1
|
Lin D, Xu C, Gan C, Ou B, Luo F, She Z, Zhou L, Chen Z. Inhibitors of NADH-O-methylquinone compound a class of antitubercular drugs. Mol Divers 2025:10.1007/s11030-025-11117-6. [PMID: 39862351 DOI: 10.1007/s11030-025-11117-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Disruption of the mycobacterial redox homeostasis leads to irreversible stress induction and cell death. Hydroquinone scaffolds, as a new type of redox cycling anti-tuberculosis chemotypes, exhibit potent bactericidal activity against non-replicating, nutrient-deprived phenotypically drug-resistant bacteria. Evidences from microbiological, biochemical, and genetic studies indicate that the redox-driven mode of action relies on the reduction of quinones by type II NADH dehydrogenase (NDH2), generating reactive oxygen species (ROS) of bactericidal level. This study demonstrates that (S)-Peniphenone D possesses significant resistance to Mycobacterium marinum (M. marinum) infection, as it enables redox cycling within M. marinum cells, ROS production, and reduction of intracellular NADH levels. The results suggest that hydroquinone compounds, due to their distinctive biological activities, could serve as novel sources for antibacterial drugs, particularly in developing scaffolds for new anti-tuberculosis agents.
Collapse
Affiliation(s)
- Dongzi Lin
- Department of Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, Foshan, 528000, Guangdong, China
| | - Cheng Xu
- Department of Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, Foshan, 528000, Guangdong, China
| | - Changyou Gan
- Department of Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, Foshan, 528000, Guangdong, China
| | - Bihua Ou
- Department of Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, Foshan, 528000, Guangdong, China
| | - Fengxian Luo
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhigang She
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lei Zhou
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhenhua Chen
- Department of Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, Foshan, 528000, Guangdong, China.
| |
Collapse
|
2
|
Günther K, Nischang V, Cseresnyés Z, Krüger T, Sheta D, Abboud Z, Heinekamp T, Werner M, Kniemeyer O, Beilhack A, Figge MT, Brakhage AA, Werz O, Jordan PM. Aspergillus fumigatus-derived gliotoxin impacts innate immune cell activation through modulating lipid mediator production in macrophages. Immunology 2024; 173:748-767. [PMID: 39268960 DOI: 10.1111/imm.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Gliotoxin (GT), a secondary metabolite and virulence factor of the fungal pathogen Aspergillus fumigatus, suppresses innate immunity and supports the suppression of host immune responses. Recently, we revealed that GT blocks the formation of the chemotactic lipid mediator leukotriene (LT)B4 in activated human neutrophils and monocytes, and in rodents in vivo, by directly inhibiting LTA4 hydrolase. Here, we elucidated the impact of GT on LTB4 biosynthesis and the entire lipid mediator networks in human M1- and M2-like monocyte-derived macrophages (MDMs) and in human tissue-resident alveolar macrophages. In activated M1-MDMs with high capacities to generate LTs, the formation of LTB4 was effectively suppressed by GT, connected to attenuated macrophage phagocytic activity as well as human neutrophil movement and migration. In resting macrophages, especially in M1-MDMs, GT elicited strong formation of prostaglandins, while bacterial exotoxins from Staphylococcus aureus evoked a broad spectrum of lipid mediator biosynthesis in both MDM phenotypes. We conclude that GT impairs functions of activated innate immune cells through selective suppression of LTB4 biosynthesis, while GT may also prime the immune system by provoking prostaglandin formation in macrophages.
