1
|
Bauer BU, Ambros C, Boll K, Hilke J, Riehm JM, Szaluś-Jordanow O, Schneider C, Sodoma E, Bauz T, Ganter M, Maurischat S. Presence and genetic variability of Staphylococcus aureus subsp. anaerobius isolated from small ruminants in Central Europe. Sci Rep 2025; 15:13493. [PMID: 40251270 PMCID: PMC12008273 DOI: 10.1038/s41598-025-97300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/03/2025] [Indexed: 04/20/2025] Open
Abstract
Staphylococcus aureus subsp. anaerobius (SAAN) causes abscesses in small ruminants, known as Morel's Disease. This study describes the presence of SAAN for the first time in Germany and Austria and examines the phylogenetic relationship among these isolates and previously described European and Sudanese ones. A total of 35 sheep and 10 goat isolates from 12 herds in Germany were available for analysis. SAAN isolates from four Polish goats and three Austrian sheep from different herds were included. Genome comparisons and phylogenetic analyses were conducted using core genome multilocus sequence typing. The comparison of the 52 SAAN core genomes revealed a close phylogenetic relationship among most German isolates (n = 38), with allelic differences ≤ 6 in two clusters associated with ST4581. In contrast, distinct clusters of the same ST included the four Polish goat isolates and two ovine isolates from Austria, respectively. A fifth cluster of ST3756 strains was identified on three German farms (six sheep, one goat) and an Austrian sheep. Tight phylogenetic relationships were observed irrespective of the host species. All isolates shared a common set of virulence genes and few known antimicrobial resistance determinants. The introduction of SAAN into herds is mostly unknown, but purchases appear to play a critical role.
Collapse
Affiliation(s)
- Benjamin Ulrich Bauer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany.
- Institute of Immunology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Isle of Riems, Germany.
| | - Christina Ambros
- Bavarian Animal Health Service, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Kerstin Boll
- Bavarian Health and Food Safety Authority, Veterinärstraße 2, 85764, Oberschleißheim, Germany
| | - Johanna Hilke
- Schafpraxis, Am Hopfenberg 8, 89352, Stoffenried-Ellzee, Germany
| | - Julia Magarete Riehm
- Bavarian Health and Food Safety Authority, Veterinärstraße 2, 85764, Oberschleißheim, Germany
| | - Olga Szaluś-Jordanow
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Cornelia Schneider
- Austrian Agency for Health and Food Safety GmbH (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria
| | - Eva Sodoma
- Austrian Agency for Health and Food Safety GmbH (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria
| | - Thomas Bauz
- Tierarztpraxis Bauz, Tetta 21b, 02894, Vierkirchen, Germany
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Sven Maurischat
- Department Biological Safety, National Reference Laboratory for coagulase-positive staphylococci including Staphylococcus aureus, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Yebra G, Mrochen D, Fischer S, Pfaff F, Ulrich RG, Pritchett-Corning K, Holtfreter S, Fitzgerald JR. Bacteriophage-driven emergence and expansion of Staphylococcus aureus in rodent populations. PLoS Pathog 2024; 20:e1012378. [PMID: 39047021 PMCID: PMC11299810 DOI: 10.1371/journal.ppat.1012378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/05/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Human activities such as agriculturalization and domestication have led to the emergence of many new pathogens via host-switching events between humans, domesticated and wild animals. Staphylococcus aureus is a multi-host opportunistic pathogen with a global healthcare and economic burden. Recently, it was discovered that laboratory and wild rodents can be colonised and infected with S. aureus, but the origins and zoonotic potential of rodent S. aureus is unknown. In order to trace their evolutionary history, we employed a dataset of 1249 S. aureus genome sequences including 393 of isolates from rodents and other small mammals (including newly determined sequences for 305 isolates from 7 countries). Among laboratory mouse populations, we identified multiple widespread rodent-specific S. aureus clones that likely originated in humans. Phylogeographic analysis of the most common murine lineage CC88 suggests that it emerged in the 1980s in laboratory mouse facilities most likely in North America, from where it spread to institutions around the world, via the distribution of mice for research. In contrast, wild rodents (mice, voles, squirrels) were colonized with a unique complement of S. aureus lineages that are widely disseminated across Europe. In order to investigate the molecular basis for S. aureus adaptation to rodent hosts, genome-wide association analysis was carried out revealing a unique complement of bacteriophages associated with a rodent host ecology. Of note, we identified novel prophages and pathogenicity islands in rodent-derived S. aureus that conferred the potential for coagulation of rodent plasma, a key phenotype of abscess formation and persistence. Our findings highlight the remarkable capacity of S. aureus to expand into new host populations, driven by the acquisition of genes promoting survival in new host-species.
