1
|
Girma A. Biology of human respiratory syncytial virus: Current perspectives in immune response and mechanisms against the virus. Virus Res 2024; 350:199483. [PMID: 39396572 PMCID: PMC11513633 DOI: 10.1016/j.virusres.2024.199483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Human respiratory syncytial virus (hRSV) remains a leading cause of morbidity and mortality in infants, young children, and older adults. hRSV infection's limited treatment and vaccine options significantly increase bronchiolitis' morbidity rates. The severity and outcome of viral infection hinge on the innate immune response. Developing vaccines and identifying therapeutic interventions suitable for young children, older adults, and pregnant women relies on comprehending the molecular mechanisms of viral PAMP recognition, genetic factors of the inflammatory response, and antiviral defense. This review covers fundamental elements of hRSV biology, diagnosis, pathogenesis, and the immune response, highlighting prospective options for vaccine development.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Sciences, Mekdela Amba University, P.O. Box 32, Tulu Awuliya, Ethiopia.
| |
Collapse
|
2
|
Gao Y, Raghavan A, Espinosa Garcia SA, Deng B, Hurtado de Mendoza D, Liang B. In vitro higher-order oligomeric assembly of the respiratory syncytial virus M2-1 protein with longer RNAs. J Virol 2024; 98:e0104624. [PMID: 39016557 PMCID: PMC11334520 DOI: 10.1128/jvi.01046-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
The respiratory syncytial virus (RSV) M2-1 protein is a transcriptional antitermination factor crucial for efficiently synthesizing multiple full-length viral mRNAs. During RSV infection, M2-1 exists in a complex with mRNA within cytoplasmic compartments called inclusion body-associated granules (IBAGs). Prior studies showed that M2-1 can bind along the entire length of viral mRNAs instead of just gene-end (GE) sequences, suggesting that M2-1 has more sophisticated RNA recognition and binding characteristics. Here, we analyzed the higher oligomeric complexes formed by M2-1 and RNAs in vitro using size exclusion chromatography (SEC), electrophoretic mobility shift assays (EMSA), negative stain electron microscopy (EM), and mutagenesis. We observed that the minimal RNA length for such higher oligomeric assembly is about 14 nucleotides for polyadenine sequences, and longer RNAs exhibit distinct RNA-induced binding modality to M2-1, leading to enhanced particle formation frequency and particle homogeneity as the local RNA concentration increases. We showed that particular cysteine residues of the M2-1 cysteine-cysteine-cystine-histidine (CCCH) zinc-binding motif are essential for higher oligomeric assembly. Furthermore, complexes assembled with long polyadenine sequences remain unaffected when co-incubated with ribonucleases or a zinc chelation agent. Our study provided new insights into the higher oligomeric assembly of M2-1 with longer RNA.IMPORTANCERespiratory syncytial virus (RSV) causes significant respiratory infections in infants, the elderly, and immunocompromised individuals. The virus forms specialized compartments to produce genetic material, with the M2-1 protein playing a pivotal role. M2-1 acts as an anti-terminator in viral transcription, ensuring the creation of complete viral mRNA and associating with both viral and cellular mRNA. Our research focuses on understanding M2-1's function in viral mRNA synthesis by modeling interactions in a controlled environment. This approach is crucial due to the challenges of studying these compartments in vivo. Reconstructing the system in vitro uncovers structural and biochemical aspects and reveals the potential functions of M2-1 and its homologs in related viruses. Our work may contribute to identifying targets for antiviral inhibitors and advancing RSV infection treatment.
Collapse
Affiliation(s)
- Yunrong Gao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anirudh Raghavan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bowei Deng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Kleiner VA, Fearns R. How does the polymerase of non-segmented negative strand RNA viruses commit to transcription or genome replication? J Virol 2024; 98:e0033224. [PMID: 39078194 PMCID: PMC11334523 DOI: 10.1128/jvi.00332-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
The Mononegavirales, or non-segmented negative-sense RNA viruses (nsNSVs), includes significant human pathogens, such as respiratory syncytial virus, parainfluenza virus, measles virus, Ebola virus, and rabies virus. Although these viruses differ widely in their pathogenic properties, they are united by each having a genome consisting of a single strand of negative-sense RNA. Consistent with their shared genome structure, the nsNSVs have evolved similar ways to transcribe their genome into mRNAs and replicate it to produce new genomes. Importantly, both mRNA transcription and genome replication are performed by a single virus-encoded polymerase. A fundamental and intriguing question is: how does the nsNSV polymerase commit to being either an mRNA transcriptase or a replicase? The polymerase must become committed to one process or the other either before it interacts with the genome template or in its initial interactions with the promoter sequence at the 3´ end of the genomic RNA. This review examines the biochemical, molecular biology, and structural biology data regarding the first steps of transcription and RNA replication that have been gathered over several decades for different families of nsNSVs. These findings are discussed in relation to possible models that could explain how an nsNSV polymerase initiates and commits to either transcription or genome replication.
