churchill
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | | | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Kenneth Paigen
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Petko M Petkov
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA;
| | - Gregory W Carter
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| |
Collapse
|
11
|
Distinct gene programs underpinning disease tolerance and resistance in influenza virus infection. Cell Syst 2022; 13:1002-1015.e9. [PMID: 36516834 DOI: 10.1016/j.cels.2022.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
When challenged with an invading pathogen, the host-defense response is engaged to eliminate the pathogen (resistance) and to maintain health in the presence of the pathogen (disease tolerance). However, the identification of distinct molecular programs underpinning disease tolerance and resistance remained obscure. We exploited transcriptional and physiological monitoring across 33 mouse strains, during in vivo influenza virus infection, to identify two host-defense gene programs-one is associated with hallmarks of disease tolerance and the other with hallmarks of resistance. Both programs constitute generic responses in multiple mouse and human cell types. Our study describes the organizational principles of these programs and validates Arhgdia as a regulator of disease-tolerance states in epithelial cells. We further reveal that the baseline disease-tolerance state in peritoneal macrophages is associated with the pathophysiological response to injury and infection. Our framework provides a paradigm for the understanding of disease tolerance and resistance at the molecular level.
Collapse
|
12
|
Hampton BK, Plante KS, Whitmore AC, Linnertz CL, Madden EA, Noll KE, Boyson SP, Parotti B, Xenakis JG, Bell TA, Hock P, Shaw GD, de Villena FPM, Ferris MT, Heise MT. Forward genetic screen of homeostatic antibody levels in the Collaborative Cross identifies MBD1 as a novel regulator of B cell homeostasis. PLoS Genet 2022; 18:e1010548. [PMID: 36574452 PMCID: PMC9829176 DOI: 10.1371/journal.pgen.1010548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/09/2023] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
Variation in immune homeostasis, the state in which the immune system is maintained in the absence of stimulation, is highly variable across populations. This variation is attributed to both genetic and environmental factors. However, the identity and function of specific regulators have been difficult to identify in humans. We evaluated homeostatic antibody levels in the serum of the Collaborative Cross (CC) mouse genetic reference population. We found heritable variation in all antibody isotypes and subtypes measured. We identified 4 quantitative trait loci (QTL) associated with 3 IgG subtypes: IgG1, IgG2b, and IgG2c. While 3 of these QTL map to genome regions of known immunological significance (major histocompatibility and immunoglobulin heavy chain locus), Qih1 (associated with variation in IgG1) mapped to a novel locus on Chromosome 18. We further associated this locus with B cell proportions in the spleen and identify Methyl-CpG binding domain protein 1 under this locus as a novel regulator of homeostatic IgG1 levels in the serum and marginal zone B cells (MZB) in the spleen, consistent with a role in MZB differentiation to antibody secreting cells.
Collapse
Affiliation(s)
- Brea K. Hampton
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kenneth S. Plante
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alan C. Whitmore
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Colton L. Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Emily A. Madden
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kelsey E. Noll
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Samuel P. Boyson
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Breantie Parotti
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - James G. Xenakis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Timothy A. Bell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
13
|
Jansen EB, Orvold SN, Swan CL, Yourkowski A, Thivierge BM, Francis ME, Ge A, Rioux M, Darbellay J, Howland JG, Kelvin AA. After the virus has cleared-Can preclinical models be employed for Long COVID research? PLoS Pathog 2022; 18:e1010741. [PMID: 36070309 PMCID: PMC9451097 DOI: 10.1371/journal.ppat.1010741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) can cause the life-threatening acute respiratory disease called COVID-19 (Coronavirus Disease 2019) as well as debilitating multiorgan dysfunction that persists after the initial viral phase has resolved. Long COVID or Post-Acute Sequelae of COVID-19 (PASC) is manifested by a variety of symptoms, including fatigue, dyspnea, arthralgia, myalgia, heart palpitations, and memory issues sometimes affecting between 30% and 75% of recovering COVID-19 patients. However, little is known about the mechanisms causing Long COVID and there are no widely accepted treatments or therapeutics. After introducing the clinical aspects of acute COVID-19 and Long COVID in humans, we summarize the work in animals (mice, Syrian hamsters, ferrets, and nonhuman primates (NHPs)) to model human COVID-19. The virology, pathology, immune responses, and multiorgan involvement are explored. Additionally, any studies investigating time points longer than 14 days post infection (pi) are highlighted for insight into possible long-term disease characteristics. Finally, we discuss how the models can be leveraged for treatment evaluation, including pharmacological agents that are currently in human clinical trials for treating Long COVID. The establishment of a recognized Long COVID preclinical model representing the human condition would allow the identification of mechanisms causing disease as well as serve as a vehicle for evaluating potential therapeutics.
