1
|
Lamb ER, Criss AK. Terminal complement complexes with or without C9 potentiate antimicrobial activity against Neisseria gonorrhoeae. mBio 2025; 16:e0014125. [PMID: 40162779 PMCID: PMC12077172 DOI: 10.1128/mbio.00141-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
The complement cascade is a front-line defense against pathogens. Complement activation generates the membrane attack complex (MAC), a 10-11 nm diameter pore formed by complement proteins C5b through C8 and polymerized C9. The MAC embeds within the outer membrane of Gram-negative bacteria and displays bactericidal activity. In the absence of C9, C5b-C8 complexes can form 2-4 nm pores on membranes, but their relevance to microbial control is poorly understood. Deficiencies in terminal complement components uniquely predispose individuals to infections by pathogenic Neisseria, including N. gonorrhoeae (Gc). Increasing antibiotic resistance in Gc makes new therapeutic strategies a priority. Here, we demonstrate that MAC formed by complement activity in human serum disrupts the Gc outer and inner membranes, potentiating the activity of antimicrobials against Gc and re-sensitizing multidrug-resistant Gc to antibiotics. C9-depleted serum also exerts bactericidal activity against Gc and, unlike other Gram-negative bacteria, disrupts both the outer and inner membranes. C5b-C8 complex formation potentiates Gc sensitivity to azithromycin and ceftriaxone, but not lysozyme or nisin. These findings expand our mechanistic understanding of complement lytic activity, suggest a size limitation for terminal complement-mediated enhancement of antimicrobials against Gc, and suggest that complement manipulation can be used to combat drug-resistant gonorrhea. IMPORTANCE The complement cascade is a front-line arm of the innate immune system against pathogens. Complement activation results in membrane attack complex (MAC) pores forming on the outer membrane of Gram-negative bacteria, resulting in bacterial death. Individuals who cannot generate MAC are specifically susceptible to infection by pathogenic Neisseria species including N. gonorrhoeae (Gc). High rates of gonorrhea, its complications like infertility, and high-frequency resistance to multiple antibiotics make it important to identify new approaches to combat Gc. Beyond direct anti-Gc activity, we found that the MAC increases the ability of antibiotics and antimicrobial proteins to kill Gc and re-sensitizes multidrug-resistant bacteria to antibiotics. The most terminal component, C9, is needed to potentiate the anti-Gc activity of lysozyme and nisin, but azithromycin and ceftriaxone activity is potentiated regardless of C9. These findings highlight the unique effects of MAC on Gc and suggest novel translational avenues to combat drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Evan R. Lamb
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Whitfield C, Kelly SD, Stanton TD, Wyres KL, Clarke BR, Forrester TJB, Kowalczyk A. O-antigen polysaccharides in Klebsiella pneumoniae: structures and molecular basis for antigenic diversity. Microbiol Mol Biol Rev 2025:e0009023. [PMID: 40116577 DOI: 10.1128/mmbr.00090-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
SUMMARYKlebsiella pneumoniae is a gram-negative species, whose isolates are found in the environment and as commensals in the human gastrointestinal tract. This bacterium is among the leading causes of a range of nosocomial and community-acquired infections, particularly in immunocompromised individuals, where it can give rise to pneumonia, urinary tract infections, septicemia, and liver abscesses. Treatment of K. pneumoniae infections is compromised by the emergence of isolates producing carbapenemase and extended-spectrum β-lactamase enzymes, making it a high priority for new therapeutic approaches including vaccination and immunoprophylaxis. One potential target for these strategies is the O-antigen polysaccharide component of lipopolysaccharides, which are important virulence determinants for K. pneumoniae. Consideration of immunotherapeutic opportunities requires a comprehensive and fundamental understanding of O-polysaccharide structures, distribution of particular O serotypes in clinical isolates, and the potential for antigenic diversification. The number of recognized K. pneumoniae O-polysaccharide antigens has varied over time, complicated by the observation that some examples share similar structural (and potentially antigenically cross-reactive) elements, and by the existence of genetic loci for which corresponding O-polysaccharide structures have yet to be determined. Here, we provide a comprehensive integration of the current carbohydrate structures and genetic information, together with a proposal for an updated classification system for K. pneumoniae O-antigens, that is being implemented in Kaptive for molecular serotyping. The accumulated insight into O-polysaccharide assembly pathways is used to describe the molecular basis for O-antigen diversity in K. pneumoniae.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Tom D Stanton