Collapse
Affiliation(s)
- Kerstin Günther
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Vivien Nischang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Zoltan Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Dalia Sheta
- Department of Internal Medicine II, University Hospital Würzburg, Center of Experimental Molecular Medicine, Würzburg, Germany
| | - Zahraa Abboud
- Department of Internal Medicine II, University Hospital Würzburg, Center of Experimental Molecular Medicine, Würzburg, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Markus Werner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Center of Experimental Molecular Medicine, Würzburg, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
3
|
Thrikawala SU, Anderson MH, Rosowski EE. Glucocorticoids Suppress NF-κB-Mediated Neutrophil Control of Aspergillus fumigatus Hyphal Growth. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:971-987. [PMID: 39178124 PMCID: PMC11408098 DOI: 10.4049/jimmunol.2400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
Glucocorticoids are a major class of therapeutic anti-inflammatory and immunosuppressive drugs prescribed to patients with inflammatory diseases, to avoid transplant rejection, and as part of cancer chemotherapy. However, exposure to these drugs increases the risk of opportunistic infections such as with the fungus Aspergillus fumigatus, which causes mortality in >50% of infected patients. The mechanisms by which glucocorticoids increase susceptibility to A. fumigatus are poorly understood. In this article, we used a zebrafish larva Aspergillus infection model to identify innate immune mechanisms altered by glucocorticoid treatment. Infected larvae exposed to dexamethasone succumb to infection at a significantly higher rate than control larvae. However, both macrophages and neutrophils are still recruited to the site of infection, and dexamethasone treatment does not significantly affect fungal spore killing. Instead, the primary effect of dexamethasone manifests later in infection with treated larvae exhibiting increased invasive hyphal growth. In line with this, dexamethasone predominantly inhibits neutrophil function rather than macrophage function. Dexamethasone-induced mortality also depends on the glucocorticoid receptor. Dexamethasone partially suppresses NF-κB activation at the infection site by inducing the transcription of IκB via the glucocorticoid receptor. Independent CRISPR/Cas9 targeting of IKKγ to prevent NF-κB activation also increases invasive A. fumigatus growth and larval mortality. However, dexamethasone treatment of IKKγ crispant larvae further increases invasive hyphal growth and host mortality, suggesting that dexamethasone may suppress other pathways in addition to NF-κB to promote host susceptibility. Collectively, we find that dexamethasone acts through the glucocorticoid receptor to suppress NF-κB-mediated neutrophil control of A. fumigatus hyphae in zebrafish larvae.
Collapse
Affiliation(s)
- Savini U. Thrikawala
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Molly H. Anderson
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Emily E. Rosowski
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
4
|
Gao J, Liu H, Jin Y, Luo Y, Huang K, Liang Z. Glucose and HODEs regulate Aspergillus ochraceus quorum sensing through the GprC-AcyA pathway. Cell Mol Life Sci 2024; 81:241. [PMID: 38806811 PMCID: PMC11133280 DOI: 10.1007/s00018-024-05160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 05/30/2024]
Abstract
Aspergillus ochraceus is the traditional ochratoxin A (OTA)-producing fungus with density-dependent behaviors, which is known as quorum sensing (QS) that is mediated by signaling molecules. Individual cells trend to adapt environmental changes in a "whole" flora through communications, allowing fungus to occupy an important ecological niche. Signals perception, transmission, and feedback are all rely on a signal network that constituted by membrane receptors and intracellular effectors. However, the interference of density information in signal transduction, which regulates most life activities of Aspergillus, have yet to be elucidated. Here we show that the G protein-coupled receptor (GPCR) to cAMP pathway is responsible for transmitting density information, and regulates the key point in life cycle of A. ochraceus. Firstly, the quorum sensing phenomenon of A. ochraceus is confirmed, and identified the density threshold is 103 spores/mL, which represents the low density that produces the most OTA in a series quorum density. Moreover, the GprC that classified as sugar sensor, and intracellular adenylate cyclase (AcyA)-cAMP-PKA pathway that in response to ligands glucose and HODEs are verified. Furthermore, GprC and AcyA regulate the primary metabolism as well as secondary metabolism, and further affects the growth of A. ochraceus during the entire life cycle. These studies highlight a crucial G protein signaling pathway for cell communication that is mediated by carbohydrate and oxylipins, and clarified a comprehensive effect of fungal development, which include the direct gene regulation and indirect substrate or energy supply. Our work revealed more signal molecules that mediated density information and connected effects on important adaptive behaviors of Aspergillus ochraceus, hoping to achieve comprehensive prevention and control of mycotoxin pollution from interrupting cell communication.