Collapse
Affiliation(s)
- Gonzalo Yebra
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Mrochen
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Kathleen Pritchett-Corning
- Charles River, Research and Professional Services, Wilmington, Massachusetts, United States of America
- Office of Animal Resources, Harvard University Faculty of Arts and Sciences, Cambridge, Massachusetts, United States of America
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
4
|
Yang Y, Wang P, Qaidi SE, Hardwidge PR, Huang J, Zhu G. Loss to gain: pseudogenes in microorganisms, focusing on eubacteria, and their biological significance. Appl Microbiol Biotechnol 2024; 108:328. [PMID: 38717672 PMCID: PMC11078800 DOI: 10.1007/s00253-023-12971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 05/12/2024]
Abstract
Pseudogenes are defined as "non-functional" copies of corresponding parent genes. The cognition of pseudogenes continues to be refreshed through accumulating and updating research findings. Previous studies have predominantly focused on mammals, but pseudogenes have received relatively less attention in the field of microbiology. Given the increasing recognition on the importance of pseudogenes, in this review, we focus on several aspects of microorganism pseudogenes, including their classification and characteristics, their generation and fate, their identification, their abundance and distribution, their impact on virulence, their ability to recombine with functional genes, the extent to which some pseudogenes are transcribed and translated, and the relationship between pseudogenes and viruses. By summarizing and organizing the latest research progress, this review will provide a comprehensive perspective and improved understanding on pseudogenes in microorganisms. KEY POINTS: • Concept, classification and characteristics, identification and databases, content, and distribution of microbial pseudogenes are presented. • How pseudogenization contribute to pathogen virulence is highlighted. • Pseudogenes with potential functions in microorganisms are discussed.
Collapse
Affiliation(s)
- Yi Yang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China
| | - Pengzhi Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China
| | - Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Jinlin Huang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- College of Bioscience and Biotechnology, Yangzhou University, 12 East Wenhui Road Yangzhou, Jiangsu, 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Cheung GYC, Otto M. Virulence Mechanisms of Staphylococcal Animal Pathogens. Int J Mol Sci 2023; 24:14587. [PMID: 37834035 PMCID: PMC10572719 DOI: 10.3390/ijms241914587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Staphylococci are major causes of infections in mammals. Mammals are colonized by diverse staphylococcal species, often with moderate to strong host specificity, and colonization is a common source of infection. Staphylococcal infections of animals not only are of major importance for animal well-being but have considerable economic consequences, such as in the case of staphylococcal mastitis, which costs billions of dollars annually. Furthermore, pet animals can be temporary carriers of strains infectious to humans. Moreover, antimicrobial resistance is a great concern in livestock infections, as there is considerable antibiotic overuse, and resistant strains can be transferred to humans. With the number of working antibiotics continuously becoming smaller due to the concomitant spread of resistant strains, alternative approaches, such as anti-virulence, are increasingly being investigated to treat staphylococcal infections. For this, understanding the virulence mechanisms of animal staphylococcal pathogens is crucial. While many virulence factors have similar functions in humans as animals, there are increasingly frequent reports of host-specific virulence factors and mechanisms. Furthermore, we are only beginning to understand virulence mechanisms in animal-specific staphylococcal pathogens. This review gives an overview of animal infections caused by staphylococci and our knowledge about the virulence mechanisms involved.