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Kelly L Wyres
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Bradley R Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Taylor J B Forrester
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Agnieszka Kowalczyk
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Magda M, Boschloo W, Bettoni S, Fairley D, Russo TA, Giske CG, Tellapragada C, Rooijakkers SH, Riesbeck K, Blom AM. Acinetobacter baumannii Clinical Isolates Resist Complement-Mediated Lysis by Inhibiting the Complement Cascade and Improperly Depositing MAC. J Innate Immun 2025; 17:112-125. [PMID: 39842423 PMCID: PMC11845171 DOI: 10.1159/000543664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
INTRODUCTION Acinetobacter baumannii is a gram-negative opportunistic bacterium that causes life-threatening infections in immunocompromised hosts. The complement system is a critical mechanism of innate immunity that protects the human body from bacterial infections. Complement activation leads to the deposition of the membrane attack complex (MAC), which can directly lyse gram-negative bacteria. However, A. baumannii has developed evasion mechanisms to protect itself from complement. METHODS Complement deposition was investigated by flow cytometry and Western blotting. Soluble MAC formation was assessed by ELISA. Bacterial serum resistance was determined by the SYTOX Green Assay. Galleria mellonella was used as an infection model. Genome sequencing revealed virulence genes carried by isolates. RESULTS We examined clinical isolates of A. baumannii and found 11 isolates with MAC deposition and 5 isolates without deposition. Trypsinization of MAC-positive isolates significantly reduced MAC, indicating incorrect insertion, consistent with a lack of lysis of these strains. MAC-negative isolates inhibited alternative pathway activation and were significantly more serum-resistant. These strains were also more virulent in a G. mellonella infection model. Whole genome sequencing revealed that MAC-negative isolates carried more virulence genes, and both MAC-negative and MAC-positive A. baumannii significantly differed in capsule type. Importantly, a correlation was observed between complement inhibition and capsule type (e.g., capsule locus KL171) of MAC-negative bacteria, while the capsule type (e.g., KL230) of MAC-positive A. baumannii was associated with increased sensitivity to MAC-mediated lysis. CONCLUSION Our findings suggest a relationship between capsule type, complement resistance, and host virulence in A. baumannii. INTRODUCTION Acinetobacter baumannii is a gram-negative opportunistic bacterium that causes life-threatening infections in immunocompromised hosts. The complement system is a critical mechanism of innate immunity that protects the human body from bacterial infections. Complement activation leads to the deposition of the membrane attack complex (MAC), which can directly lyse gram-negative bacteria. However, A. baumannii has developed evasion mechanisms to protect itself from complement. METHODS Complement deposition was investigated by flow cytometry and Western blotting. Soluble MAC formation was assessed by ELISA. Bacterial serum resistance was determined by the SYTOX Green Assay. Galleria mellonella was used as an infection model. Genome sequencing revealed virulence genes carried by isolates. RESULTS We examined clinical isolates of A. baumannii and found 11 isolates with MAC deposition and 5 isolates without deposition. Trypsinization of MAC-positive isolates significantly reduced MAC, indicating incorrect insertion, consistent with a lack of lysis of these strains. MAC-negative isolates inhibited alternative pathway activation and were significantly more serum-resistant. These strains were also more virulent in a G. mellonella infection model. Whole genome sequencing revealed that MAC-negative isolates carried more virulence genes, and both MAC-negative and MAC-positive A. baumannii significantly differed in capsule type. Importantly, a correlation was observed between complement inhibition and capsule type (e.g., capsule locus KL171) of MAC-negative bacteria, while the capsule type (e.g., KL230) of MAC-positive A. baumannii was associated with increased sensitivity to MAC-mediated lysis. CONCLUSION Our findings suggest a relationship between capsule type, complement resistance, and host virulence in A. baumannii.