Collapse
Affiliation(s)
- Jing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huiqing Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuxin Jin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China.
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
5
|
Tanner CD, Rosowski EE. Macrophages inhibit extracellular hyphal growth of A. fumigatus through Rac2 GTPase signaling. Infect Immun 2024; 92:e0038023. [PMID: 38168666 PMCID: PMC10863406 DOI: 10.1128/iai.00380-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Macrophages act as a first line of defense against pathogens. Against Aspergillus fumigatus, a fungus with pathogenic potential in immunocompromised patients, macrophages can phagocytose fungal spores and inhibit spore germination to prevent the development of tissue-invasive hyphae. However, the cellular pathways that macrophages use to accomplish these tasks and any roles macrophages have later in infection against invasive forms of fungi are still not fully known. Rac-family Rho GTPases are signaling hubs for multiple cellular functions in leukocytes, including cell migration, phagocytosis, reactive oxygen species (ROS) generation, and transcriptional activation. We therefore aimed to further characterize the function of macrophages against A. fumigatus in an in vivo vertebrate infection model by live imaging of the macrophage behavior in A. fumigatus-infected rac2 mutant zebrafish larvae. While Rac2-deficient zebrafish larvae are susceptible to A. fumigatus infection, Rac2 deficiency does not impair macrophage migration to the infection site, interaction with and phagocytosis of spores, spore trafficking to acidified compartments, or spore killing. However, we reveal a role for Rac2 in macrophage-mediated inhibition of spore germination and control of invasive hyphae. Re-expression of Rac2 under a macrophage-specific promoter rescues the survival of A. fumigatus-infected rac2 mutant larvae through increased control of germination and hyphal growth. Altogether, we describe a new role for macrophages against extracellular hyphal growth of A. fumigatus and report that the function of the Rac2 Rho GTPase in macrophages is required for this function.
Collapse
Affiliation(s)
- Christopher D. Tanner
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| | - Emily E. Rosowski
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
6
|
Rosowski EE. mSphere of Influence: How host genetics impact microbial pathogenesis and treatment of infectious disease. mSphere 2024; 9:e0062923. [PMID: 38095416 PMCID: PMC10826357 DOI: 10.1128/msphere.00629-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
Emily Rosowski works in the field of host-pathogen interactions, studying how host innate immune mechanisms control pathogens. In this mSphere of Influence article, she reflects on how "Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections" by D. M. Tobin, F. J. Roca, S. F. Oh, R. McFarland, et al. (Cell 148:434-446, 2012, https://doi.org/10.1016/j.cell.2011.12.023) made an impact on her by investigating how differences in host genetics can affect modes of microbial pathogenesis and inform treatments for infectious disease.
Collapse
Affiliation(s)
- Emily E. Rosowski
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
7
|
Lin D, Lin B, Wang X, Xu C, Mo L, Luo Y, Tian H, Zhou L, Chen Z. Mycobacterium marinum mediates regulation of prostaglandin E 2 expression on host immune response through cyclooxygenase pathway. Mol Biol Rep 2024; 51:84. [PMID: 38183522 DOI: 10.1007/s11033-023-09015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/26/2023] [Indexed: 01/08/2024]
Abstract
PURPOSE Investigate the role of COX signaling in activating the PGE2-EP2 pathway. METHODS Utilized a marine Mycobacterium infection model in zebrafish. Marine mycobacteria were stained with fluorescein isothiocyanate. The COX inhibitor indomethacin, EP2 receptor inhibitor AH6809, EP4 receptor inhibitor AH23848 and clodronate Liposomes were used to investigate the role of COX, EP2, EP4 and macrophage whether participating in combat marine mycobacterial infection. The expression level of the target gene was detected using real-time fluorescence quantitative PCR instrument. RESULTS The findings revealed that larvae exposed to the COX inhibitor indomethacin or the EP2 receptor inhibitor AH6809 demonstrated a significantly higher mortality rate due to marine mycobacterium infection than those in the control group. Administration of exogenous prostaglandin E2 (PGE2) rescued the survival of zebrafish infected with marine mycobacteria and treated with indomethacin. Additionally, a significant reduction in survival rate was noted in macrophage-depleted zebrafish infected with marine mycobacteria. CONCLUSION The host may combat marine mycobacterium infection via COX signaling, which activates the PGE2-EP2 pathway and mediates macrophage resistance.