Collapse
Affiliation(s)
- Victoria A. Kleiner
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Kerkhofs K, Guydosh NR, Bayfield MA. Respiratory Syncytial Virus (RSV) optimizes the translational landscape during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606199. [PMID: 39131278 PMCID: PMC11312563 DOI: 10.1101/2024.08.02.606199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Viral infection often triggers eukaryotic initiator factor 2α (eIF2α) phosphorylation, leading to global 5'-cap-dependent translation inhibition. RSV encodes messenger RNAs (mRNAs) mimicking 5'-cap structures of host mRNAs and thus inhibition of cap-dependent translation initiation would likely also reduce viral translation. We confirmed that RSV limits widespread translation initiation inhibition and unexpectedly found that the fraction of ribosomes within polysomes increases during infection, indicating higher ribosome loading on mRNAs during infection. We found that AU-rich host transcripts that are less efficiently translated under normal conditions become more efficient at recruiting ribosomes, similar to RSV transcripts. Viral transcripts are transcribed in cytoplasmic inclusion bodies, where the viral AU-rich binding protein M2-1 has been shown to bind viral transcripts and shuttle them into the cytoplasm. We further demonstrated that M2-1 is found on polysomes, and that M2-1 might deliver host AU-rich transcripts for translation.
Collapse
Affiliation(s)
- Kyra Kerkhofs
- Department of Biology, Faculty of Science, York University, Toronto, Ontario N3J 1P3, Canada
| | - Nicholas R. Guydosh
- Section on mRNA Regulation and Translation, Laboratory of Biochemistry & Genetics. National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A. Bayfield
- Department of Biology, Faculty of Science, York University, Toronto, Ontario N3J 1P3, Canada
| |
Collapse
|
5
|
Langedijk AC, Bont LJ. Respiratory syncytial virus infection and novel interventions. Nat Rev Microbiol 2023; 21:734-749. [PMID: 37438492 DOI: 10.1038/s41579-023-00919-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/14/2023]
Abstract
The large global burden of respiratory syncytial virus (RSV) respiratory tract infections in young children and older adults has gained increased recognition in recent years. Recent discoveries regarding the neutralization-specific viral epitopes of the pre-fusion RSV glycoprotein have led to a shift from empirical to structure-based design of RSV therapeutics, and controlled human infection model studies have provided early-stage proof of concept for novel RSV monoclonal antibodies, vaccines and antiviral drugs. The world's first vaccines and first monoclonal antibody to prevent RSV among older adults and all infants, respectively, have recently been approved. Large-scale introduction of RSV prophylactics emphasizes the need for active surveillance to understand the global impact of these interventions over time and to timely identify viral mutants that are able to escape novel prophylactics. In this Review, we provide an overview of RSV interventions in clinical development, highlighting global disease burden, seasonality, pathogenesis, and host and viral factors related to RSV immunity.
Collapse
Affiliation(s)
- Annefleur C Langedijk
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Louis J Bont
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands.
- ReSViNET Foundation, Zeist, the Netherlands.
| |
Collapse
|
6
|
Risso-Ballester J, Rameix-Welti MA. Spatial resolution of virus replication: RSV and cytoplasmic inclusion bodies. Adv Virus Res 2023; 116:1-43. [PMID: 37524479 DOI: 10.1016/bs.aivir.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory Syncytial Virus (RSV) is a major cause of respiratory illness in young children, elderly and immunocompromised individuals worldwide representing a severe burden for health systems. The urgent development of vaccines or specific antivirals against RSV is impaired by the lack of knowledge regarding its replication mechanisms. RSV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Mononegavirales order (MNV) which includes other viruses pathogenic to humans as Rabies (RabV), Ebola (EBOV), or measles (MeV) viruses. Transcription and replication of viral genomes occur within cytoplasmatic virus-induced spherical inclusions, commonly referred as inclusion bodies (IBs). Recently IBs were shown to exhibit properties of membrane-less organelles (MLO) arising by liquid-liquid phase separation (LLPS). Compartmentalization of viral RNA synthesis steps in viral-induced MLO is indeed a common feature of MNV. Strikingly these key compartments still remain mysterious. Most of our current knowledge on IBs relies on the use of fluorescence microscopy. The ability to fluorescently label IBs in cells has been key to uncover their dynamics and nature. The generation of recombinant viruses expressing a fluorescently-labeled viral protein and the immunolabeling or the expression of viral fusion proteins known to be recruited in IBs are some of the tools used to visualize IBs in infected cells. In this chapter, microscope techniques and the most relevant studies that have shed light on RSV IBs fundamental aspects, including biogenesis, organization and dynamics are being discussed and brought to light with the investigations carried out on other MNV.