Collapse
Affiliation(s)
- Michal Magda
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Wendy Boschloo
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Serena Bettoni
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Derek Fairley
- Department of Microbiology, Belfast Health and Social Care Trust, Belfast, UK
| | - Thomas A. Russo
- Veterans Administration Western New York Healthcare System, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University Buffalo, Buffalo, NY, USA
| | | | | | - Suzan H.M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kristian Riesbeck
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M. Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
4
|
Lamb ER, Criss AK. Terminal complement complexes with or without C9 potentiate antimicrobial activity against Neisseria gonorrhoeae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633325. [PMID: 39868146 PMCID: PMC11760736 DOI: 10.1101/2025.01.16.633325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The complement cascade is a front-line defense against pathogens. Complement activation generates the membrane attack complex (MAC), a 10-11 nm diameter pore formed by complement proteins C5b through C8 and polymerized C9. The MAC embeds within the outer membrane of Gram-negative bacteria and displays bactericidal activity. In the absence of C9, C5b-C8 complexes can form 2-4 nm pores on membranes, but their relevance to microbial control is poorly understood. Deficiencies in terminal complement components uniquely predispose individuals to infections by pathogenic Neisseria, including N. gonorrhoeae (Gc). Increasing antibiotic resistance in Gc makes new therapeutic strategies a priority. Here, we demonstrate that MAC formed by complement activity in human serum disrupts the Gc outer and inner membranes, potentiating the activity of antimicrobials against Gc and re-sensitizing multidrug resistant Gc to antibiotics. C9-depleted serum also disrupts Gc membranes and exerts antigonococcal activity, effects that are not reported in other Gram-negative bacteria. C5b-C8 complex formation potentiates Gc sensitivity to azithromycin but not lysozyme. These findings expand our mechanistic understanding of complement lytic activity, suggest a size limitation for terminal complement-mediated enhancement of antimicrobials against Gc, and suggest complement manipulation can be used to combat drug-resistant gonorrhea. Importance The complement cascade is a front-line arm of the innate immune system against pathogens. Complement activation results in membrane attack complex (MAC) pores forming on the outer membrane of Gram-negative bacteria, resulting in bacterial death. Individuals who cannot generate MAC are specifically susceptible to infection by pathogenic Neisseria species including N. gonorrhoeae (Gc). High rates of gonorrhea and its complications like infertility, and high-frequency resistance to multiple antibiotics, make it important to identify new approaches to combat Gc. Beyond direct anti-Gc activity, we found the MAC increases the ability of antibiotics and antimicrobial proteins to kill Gc and re-sensitizes multidrug-resistant bacteria to antibiotics. The most terminal component, C9, is needed to potentiate the anti-Gc activity of lysozyme, but azithromycin activity is potentiated regardless of C9. These findings highlight the unique effects of MAC on Gc and suggest novel translational avenues to combat drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Evan R. Lamb
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
5
|
Masson FM, Káradóttir S, van der Lans SPA, Doorduijn DJ, de Haas CJC, Rooijakkers SHM, Bardoel BW. Klebsiella LPS O1-antigen prevents complement-mediated killing by inhibiting C9 polymerization. Sci Rep 2024; 14:20701. [PMID: 39237647 PMCID: PMC11377433 DOI: 10.1038/s41598-024-71487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
The Gram-negative bacterium Klebsiella pneumoniae is an important human pathogen. Its treatment has been complicated by the emergence of multi-drug resistant strains. The human complement system is an important part of our innate immune response that can directly kill Gram-negative bacteria by assembling membrane attack complex (MAC) pores into the bacterial outer membrane. To resist this attack, Gram-negative bacteria can modify their lipopolysaccharide (LPS). Especially the decoration of the LPS outer core with the O-antigen polysaccharide has been linked to increased bacterial survival in serum, but not studied in detail. In this study, we characterized various clinical Klebsiella pneumoniae isolates and show that expression of the LPS O1-antigen correlates with resistance to complement-mediated killing. Mechanistic data reveal that the O1-antigen does not inhibit C3b deposition and C5 conversion. In contrast, we see more efficient formation of C5a, and deposition of C6 and C9 when an O-antigen is present. Further downstream analyses revealed that the O1-antigen prevents correct insertion and polymerization of the final MAC component C9 into the bacterial membrane. Altogether, we show that the LPS O1-antigen is a key determining factor for complement resistance by K. pneumoniae and provide insights into the molecular basis of O1-mediated MAC evasion.