Collapse
Affiliation(s)
- Ethan B. Jansen
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Spencer N. Orvold
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cynthia L. Swan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anthony Yourkowski
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brittany M. Thivierge
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Magen E. Francis
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anni Ge
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Melissa Rioux
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John G. Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
14
|
Hackett J, Gibson H, Frelinger J, Buntzman A. Using the Collaborative Cross and Diversity Outbred Mice in Immunology. Curr Protoc 2022; 2:e547. [PMID: 36066328 PMCID: PMC9612550 DOI: 10.1002/cpz1.547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The Collaborative Cross (CC) and the Diversity Outbred (DO) stock mouse panels are the most powerful murine genetics tools available to the genetics community. Together, they combine the strength of inbred animal models with the diversity of outbred populations. Using the 63 CC strains or a panel of DO mice, each derived from the same 8 parental mouse strains, researchers can map genetic contributions to exceptionally complex immunological and infectious disease traits that would require far greater powering if performed by genome-wide association studies (GWAS) in human populations. These tools allow genes to be studied in heterozygous and homozygous states and provide a platform to study epistasis between interacting loci. Most importantly, once a quantitative phenotype is investigated and quantitative trait loci are identified, confirmatory genetic studies can be performed, which is often problematic using the GWAS approach. In addition, novel stable mouse models for immune phenotypes are often derived from studies utilizing the DO and CC mice that can serve as stronger model systems than existing ones in the field. The CC/DO systems have contributed to the fields of cancer immunology, autoimmunity, vaccinology, infectious disease, allergy, tissue rejection, and tolerance but have thus far been greatly underutilized. In this article, we present a recent review of the field and point out key areas of immunology that are ripe for further investigation and awaiting new CC/DO research projects. We also highlight some of the strong computational tools that have been developed for analyzing CC/DO genetic and phenotypic data. Additionally, we have formed a centralized community on the CyVerse infrastructure where immunogeneticists can utilize those software tools, collaborate with groups across the world, and expand the use of the CC and DO systems for investigating immunogenetic phenomena. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Justin Hackett
- Barbara Ann Karmanos Cancer Institute, Hudson-Webber Cancer Research Center, Detroit, Michigan
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Hudson-Webber Cancer Research Center, Detroit, Michigan
| | - Jeffrey Frelinger
- University of Arizona, Valley Fever Center for Excellence, Tucson, Arizona
- Department of Microbiology and Immunology, University of North Carolina System, Chapel Hill, North Carolina
| | - Adam Buntzman
- University of Arizona, BIO5 Institute, Valley Fever Center for Excellence, Tucson, Arizona
| |
Collapse
|
15
|
Abstract
Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to severe acute respiratory syndrome coronavirus (SARS-CoV) disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6, that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2, and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species. IMPORTANCE Host genetic variation is an important determinant that predicts disease outcomes following infection. In the setting of highly pathogenic coronavirus infections genetic determinants underlying host susceptibility and mortality remain unclear. To elucidate the role of host genetic variation on sarbecovirus pathogenesis and disease outcomes, we utilized the Collaborative Cross (CC) mouse genetic reference population as a model to identify susceptibility alleles to SARS-CoV and SARS-CoV-2 infections. Our findings reveal that a multitrait loci found in chromosome 9 is an important regulator of sarbecovirus pathogenesis in mice. Within this locus, we identified and validated CCR9 and CXCR6 as important regulators of host disease outcomes. Specifically, both CCR9 and CXCR6 are protective against severe SARS-CoV, SARS-CoV-2, and SARS-related HKU3 virus disease in mice. This chromosome 9 multitrait locus may be important to help identify genes that regulate coronavirus disease outcomes in humans.