Collapse
Affiliation(s)
| | - Marie-Anne Rameix-Welti
- Institut Pasteur, Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Paris, France; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Paris, France.
| |
Collapse
|
7
|
Visentin A, Demitroff N, Salgueiro M, Borkosky SS, Uversky VN, Camporeale G, de Prat-Gay G. Assembly of the Tripartite and RNA Condensates of the Respiratory Syncytial Virus Factory Proteins In Vitro: Role of the Transcription Antiterminator M 2-1. Viruses 2023; 15:1329. [PMID: 37376628 DOI: 10.3390/v15061329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
A wide variety of viruses replicate in liquid-like viral factories. Non-segmented negative stranded RNA viruses share a nucleoprotein (N) and a phosphoprotein (P) that together emerge as the main drivers of liquid-liquid phase separation. The respiratory syncytial virus includes the transcription antiterminator M2-1, which binds RNA and maximizes RNA transcriptase processivity. We recapitulate the assembly mechanism of condensates of the three proteins and the role played by RNA. M2-1 displays a strong propensity for condensation by itself and with RNA through the formation of electrostatically driven protein-RNA coacervates based on the amphiphilic behavior of M2-1 and finely tuned by stoichiometry. M2-1 incorporates into tripartite condensates with N and P, modulating their size through an interplay with P, where M2-1 is both client and modulator. RNA is incorporated into the tripartite condensates adopting a heterogeneous distribution, reminiscent of the M2-1-RNA IBAG granules within the viral factories. Ionic strength dependence indicates that M2-1 behaves differently in the protein phase as opposed to the protein-RNA phase, in line with the subcompartmentalization observed in viral factories. This work dissects the biochemical grounds for the formation and fate of the RSV condensates in vitro and provides clues to interrogate the mechanism under the highly complex infection context.
Collapse
Affiliation(s)
- Araceli Visentin
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Nicolás Demitroff
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Mariano Salgueiro
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Silvia Susana Borkosky
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Gabriela Camporeale
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Gonzalo de Prat-Gay
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| |
Collapse
|
8
|
Sutto-Ortiz P, Eléouët JF, Ferron F, Decroly E. Biochemistry of the Respiratory Syncytial Virus L Protein Embedding RNA Polymerase and Capping Activities. Viruses 2023; 15:v15020341. [PMID: 36851554 PMCID: PMC9960070 DOI: 10.3390/v15020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA virus. It is the major cause of severe acute lower respiratory tract infection in infants, the elderly population, and immunocompromised individuals. There is still no approved vaccine or antiviral treatment against RSV disease, but new monoclonal prophylactic antibodies are yet to be commercialized, and clinical trials are in progress. Hence, urgent efforts are needed to develop efficient therapeutic treatments. RSV RNA synthesis comprises viral transcription and replication that are catalyzed by the large protein (L) in coordination with the phosphoprotein polymerase cofactor (P), the nucleoprotein (N), and the M2-1 transcription factor. The replication/transcription is orchestrated by the L protein, which contains three conserved enzymatic domains: the RNA-dependent RNA polymerase (RdRp), the polyribonucleotidyl transferase (PRNTase or capping), and the methyltransferase (MTase) domain. These activities are essential for the RSV replicative cycle and are thus considered as attractive targets for the development of therapeutic agents. In this review, we summarize recent findings about RSV L domains structure that highlight how the enzymatic activities of RSV L domains are interconnected, discuss the most relevant and recent antivirals developments that target the replication/transcription complex, and conclude with a perspective on identified knowledge gaps that enable new research directions.
Collapse
Affiliation(s)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, F78350 Jouy en Josas, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- Correspondence:
| |
Collapse
|