Collapse
Affiliation(s)
- Frerich M Masson
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Salvör Káradóttir
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Dennis J Doorduijn
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Bart W Bardoel
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Gray J, Torres VVL, Goodall E, McKeand SA, Scales D, Collins C, Wetherall L, Lian ZJ, Bryant JA, Milner MT, Dunne KA, Icke C, Rooke JL, Schneiders T, Lund PA, Cunningham AF, Cole JA, Henderson IR. Transposon mutagenesis screen in Klebsiella pneumoniae identifies genetic determinants required for growth in human urine and serum. eLife 2024; 12:RP88971. [PMID: 39189918 PMCID: PMC11349299 DOI: 10.7554/elife.88971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Klebsiella pneumoniae is a global public health concern due to the rising myriad of hypervirulent and multidrug-resistant clones both alarmingly associated with high mortality. The molecular mechanisms underpinning these recalcitrant K. pneumoniae infection, and how virulence is coupled with the emergence of lineages resistant to nearly all present-day clinically important antimicrobials, are unclear. In this study, we performed a genome-wide screen in K. pneumoniae ECL8, a member of the endemic K2-ST375 pathotype most often reported in Asia, to define genes essential for growth in a nutrient-rich laboratory medium (Luria-Bertani [LB] medium), human urine, and serum. Through transposon directed insertion-site sequencing (TraDIS), a total of 427 genes were identified as essential for growth on LB agar, whereas transposon insertions in 11 and 144 genes decreased fitness for growth in either urine or serum, respectively. These studies not only provide further knowledge on the genetics of this pathogen but also provide a strong impetus for discovering new antimicrobial targets to improve current therapeutic options for K. pneumoniae infections.
Collapse
Affiliation(s)
- Jessica Gray
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Emily Goodall
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Samantha A McKeand
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Danielle Scales
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Christy Collins
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Laura Wetherall
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Zheng Jie Lian
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Jack A Bryant
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Matthew T Milner
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Karl A Dunne
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Christopher Icke
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Jessica L Rooke
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Thamarai Schneiders
- Division of Infection Medicine, University of EdinburghEdinburghUnited Kingdom
| | - Peter A Lund
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Jeff A Cole
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| |
Collapse
|
7
|
Correa GB, Freire CA, Dibo M, Huerta-Cantillo J, Navarro-Garcia F, Barbosa AS, Elias WP, Moraes CTP. Plasmid-encoded toxin of Escherichia coli cleaves complement system proteins and inhibits complement-mediated lysis in vitro. Front Cell Infect Microbiol 2024; 14:1327241. [PMID: 38371299 PMCID: PMC10869522 DOI: 10.3389/fcimb.2024.1327241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/08/2024] [Indexed: 02/20/2024] Open
Abstract
Plasmid-encoded toxin (Pet) is an autotransporter protein of the serine protease autotransporters of Enterobacteriaceae (SPATE) family, important in the pathogenicity of Escherichia coli. The pet gene was initially found in the enteroaggregative E. coli (EAEC) virulence plasmid, pAA2. Although this virulence factor was initially described in EAEC, an intestinal E. coli pathotype, pet may also be present in other pathotypes, including extraintestinal pathogenic strains (ExPEC). The complement system is an important defense mechanism of the immune system that can be activated by invading pathogens. Proteases produced by pathogenic bacteria, such as SPATEs, have proteolytic activity and can cleave components of the complement system, promoting bacterial resistance to human serum. Considering these factors, the proteolytic activity of Pet and its role in evading the complement system were investigated. Proteolytic assays were performed by incubating purified components of the complement system with Pet and Pet S260I (a catalytic site mutant) proteins. Pet, but not Pet S260I, could cleave C3, C5 and C9 components, and also inhibited the natural formation of C9 polymers. Furthermore, a dose-dependent inhibition of ZnCl2-induced C9 polymerization in vitro was observed. E. coli DH5α survived incubation with human serum pre-treated with Pet. Therefore, Pet can potentially interfere with the alternative and the terminal pathways of the complement system. In addition, by cleaving C9, Pet may inhibit membrane attack complex (MAC) formation on the bacterial outer membrane. Thus, our data are suggestive of a role of Pet in resistance of E. coli to human serum.