Collapse
Affiliation(s)
- Dongzi Lin
- Department of Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, 528000, Foshan, Guangdong, China
| | - Bingyao Lin
- Department of Laboratory Medicine, Foshan Fourth People's Hospital, 528041, Foshan, Guangdong, China
| | - Xuezhi Wang
- Department of Laboratory Medicine, Foshan Fourth People's Hospital, 528041, Foshan, Guangdong, China
| | - Cheng Xu
- Department of Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, 528000, Foshan, Guangdong, China
| | - Liyi Mo
- Department of Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, 528000, Foshan, Guangdong, China
| | - Yanwen Luo
- Department of Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, 528000, Foshan, Guangdong, China
| | - Honghong Tian
- Department of Laboratory Medicine, Foshan Fourth People's Hospital, 528041, Foshan, Guangdong, China
| | - Lei Zhou
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Zhenhua Chen
- Department of Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, 528000, Foshan, Guangdong, China.
| |
Collapse
|
8
|
Babaei F, Mirzababaei M, Tavakkoli A, Nassiri-Asl M, Hosseinzadeh H. Can nonsteroidal anti-inflammatory drugs (NSAIDs) be repurposed for fungal infection? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:59-75. [PMID: 37589736 DOI: 10.1007/s00210-023-02651-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are an important class of anti-inflammatory drugs widely used for the treatment of musculoskeletal disorders, mild-to-moderate pain, and fever. This review aimed to explain the functional role and possible mechanisms of the antifungal effects of NSAIDs alone or in combination with antifungal drugs in vitro and in vivo. Several studies reported that NSAIDs such as aspirin, ibuprofen, diclofenac, indomethacin, ketorolac, celecoxib, flurbiprofen, and nimesulide had antifungal activities in vitro, either fungistatic or fungicidal, against different strains of Candida, Aspergillus, Cryptococcus, Microsporum, and Trichophyton species. These drugs inhibited biofilm adhesion and development, and yeast-to-hypha conversion which may be related to a prostaglandin E2 (PGE2)/PGEx-dependent mechanism. Modulating PGE2 levels by NSAIDs during fungal infection can be introduced as a possible mechanism to overcome. In addition, some important mechanisms of the antifungal activities of NSAIDs and their new derivatives on fungi and host immune responses are summarized. Overall, we believe that using NSAIDs along with classical antifungal drugs has the potential to be investigated as a novel therapeutic strategy in clinical studies. Furthermore, combination therapy can help manage resistant strains, increase the efficacy of antifungal drugs, and reduce toxicity.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Tavakkoli
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran.
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box 9177948954, Mashhad, Iran.