Collapse
|
16
|
Cervantes O, Talavera IC, Every E, Coler B, Li M, Li A, Li H, Adams Waldorf K. Role of hormones in the pregnancy and sex-specific outcomes to infections with respiratory viruses. Immunol Rev 2022; 308:123-148. [PMID: 35373371 PMCID: PMC9189035 DOI: 10.1111/imr.13078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/13/2023]
Abstract
Pregnant women infected with pathogenic respiratory viruses, such as influenza A viruses (IAV) and coronaviruses, are at higher risk for mortality, hospitalization, preterm birth, and stillbirth. Several factors are likely to contribute to the susceptibility of pregnant individuals to severe lung disease including changes in pulmonary physiology, immune defenses, and effector functions of some immune cells. Pregnancy is also a physiologic state characterized by higher levels of multiple hormones that may impact the effector functions of immune cells, such as progesterone, estrogen, human chorionic gonadotropin, prolactin, and relaxin. Each of these hormones acts to support a tolerogenic immune state of pregnancy, which helps prevent fetal rejection, but may also contribute to an impaired antiviral response. In this review, we address the unique role of adaptive and innate immune cells in the control of pathogenic respiratory viruses and how pregnancy and specific hormones can impact their effector actions. We highlight viruses with sex-specific differences in infection outcomes and why pregnancy hormones may contribute to fetal protection but aid the virus at the expense of the mother's health.
Collapse
Affiliation(s)
- Orlando Cervantes
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Irene Cruz Talavera
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Emma Every
- University of Washington School of Medicine, Spokane, Washington, United States of America
| | - Brahm Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
| | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Case Western Reserve, Cleveland, Ohio, United States of America
| | - Hanning Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
17
|
Schäfer A, Leist SR, Gralinski LE, Martinez DR, Winkler ES, Okuda K, Hawkins PE, Gully KL, Graham RL, Scobey DT, Bell TA, Hock P, Shaw GD, Loome JF, Madden EA, Anderson E, Baxter VK, Taft-Benz SA, Zweigart MR, May SR, Dong S, Clark M, Miller DR, Lynch RM, Heise MT, Tisch R, Boucher RC, Pardo Manuel de Villena F, Montgomery SA, Diamond MS, Ferris MT, Baric RS. A Multitrait Locus Regulates Sarbecovirus Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.01.494461. [PMID: 35677067 PMCID: PMC9176644 DOI: 10.1101/2022.06.01.494461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to SARS-CoV disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse Chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6 that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2 and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species.
Collapse
|
18
|
Jensen IJ, Martin MD, Tripathy SK, Badovinac VP. Novel Mouse Model of Murine Cytomegalovirus-Induced Adaptive NK Cells. Immunohorizons 2022; 6:8-15. [PMID: 35031582 PMCID: PMC9636593 DOI: 10.4049/immunohorizons.2100113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
NK cells are important mediators of viral control with the capacity to form adaptive immune features following infection. However, studies of infection-induced adaptive NK cells require adoptive cell transfer to lower the precursor frequency of "Ag-specific" NK cells, potentially limiting the diversity of the NK cell response. In seeking an unmanipulated model to probe the adaptive NK cells, we interrogated a wide range of Collaborative Cross (CC) inbred mice, inbred mouse strains that exhibit broad genetic diversity across strains. Our assessment identified and validated a putative "ideal" CC strain, CC006, which does not require manipulation to generate and maintain adaptive NK cells. Critically, CC006 mice, in contrast to C57BL/6 mice, are capable of developing enhanced NK cell-mediated protective responses to murine CMV infection following m157-mediated vaccination. This work both furthers our understanding of adaptive NK cells and demonstrates the utility of CC mice in the development and interrogation of immunologic models.
Collapse
Affiliation(s)
- Isaac J Jensen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY;
| | | | - Sandeep K Tripathy
- Department of Medicine, Gastroenterology Division, Washington University School of Medicine, St. Louis, MO
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA; and
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
19
|
Smith PL, Piadel K, Dalgleish AG. Directing T-Cell Immune Responses for Cancer Vaccination and Immunotherapy. Vaccines (Basel) 2021; 9:1392. [PMID: 34960140 PMCID: PMC8708201 DOI: 10.3390/vaccines9121392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer vaccination and immunotherapy revolutionised the treatment of cancer, a result of decades of research into the immune system in health and disease. However, despite recent breakthroughs in treating otherwise terminal cancer, only a minority of patients respond to cancer immunotherapy and some cancers are largely refractive to immunotherapy treatment. This is due to numerous issues intrinsic to the tumour, its microenvironment, or the immune system. CD4+ and CD8+ αβ T-cells emerged as the primary effector cells of the anti-tumour immune response but their function in cancer patients is often compromised. This review details the mechanisms by which T-cell responses are hindered in the setting of cancer and refractive to immunotherapy, and details many of the approaches under investigation to direct T-cell function and improve the efficacy of cancer vaccination and immunotherapy.