Collapse
Affiliation(s)
| | | | - Miriam Dibo
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Jazmin Huerta-Cantillo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | | | - Waldir P. Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
8
|
Muts RM, den Boer MA, Bardoel BW, Aerts PC, de Haas CJC, Heck AJR, Rooijakkers SHM, Heesterbeek DAC. Artificial surface labelling of Escherichia coli with StrepTagII antigen to study how monoclonal antibodies drive complement-mediated killing. Sci Rep 2023; 13:18836. [PMID: 37914798 PMCID: PMC10620216 DOI: 10.1038/s41598-023-46026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Antibodies play a key role in the immune defence against Gram-negative bacteria. After binding to bacterial surface antigens, IgG and IgM can activate the complement system and trigger formation of lytic membrane attack complex (MAC) pores. Molecular studies to compare functional activity of antibodies on bacteria are hampered by the limited availability of well-defined antibodies against bacterial surface antigens. Therefore, we genetically engineered E. coli by expressing the StrepTagII antigen into outer membrane protein X (OmpX) and validated that these engineered bacteria were recognised by anti-StrepTagII antibodies. We then combined this antigen-antibody system with a purified complement assay to avoid interference of serum components and directly compare MAC-mediated bacterial killing via IgG1 and pentameric IgM. While both IgG1 and IgM could induce MAC-mediated killing, we show that IgM has an increased capacity to induce complement-mediated killing of E. coli compared to IgG1. While Fc mutations that enhance IgG clustering after target binding could not improve MAC formation, mutations that cause formation of pre-assembled IgG hexamers enhanced the complement activating capacity of IgG1. Altogether, we here present a system to study antibody-dependent complement activation on E. coli and show IgM's enhanced capacity over IgG to induce complement-mediated lysis of E. coli.
Collapse
Affiliation(s)
- Remy M Muts
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomic Center, 3584 CH, Utrecht, The Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Piet C Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomic Center, 3584 CH, Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Dani A C Heesterbeek
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
9
|
van der Lans SPA, Janet-Maitre M, Masson FM, Walker KA, Doorduijn DJ, Janssen AB, van Schaik W, Attrée I, Rooijakkers SHM, Bardoel BW. Colistin resistance mutations in phoQ can sensitize Klebsiella pneumoniae to IgM-mediated complement killing. Sci Rep 2023; 13:12618. [PMID: 37537263 PMCID: PMC10400624 DOI: 10.1038/s41598-023-39613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Due to multi-drug resistance, physicians increasingly use the last-resort antibiotic colistin to treat infections with the Gram-negative bacterium Klebsiella pneumoniae. Unfortunately, K. pneumoniae can also develop colistin resistance. Interestingly, colistin resistance has dual effects on bacterial clearance by the immune system. While it increases resistance to antimicrobial peptides, colistin resistance has been reported to sensitize certain bacteria for killing by human serum. Here we investigate the mechanisms underlying this increased serum sensitivity, focusing on human complement which kills Gram-negatives via membrane attack complex (MAC) pores. Using in vitro evolved colistin resistant strains and a fluorescent MAC-mediated permeabilization assay, we showed that two of the three tested colistin resistant strains, Kp209_CSTR and Kp257_CSTR, were sensitized to MAC. Transcriptomic and mechanistic analyses focusing on Kp209_CSTR revealed that a mutation in the phoQ gene locked PhoQ in an active state, making Kp209_CSTR colistin resistant and MAC sensitive. Detailed immunological assays showed that complement activation on Kp209_CSTR in human serum required specific IgM antibodies that bound Kp209_CSTR but did not recognize the wild-type strain. Together, our results show that developing colistin resistance affected recognition of Kp209_CSTR and its killing by the immune system.
Collapse
Affiliation(s)
- Sjors P A van der Lans
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Manon Janet-Maitre
- Bacterial Pathogenesis and Cellular Responses Group, UMR5075, Institute of Structural Biology, University Grenoble Alpes, Grenoble, France
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Frerich M Masson
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kimberly A Walker
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dennis J Doorduijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Axel B Janssen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ina Attrée
- Bacterial Pathogenesis and Cellular Responses Group, UMR5075, Institute of Structural Biology, University Grenoble Alpes, Grenoble, France
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Genome-wide screen in human plasma identifies multifaceted complement evasion of Pseudomonas aeruginosa. PLoS Pathog 2023; 19:e1011023. [PMID: 36696456 PMCID: PMC9901815 DOI: 10.1371/journal.ppat.1011023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/06/2023] [Accepted: 11/23/2022] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa, an opportunistic Gram-negative pathogen, is a leading cause of bacteremia with a high mortality rate. We recently reported that P. aeruginosa forms a persister-like sub-population of evaders in human plasma. Here, using a gain-of-function transposon sequencing (Tn-seq) screen in plasma, we identified and validated previously unknown factors affecting bacterial persistence in plasma. Among them, we identified a small periplasmic protein, named SrgA, whose expression leads to up to a 100-fold increase in resistance to killing. Additionally, mutants in pur and bio genes displayed higher tolerance and persistence, respectively. Analysis of several steps of the complement cascade and exposure to an outer-membrane-impermeable drug, nisin, suggested that the mutants impede membrane attack complex (MAC) activity per se. Electron microscopy combined with energy-dispersive X-ray spectroscopy (EDX) revealed the formation of polyphosphate (polyP) granules upon incubation in plasma of different size in purD and wild-type strains, implying the bacterial response to a stress signal. Indeed, inactivation of ppk genes encoding polyP-generating enzymes lead to significant elimination of persisting bacteria from plasma. Through this study, we shed light on a complex P. aeruginosa response to the plasma conditions and discovered the multifactorial origin of bacterial resilience to MAC-induced killing.