| |
Collapse
|
9
|
Wang Y, Dong Y, Duan X, Luan Y, Li Q, Pang Y, Sun F, Gou M. A complete prostaglandin pathway from synthesis to inactivation in the oral gland of the jawless vertebrate lamprey, Lethenteron camtschaticum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104903. [PMID: 37541459 DOI: 10.1016/j.dci.2023.104903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Information on the prostaglandin pathway in lampreys is limited. Here, five genes related to the prostaglandin pathway from synthesis to inactivation, namely, phospholipase A2, cyclooxygenase-2, prostaglandin E synthase 3, prostaglandin D synthase, and 15-hydroxyprostaglandin dehydrogenase [NAD(+)], were screened and cloned from the lamprey, Lethenteron camtschaticum. Bioinformatic analysis showed that these lamprey genes are relatively conserved with teleost genes in domains, motifs, gene structure and 3D structure. Analysis of expression distribution of the genes in lamprey tissues revealed that a complete prostaglandin pathway from synthesis to inactivation exists in the oral gland of lamprey, especially the key gene of prostaglandin synthesis cyclooxygenase-2, which was highly expressed in the oral gland. Furthermore, cyclooxygenase-2 expression increased after LPS and Poly I:C stimulations. Using our established spatial metabolite database LampreyDB, six prostaglandin-related metabolites were screened from the oral gland of lamprey, four of which were highly expressed in the oral gland. This study provides new insights into prostaglandin synthesis and inactivation pathways in lamprey, thereby improving our understanding of the origin and evolution of the prostaglandin pathway and contributing to the recognition of lamprey regulatory mechanisms in development and immunity.
Collapse
Affiliation(s)
- Yaocen Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yonghui Dong
- Metabolite Medicine Division, BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Xuyuan Duan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yimu Luan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Feng Sun
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
10
|
Gao F, Shi X, Zhao Y, Qiao D, Pei C, Li C, Zhao X, Kong X. The role of CcPTGS2a in immune response against Aeromonas hydrophila infection in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109058. [PMID: 37673389 DOI: 10.1016/j.fsi.2023.109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/27/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Prostaglandin-endoperoxide synthase 2 (PTGS2), a crucial enzyme in prostaglandin synthesis, catalyzes the conversion of arachidonic acid to prostaglandins and plays a significant role in the inflammatory response. This investigation aimed to determine the regulatory role of PTGS2a in the innate immune response to bacterial infection in fish. To achieve this objective, the CcPTGS2a gene was identified and characterized in common carp (Cyprinus carpio), and its function in immune defense was investigated. According to the sequence and structural analysis results, CcPTGS2a had an open reading frame of 1806 bp that encoded 602 amino acids. It was estimated that the protein's theoretical molecular weight was 69.0 kDa, and its isoelectric point was 8.10. The structure of CcPTGS2a was observed to be conserved, with an epidermal growth factor domain and a peroxidase domain present. Moreover, the amino acid sequence of CcPTGS2a exhibited significant homology with the amino acid sequences of several fish species. CcPTGS2a mRNA was detected in the healthy tissues of common carp, with higher expression in the head kidney, spleen, gills, and liver. Following the challenges with Aeromonas hydrophila and lipopolysaccharide, CcPTGS2a mRNA showed unique geographic and temporal expression patterns, with significant increases detected in the head kidney, gills, spleen, and liver. Additionally, the recombinant CcPTGS2a protein exhibited detectable bacterial binding to various bacteria. As determined by subcellular localization analysis, CcPTGS2a was predominantly localized in the nucleus and cytoplasm. Furthermore, it was discovered that the overexpression of CcPTGS2a stimulated the up-regulation of ferroptosis-related genes and inflammatory cytokine mRNA expression in fish and EPC (Epithelioma papulosum cyprinid) cells while concurrently reducing the bacterial load of A. hydrophila. In contrast, the interference of CcPTGS2a decreased the mRNA expression of ferroptosis-related genes and inflammatory cytokines in fish and EPC cells and increased the bacterial load of A. hydrophila. Notably, A. hydrophila stimulation resulted in the up-regulation of CcPTGS2a protein expression in EPC cells. These results suggested that CcPTGS2a was involved in the immune response to bacterial infections in common carp.