Collapse
Affiliation(s)
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA;
| |
Collapse
|
6
|
Bouchami O, Machado M, Carriço JA, Melo-Cristino J, de Lencastre H, Miragaia M. Spontaneous Genomic Variation as a Survival Strategy of Nosocomial Staphylococcus haemolyticus. Microbiol Spectr 2023; 11:e0255222. [PMID: 36877037 PMCID: PMC10100732 DOI: 10.1128/spectrum.02552-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/11/2023] [Indexed: 03/07/2023] Open
Abstract
Staphylococcus haemolyticus is one of the most important nosocomial human pathogens frequently isolated in bloodstream and medical device-related infections. However, its mechanisms of evolution and adaptation are still poorly explored. To characterize the strategies of genetic and phenotypic diversity in S. haemolyticus, we analyzed an invasive strain for genetic and phenotypic stability after serial passage in vitro in the absence and presence of beta-lactam antibiotics. We performed pulsed-field gel electrophoresis (PFGE) of the culture and analyzed five colonies at seven time points during stability assays for beta-lactam susceptibility, hemolysis, mannitol fermentation, and biofilm production. We compared their whole genomes and performed phylogenetic analysis based on core single-nucleotide polymorphisms (SNPs). We observed a high instability in the PFGE profiles at the different time points in the absence of antibiotic. Analysis of WGS data for individual colonies showed the occurrence of six large-scale genomic deletions within the oriC environ, smaller deletions in non-oriC environ regions, and nonsynonymous mutations in clinically relevant genes. The regions of deletion and point mutations included genes encoding amino acid and metal transporters, resistance to environmental stress and beta-lactams, virulence, mannitol fermentation, metabolic processes, and insertion sequence (IS) elements. Parallel variation was detected in clinically significant phenotypic traits such as mannitol fermentation, hemolysis, and biofilm formation. In the presence of oxacillin, PFGE profiles were overall stable over time and mainly corresponded to a single genomic variant. Our results suggest that S. haemolyticus populations are composed of subpopulations of genetic and phenotypic variants. The maintenance of subpopulations in different physiological states may be a strategy to adapt rapidly to stress situations imposed by the host, particularly in the hospital environment. IMPORTANCE The introduction of medical devices and antibiotics into clinical practice have substantially improved patient quality of life and contributed to extended life expectancy. One of its most cumbersome consequences was the emergence of medical device-associated infections caused by multidrug-resistant and opportunistic bacteria such as Staphylococcus haemolyticus. However, the reason for this bacterium's success is still elusive. We found that in the absence of environmental stresses, S. haemolyticus can spontaneously produce subpopulations of genomic and phenotypic variants with deletions/mutations in clinically relevant genes. However, when exposed to selective pressures, such as the presence of antibiotics, a single genomic variant will be recruited and become dominant. We suggest that the maintenance of these cell subpopulations in different physiological states is an extremely effective strategy to adapt to stresses imposed by the host or the infection environment and might contribute for S. haemolyticus survival and persistence in the hospital.
Collapse
Affiliation(s)
- Ons Bouchami
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Miguel Machado
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João André Carriço
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - José Melo-Cristino
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, Rockefeller University, New York, USA
| | - Maria Miragaia
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| |
Collapse
|
7
|
West PT, Chanin RB, Bhatt AS. From genome structure to function: insights into structural variation in microbiology. Curr Opin Microbiol 2022; 69:102192. [PMID: 36030622 PMCID: PMC9783807 DOI: 10.1016/j.mib.2022.102192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022]
Abstract
Structural variation in bacterial genomes is an important evolutionary driver. Genomic rearrangements, such as inversions, duplications, and insertions, can regulate gene expression and promote niche adaptation. Importantly, many of these variations are reversible and preprogrammed to generate heterogeneity. While many tools have been developed to detect structural variation in eukaryotic genomes, variation in bacterial genomes and metagenomes remains understudied. However, recent advances in genome sequencing technology and the development of new bioinformatic pipelines hold promise in further understanding microbial genomics.
Collapse
Affiliation(s)
- Patrick T West
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA
| | - Rachael B Chanin
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Taylor TB, Shepherd MJ, Jackson RW, Silby MW. Natural selection on crosstalk between gene regulatory networks facilitates bacterial adaptation to novel environments. Curr Opin Microbiol 2022; 67:102140. [DOI: 10.1016/j.mib.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
|
9
|
Kanai Y, Tsuru S, Furusawa C. OUP accepted manuscript. Nucleic Acids Res 2022; 50:1673-1686. [PMID: 35066585 PMCID: PMC8860574 DOI: 10.1093/nar/gkac004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 11/12/2022] Open
Abstract
Operons are a hallmark of the genomic and regulatory architecture of prokaryotes. However, the mechanism by which two genes placed far apart gradually come close and form operons remains to be elucidated. Here, we propose a new model of the origin of operons: Mobile genetic elements called insertion sequences can facilitate the formation of operons by consecutive insertion–deletion–excision reactions. This mechanism barely leaves traces of insertion sequences and thus difficult to detect in nature. In this study, as a proof-of-concept, we reproducibly demonstrated operon formation in the laboratory. The insertion sequence IS3 and the insertion sequence excision enhancer are genes found in a broad range of bacterial species. We introduced these genes into insertion sequence-less Escherichia coli and found that, supporting our hypothesis, the activity of the two genes altered the expression of genes surrounding IS3, closed a 2.7 kb gap between a pair of genes, and formed new operons. This study shows how insertion sequences can facilitate the rapid formation of operons through locally increasing the structural mutation rates and highlights how coevolution with mobile elements may shape the organization of prokaryotic genomes and gene regulation.
Collapse
Affiliation(s)
- Yuki Kanai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Saburo Tsuru
- To whom correspondence should be addressed. Tel: +81 3 5841 4229; Fax: +81 3 5841 4229;
| | | |
Collapse
|