Collapse
|
11
|
The neoepitope of the complement C5b-9 Membrane Attack Complex is formed by proximity of adjacent ancillary regions of C9. Commun Biol 2023; 6:42. [PMID: 36639734 PMCID: PMC9838529 DOI: 10.1038/s42003-023-04431-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The Membrane Attack Complex (MAC) is responsible for forming large β-barrel channels in the membranes of pathogens, such as gram-negative bacteria. Off-target MAC assembly on endogenous tissue is associated with inflammatory diseases and cancer. Accordingly, a human C5b-9 specific antibody, aE11, has been developed that detects a neoepitope exposed in C9 when it is incorporated into the C5b-9 complex, but not present in the plasma native C9. For nearly four decades aE11 has been routinely used to study complement, MAC-related inflammation, and pathophysiology. However, the identity of C9 neoepitope remains unknown. Here, we determined the cryo-EM structure of aE11 in complex with polyC9 at 3.2 Å resolution. The aE11 binding site is formed by two separate surfaces of the oligomeric C9 periphery and is therefore a discontinuous quaternary epitope. These surfaces are contributed by portions of the adjacent TSP1, LDLRA, and MACPF domains of two neighbouring C9 protomers. By substituting key antibody interacting residues to the murine orthologue, we validated the unusual binding modality of aE11. Furthermore, aE11 can recognise a partial epitope in purified monomeric C9 in vitro, albeit weakly. Taken together, our results reveal the structural basis for MAC recognition by aE11.
Collapse
|
12
|
Baidya A, Khatun M, Mondal RK, Ghosh S, Chakraborty BC, Mallik S, Ahammed SKM, Chowdhury A, Banerjee S, Datta S. Hepatitis B virus suppresses complement C9 synthesis by limiting the availability of transcription factor USF-1 and inhibits formation of membrane attack complex: implications in disease pathogenesis. J Biomed Sci 2022; 29:97. [PMID: 36376872 PMCID: PMC9664717 DOI: 10.1186/s12929-022-00876-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/29/2022] [Indexed: 11/15/2022] Open
Abstract
Background The complement system functions primarily as a first-line host defense against invading microbes, including viruses. However, the interaction of Hepatitis B virus (HBV) with the complement-components during chronic HBV infection remains largely unknown. We investigated the mechanism by which HBV inhibits the formation of cytolytic complement membrane-attack complex (MAC) and studied its impact on MAC-mediated microbicidal activity and disease pathogenesis. Methods Blood/liver tissues were collected from chronically HBV-infected patients and controls. HepG2hNTCP cells were infected with HBV particles and Huh7 cells were transfected with full-length linear HBV-monomer or plasmids containing different HBV-ORFs and expression of complement components or other host genes were evaluated. Additionally, ELISA, Real-time PCR, Western blot, bioinformatics analysis, gene overexpression/knock-down, mutagenesis, chromatin immunoprecipitation, epigenetic studies, immunofluorescence, and quantification of serum HBV-DNA, bacterial-DNA and endotoxin were performed. Results Among the MAC components (C5b-C9), significant reduction was noted in the expression of C9, the major constituent of MAC, in HBV-infected HepG2hNTCP cells and in Huh7 cells transfected with full-length HBV as well as HBX. C9 level was also marked low in sera/liver of chronic hepatitis B (CHB) and Immune-tolerant (IT) patients than inactive carriers and healthy controls. HBX strongly repressed C9-promoter activity in Huh7 cells but CpG-island was not detected in C9-promoter. We identified USF-1 as the key transcription factor that drives C9 expression and demonstrated that HBX-induced hypermethylation of USF-1-promoter is the leading cause of USF-1 downregulation that in turn diminished C9 transcription. Reduced MAC formation and impaired lysis of HBV-transfected Huh7 and bacterial cells were observed following incubation of these cells with C9-deficient CHB sera but was reversed upon C9 supplementation. Significant inverse correlation was noted between C9 concentration and HBV-DNA, bacterial-DNA and endotoxin content in HBV-infected patients. One-year Tenofovir therapy resulted in improvement in C9 level and decline in viral/bacterial/endotoxin load in CHB patients. Conclusion Collectively, HBX suppressed C9 transcription by restricting the availability of USF-1 through hypermethylation of USF-1-promoter and consequently hinder the formation and lytic functions of MAC. Early therapy is needed for both CHB and IT to normalize the aberrant complement profile and contain viral and bacterial infection and limit disease progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00876-1.