Collapse
Affiliation(s)
- Peter Lawrence Smith
- Institute of Infection and Immunity, St. Georges University of London, London SW17 0RE, UK; (K.P.); (A.G.D.)
| | | | | |
Collapse
|
20
|
Iglesias-Carres L, Neilson AP. Utilizing preclinical models of genetic diversity to improve translation of phytochemical activities from rodents to humans and inform personalized nutrition. Food Funct 2021; 12:11077-11105. [PMID: 34672309 DOI: 10.1039/d1fo02782d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mouse models are an essential tool in different areas of research, including nutrition and phytochemical research. Traditional inbred mouse models have allowed the discovery of therapeutical targets and mechanisms of action and expanded our knowledge of health and disease. However, these models lack the genetic variability typically found in human populations, which hinders the translatability of the results found in mice to humans. The development of genetically diverse mouse models, such as the collaborative cross (CC) or the diversity outbred (DO) models, has been a useful tool to overcome this obstacle in many fields, such as cancer, immunology and toxicology. However, these tools have not yet been widely adopted in the field of phytochemical research. As demonstrated in other disciplines, use of CC and DO models has the potential to provide invaluable insights for translation of phytochemicals from rodents to humans, which are desperately needed given the challenges and numerous failed clinical trials in this field. These models may prove informative for personalized use of phytochemicals in humans, including: predicting interindividual variability in phytochemical bioavailability and efficacy, identifying genetic loci or genes governing response to phytochemicals, identifying phytochemical mechanisms of action and therapeutic targets, and understanding the impact of genetic variability on individual response to phytochemicals. Such insights would prove invaluable for personalized implementation of phytochemicals in humans. This review will focus on the current work performed with genetically diverse mouse populations, and the research opportunities and advantages that these models can offer to phytochemical research.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| |
Collapse
|
21
|
Vick SC, Frutoso M, Mair F, Konecny AJ, Greene E, Wolf CR, Logue JK, Franko NM, Boonyaratanakornkit J, Gottardo R, Schiffer JT, Chu HY, Prlic M, Lund JM. A regulatory T cell signature distinguishes the immune landscape of COVID-19 patients from those with other respiratory infections. SCIENCE ADVANCES 2021; 7:eabj0274. [PMID: 34757794 PMCID: PMC8580318 DOI: 10.1126/sciadv.abj0274] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/22/2021] [Indexed: 06/01/2023]
Abstract
Despite recent studies of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), little is known about how the immune response against SARS-CoV-2 differs from other respiratory infections. We compare the immune signature from hospitalized SARS-CoV-2–infected patients to patients hospitalized prepandemic with influenza or respiratory syncytial virus (RSV). Our in-depth profiling indicates that the immune landscape in SARS-CoV-2 patients is largely similar to flu or RSV patients. Unique to patients infected with SARS-CoV-2 who had the most critical clinical disease were changes in the regulatory T cell (Treg) compartment. A Treg signature including increased frequency, activation status, and migration markers was correlated COVID-19 severity. These findings are relevant as Tregs are considered for therapy to combat the severe inflammation seen in COVID-19 patients. Likewise, having defined the overlapping immune landscapes in SARS-CoV-2, existing knowledge of flu and RSV infections could be leveraged to identify common treatment strategies.
Collapse
Affiliation(s)
- Sarah C. Vick
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Marie Frutoso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew J. Konecny
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Evan Greene
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Caitlin R. Wolf
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jennifer K. Logue
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Nicholas M. Franko
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jim Boonyaratanakornkit
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Helen Y. Chu
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Zhao YS, Yu YX. Lymphocyte count predicts the severity of COVID-19: Evidence from a meta-analysis. World J Clin Infect Dis 2021; 11:49-59. [DOI: 10.5495/wjcid.v11.i3.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/03/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In December 2019, coronavirus disease 2019 (COVID-19) was reported firstly in Wuhan, China. COVID-19 is currently a global pandemic.
AIM To assess the suitability of lymphocyte count as a biomarker of COVID-19 severity.
METHODS Five literature databases (PubMed/MEDLINE, Web of Science, Google Scholar, Embase, and Scopus) were searched to identify eligible articles. A meta-analysis was performed to calculate the standard mean difference (SMD) and 95% confidence interval (CI) of lymphocyte counts in coronaviral pneumonia cases.