Collapse
Affiliation(s)
- Feng Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xiaowei Shi
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China; Sanquan Medical College, Henan Province, PR China
| | - Yanjing Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Dan Qiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
11
|
Schoen TJ, Calise DG, Bok JW, Giese MA, Nwagwu CD, Zarnowski R, Andes D, Huttenlocher A, Keller NP. Aspergillus fumigatus transcription factor ZfpA regulates hyphal development and alters susceptibility to antifungals and neutrophil killing during infection. PLoS Pathog 2023; 19:e1011152. [PMID: 37126504 PMCID: PMC10174577 DOI: 10.1371/journal.ppat.1011152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/11/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Abstract
Hyphal growth is essential for host colonization during Aspergillus infection. The transcription factor ZfpA regulates A. fumigatus hyphal development including branching, septation, and cell wall composition. However, how ZfpA affects fungal growth and susceptibility to host immunity during infection has not been investigated. Here, we use the larval zebrafish-Aspergillus infection model and primary human neutrophils to probe how ZfpA affects A. fumigatus pathogenesis and response to antifungal drugs in vivo. ZfpA deletion promotes fungal clearance and attenuates virulence in wild-type hosts and this virulence defect is abrogated in neutrophil-deficient zebrafish. ZfpA deletion also increases susceptibility to human neutrophils ex vivo while overexpression impairs fungal killing. Overexpression of ZfpA confers protection against the antifungal caspofungin by increasing chitin synthesis during hyphal development, while ZfpA deletion reduces cell wall chitin and increases caspofungin susceptibility in neutrophil-deficient zebrafish. These findings suggest a protective role for ZfpA activity in resistance to the innate immune response and antifungal treatment during A. fumigatus infection.
Collapse
Affiliation(s)
- Taylor J. Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dante G. Calise
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Morgan A. Giese
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chibueze D. Nwagwu
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Robert Zarnowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Schoen TJ, Calise DG, Bok JW, Nwagwu CD, Zarnowski R, Andes D, Huttenlocher A, Keller NP. Aspergillus fumigatus transcription factor ZfpA regulates hyphal development and alters susceptibility to antifungals and neutrophil killing during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525624. [PMID: 36747761 PMCID: PMC9901008 DOI: 10.1101/2023.01.25.525624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hyphal growth is essential for host colonization during Aspergillus infection. The transcription factor ZfpA regulates A. fumigatus hyphal development including branching, septation, and cell wall composition. However, how ZfpA affects fungal growth and susceptibility to host immunity during infection has not been investigated. Here, we use the larval zebrafish- Aspergillus infection model and primary human neutrophils to probe how ZfpA affects A. fumigatus pathogenesis and response to antifungal drugs in vivo . ZfpA deletion promotes fungal clearance and attenuates virulence in wild-type hosts and this virulence defect is abrogated in neutrophil-deficient zebrafish. ZfpA deletion also increases susceptibility to human neutrophils ex vivo while overexpression impairs fungal killing. Overexpression of ZfpA confers protection against the antifungal caspofungin by increasing chitin synthesis during hyphal development, while ZfpA deletion reduces cell wall chitin and increases caspofungin susceptibility in neutrophil-deficient zebrafish. These findings suggest a protective role for ZfpA activity in resistance to the innate immune response and antifungal treatment during A. fumigatus infection. Author Summary Aspergillus fumigatus is a common environmental fungus that can infect immunocompromised people and cause a life-threatening disease called invasive aspergillosis. An important step during infection is the development of A. fumigatus filaments known as hyphae. A. fumigatus uses hyphae to acquire nutrients and invade host tissues, leading to tissue damage and disseminated infection. In this study we report that a regulator of gene transcription in A. fumigatus called ZfpA is important for hyphal growth during infection. We find that ZfpA activity protects the fungus from being killed by innate immune cells and decreases the efficacy of antifungal drugs during infection by regulating construction of the cell wall, an important protective layer for fungal pathogens. Our study introduces ZfpA as an important genetic regulator of stress tolerance during infection that protects A. fumigatus from the host immune response and antifungal drugs.
Collapse
Affiliation(s)
- Taylor J. Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dante G. Calise
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Robert Zarnowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|