Collapse
|
13
|
Doorduijn DJ, Lukassen MV, van 't Wout MFL, Franc V, Ruyken M, Bardoel BW, Heck AJR, Rooijakkers SHM. Soluble MAC is primarily released from MAC-resistant bacteria that potently convert complement component C5. eLife 2022; 11:77503. [PMID: 35947526 PMCID: PMC9402229 DOI: 10.7554/elife.77503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
The membrane attack complex (MAC or C5b-9) is an important effector of the immune system to kill invading microbes. MAC formation is initiated when complement enzymes on the bacterial surface convert complement component C5 into C5b. Although the MAC is a membrane-inserted complex, soluble forms of MAC (sMAC), or terminal complement complex (TCC), are often detected in sera of patients suffering from infections. Consequently, sMAC has been proposed as a biomarker, but it remains unclear when and how it is formed during infections. Here, we studied mechanisms of MAC formation on different Gram-negative and Gram-positive bacteria and found that sMAC is primarily formed in human serum by bacteria resistant to MAC-dependent killing. Surprisingly, C5 was converted into C5b more potently by MAC-resistant compared to MAC-sensitive Escherichia coli strains. In addition, we found that MAC precursors are released from the surface of MAC-resistant bacteria during MAC assembly. Although release of MAC precursors from bacteria induced lysis of bystander human erythrocytes, serum regulators vitronectin (Vn) and clusterin (Clu) can prevent this. Combining size exclusion chromatography with mass spectrometry profiling, we show that sMAC released from bacteria in serum is a heterogeneous mixture of complexes composed of C5b-8, up to three copies of C9 and multiple copies of Vn and Clu. Altogether, our data provide molecular insight into how sMAC is generated during bacterial infections. This fundamental knowledge could form the basis for exploring the use of sMAC as biomarker.
Collapse
Affiliation(s)
- Dennis J Doorduijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marie V Lukassen
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, Netherlands
| | - Marije F L van 't Wout
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, Netherlands
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
14
|
Doorduijn DJ, Heesterbeek DAC, Ruyken M, de Haas CJC, Stapels DAC, Aerts PC, Rooijakkers SHM, Bardoel BW. Correction: Polymerization of C9 enhances bacterial cell envelope damage and killing by membrane attack complex pores. PLoS Pathog 2022; 18:e1010758. [PMID: 35939488 PMCID: PMC9359554 DOI: 10.1371/journal.ppat.1010758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Sharma A, Gupta S, Patil AB, Vijay N. Birth and death in terminal complement pathway. Mol Immunol 2022; 149:174-187. [PMID: 35908437 DOI: 10.1016/j.molimm.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/15/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
Abstract
The cytolytic activity of the membrane attack complex (MAC) is pivotal in the complement-mediated elimination of pathogens. Terminal complement pathway (TCP) genes encode the proteins that form the MAC. Although the TCP genes are well conserved within most vertebrate species, the early evolution of the TCP genes is poorly understood. Based on the comparative genomic analysis of the early evolutionary history of the TCP homologs, we evaluated four possible scenarios that could have given rise to the vertebrate TCP. Currently available genomic data support a scheme of complex sequential protein domain gains that may be responsible for the birth of the vertebrate C6 gene. The subsequent duplication and divergence of this vertebrate C6 gene formed the C7, C8α, C8β, and C9 genes. Compared to the widespread conservation of TCP components within vertebrates, we discovered that C9 has disintegrated in the genomes of galliform birds. Publicly available genome and transcriptome sequencing datasets of chicken from Illumina short read, PacBio long read, and Optical mapping technologies support the validity of the genome assembly at the C9 locus. In this study, we have generated a > 120X coverage whole-genome Chromium 10x linked-read sequencing dataset for the chicken and used it to verify the loss of the C9 gene in the chicken. We find multiple CR1 (chicken repeat 1) element insertions within and near the remnant exons of C9 in several galliform bird genomes. The reconstructed chronology of events shows that the CR1 insertions occurred after C9 gene loss in an early galliform ancestor. Loss of C9 in galliform birds, in contrast to conservation in other vertebrates, may have implications for host-pathogen interactions. Our study of C6 gene birth in an early vertebrate ancestor and C9 gene death in galliform birds provides insights into the evolution of the TCP.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Saumya Gupta