RESULTS Eight studies, including 1057 patients, were integrated in the meta-analysis. Lymphocyte counts were associated with severe coronavirus (CoV) infection (SMD = 1.35, 95%CI: 1.97 to 0.37, P < 0.001, I2 = 92.6%). In the subgroup analysis stratified by prognosis, lymphocytes were associated with CoV infection mortality (n = 2, SMD = 0.42, 95%CI: 0.66 to 0.19, P < 0.001, I2 = 0.0%), severity (n = 2, SMD = 0.93, 95%CI: 1.20 to 0.67, P < 0.001, I2 = 0.0%), and diagnostic rate (n = 4, SMD = 2.32, 95%CI: 3.60 to 1.04, P < 0.001, I2 = 91.2%).
CONCLUSION Lymphocyte count may represent a simple, rapid, and commonly available laboratory index with which to diagnosis infection and predict the severity of CoV infections, including COVID-19.
Collapse
Affiliation(s)
- Yi-Si Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ying-Xi Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
23
|
Regulatory T cells and vaccine effectiveness in older adults. Challenges and prospects. Int Immunopharmacol 2021; 96:107761. [PMID: 34162139 DOI: 10.1016/j.intimp.2021.107761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Since the discovery of lymphocytes with immunosuppressive activity, increasing interest has arisen in their possible influence on the immune response induced by vaccines. Regulatory T cells (Tregs) are essential for maintaining peripheral tolerance, preventing autoimmune diseases, and limiting chronic inflammatory diseases. However, they also limit beneficial immune responses by suppressing anti-infectious and anti-tumor immunity. Mounting evidence suggests that Tregs are involved, at least in part, in the low effectiveness of immunization against various diseases where it has been difficult to obtain protective vaccines. Interestingly, increased activity of Tregs is associated with aging, suggesting a key role for these cells in the lower vaccine effectiveness observed in older people. In this review, we analyze the impact of Tregs on vaccination, with a focus on older adults. Finally, we address an overview of current strategies for Tregs modulation with potential application to improve the effectiveness of future vaccines targeting older populations.
Collapse
|
24
|
Vick SC, Frutoso M, Mair F, Konecny AJ, Greene E, Wolf CR, Logue JK, Boonyaratanakornkit J, Gottardo R, Schiffer JT, Chu HY, Prlic M, Lund JM. A differential regulatory T cell signature distinguishes the immune landscape of COVID-19 hospitalized patients from those hospitalized with other respiratory viral infections. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.25.21254376. [PMID: 33791720 PMCID: PMC8010752 DOI: 10.1101/2021.03.25.21254376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SARS-CoV-2 infection has caused a lasting global pandemic costing millions of lives and untold additional costs. Understanding the immune response to SARS-CoV-2 has been one of the main challenges in the past year in order to decipher mechanisms of host responses and interpret disease pathogenesis. Comparatively little is known in regard to how the immune response against SARS-CoV-2 differs from other respiratory infections. In our study, we compare the peripheral blood immune signature from SARS-CoV-2 infected patients to patients hospitalized pre-pandemic with Influenza Virus or Respiratory Syncytial Virus (RSV). Our in-depth profiling indicates that the immune landscape in patients infected by SARS-CoV-2 is largely similar to patients hospitalized with Flu or RSV. Similarly, serum cytokine and chemokine expression patterns were largely overlapping. Unique to patients infected with SARS-CoV-2 who had the most critical clinical disease state were changes in the regulatory T cell (Treg) compartment. A Treg signature including increased frequency, activation status, and migration markers was correlated with the severity of COVID-19 disease. These findings are particularly relevant as Tregs are being discussed as a therapy to combat the severe inflammation seen in COVID-19 patients. Likewise, having defined the overlapping immune landscapes in SARS-CoV-2, existing knowledge of Flu and RSV infections could be leveraged to identify common treatment strategies. HIGHLIGHTS The immune landscapes of hospitalized pre-pandemic RSV and influenza patients are similar to SARS-CoV-2 patientsSerum cytokine and chemokine expression patterns are largely similar between patients hospitalized with respiratory virus infections, including SARS-CoV-2, versus healthy donorsSARS-CoV-2 patients with the most critical disease displayed unique changes in the Treg compartmentadvances in understanding and treating SARS-CoV-2 could be leveraged for other common respiratory infections.
Collapse
Affiliation(s)
- Sarah C. Vick
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Marie Frutoso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Andrew J. Konecny
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Evan Greene
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Caitlin R. Wolf
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Jennifer K. Logue
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Jim Boonyaratanakornkit
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Helen Y. Chu
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Immunology, University of Washington, Seattle, WA, 98195
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|