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Ajinkya Bharatraj Patil
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
16
|
Tang H, Hu X, Xu F, Lin K, Xu W, Huang H, Zhang H, Xiao Y, Sun D, Liu W, Wei S. Increased DNA Polymerase Epsilon Catalytic Subunit Expression Predicts Tumor Progression and Modulates Tumor Microenvironment of Hepatocellular Carcinoma. J Cancer 2022; 13:2740-2750. [PMID: 35812186 PMCID: PMC9254880 DOI: 10.7150/jca.64765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/21/2022] [Indexed: 11/05/2022] Open
Abstract
Backgrounds: Liver hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and POLE, playing an important role in maintaining genetic stability, is closely connected with cancer prognosis. This study aimed to explore the significance role of POLE in HCC prognosis, clinical treatment and tumor immune microenvironment based on large-scale multiply cohorts. Methods: First, we found that the expression of POLE was prominently higher in tumor tissues than in normal tissues, and was closely related to clinical stage, grade and patient outcomes. Second, we found that patients with high POLE expression had significantly aggressive progression, indicating effective predictive role of POLE expression for Asian, male, low-risk HCC patients. Additionally, POLE mutation frequency was detected in several datasets with available genomic-wide data. Results: 130 HCC samples from real-world Renji cohort were included to demonstrate that elevated POLE expression was significantly connected to the invasive progression and poor prognosis. More importantly, the expression of POLE was closely related to the anti-tumoral activity of immune cells and immune checkpoints expression, suggesting a bright prospect of POLE as a predictive biomarker in immunotherapy. Conclusion: In conclusion, this study revealed that high expression of POLE significantly correlated to the malignant progression, poor prognosis and anti-tumoral activity of immune cells in HCC. Thus, POLE could function as a biomarker for the early diagnosis, prognosis, immune-excluded tumor microenvironment and response to immunotherapy of HCC.
Collapse
Affiliation(s)
- Haijia Tang
- Department of Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Xiaoxin Hu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fujiang Xu
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
| | - Kefei Lin
- Department of Urology, PKUCare CNOOC Hospital,Tianjin,300452, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
| | - Haineng Huang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Xiao
- Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Dongdong Sun
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wangrui Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyin Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
17
|
Wesseling CMJ, Slingerland CJ, Veraar S, Lok S, Martin NI. Structure-Activity Studies with Bis-Amidines That Potentiate Gram-Positive Specific Antibiotics against Gram-Negative Pathogens. ACS Infect Dis 2021; 7:3314-3335. [PMID: 34766746 PMCID: PMC8669655 DOI: 10.1021/acsinfecdis.1c00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Pentamidine, an FDA-approved
antiparasitic drug, was recently identified
as an outer membrane disrupting synergist that potentiates erythromycin,
rifampicin, and novobiocin against Gram-negative bacteria. The same
study also described a preliminary structure–activity relationship
using commercially available pentamidine analogues. We here report
the design, synthesis, and evaluation of a broader panel of bis-amidines
inspired by pentamidine. The present study both validates the previously
observed synergistic activity reported for pentamidine, while further
assessing the capacity for structurally similar bis-amidines to also
potentiate Gram-positive specific antibiotics against Gram-negative
pathogens. Among the bis-amidines prepared, a number of them were
found to exhibit synergistic activity greater than pentamidine. These
synergists were shown to effectively potentiate the activity of Gram-positive
specific antibiotics against multiple Gram-negative pathogens such
as Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas
aeruginosa, and Escherichia coli, including polymyxin- and carbapenem-resistant strains.
Collapse
Affiliation(s)
- Charlotte M. J. Wesseling
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Cornelis J. Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Shanice Veraar
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Samantha Lok
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|