1
|
Shi J, Sun M. Bacillus thuringiensis: a gift for nematode management. Trends Parasitol 2025; 41:235-246. [PMID: 39939273 DOI: 10.1016/j.pt.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 02/14/2025]
Abstract
Nematodes attacking plants and animals pose a global threat to agricultural industry and public health. Chemicals as long preferred tools for nematode management are facing challenges such as pest resistance and policy restrictions. Recent findings show that Bacillus thuringiensis (Bt) produces rich components with excellent nematicidal competence and is a precious nonchemical resource for controlling a broad range of nematode parasites. Transgenic plants, microbial products, and nanoparticles efficiently deliver and protect Bt nematicidal activities. The combination of nematicidal elements with distinct modes of action can enhance the efficacy and sustainability of Bt-derived nematicidal products. Here we outline these advances, emphasize the promise of Bt in managing nematodes, and discuss issues concerning the optimization of field deployments of Bt-based nematode management.
Collapse
Affiliation(s)
- Jianwei Shi
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, China; Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, China.
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
2
|
Kim Y, Nguyen TT, Durning DJ, Ishidate T, Aydemir O, Mello CC, Hu Y, Kahn TW, Aroian RV. Resistance to Cry14A family Bacillus thuringiensis crystal proteins in Caenornabditis elegans operates via the nhr-31 transcription factor and vacuolar-type ATPase pathway. PLoS Pathog 2024; 20:e1012611. [PMID: 39423230 PMCID: PMC11524453 DOI: 10.1371/journal.ppat.1012611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/30/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
Bacillus thuringiensis (Bt) has been successfully used commercially for more than 60 years for biocontrol of insect pests. Since 1996, transgenic plants expressing Bt crystal (Cry) proteins have been used commercially to provide protection against insects that predate on corn and cotton. More recently, Bt Cry proteins that target nematodes have been discovered. One of these, Cry14Ab, has been expressed in transgenic soybean plants and found to provide significant protection against the soybean cyst nematode, Heterodera glycines. However, to date there has been no description of high-level resistance to any Cry14A family protein in nematodes. Here, we describe forward genetic screens to identify such mutants using the nematode Caenorhabditis elegans. Although non-conditional screens failed to identify highly resistant C. elegans, a conditional (temperature-sensitive) genetic screen identified one mutant, bre-6(ye123) (for Bt protein resistant), highly resistant to both Cry14Aa and Cry14Ab. The mutant comes at a high fitness cost, showing significant delays in growth and development and reduced fecundity. bre-6(ye123) hermaphrodites are only weakly resistant to copper intoxication, indicating that the mutant is not highly resistant to all insults. Backcrossing-whole genome sequencing was used to identify the gene mutated in ye123 as the nuclear hormone receptor nhr-31. RNAi, DNA rescue, and CRISPR analyses confirm that resistance to Cry14Aa intoxication in bre-6(ye123) is due to mutation of nhr-31 and was renamed nhr-31(ye123). As predicted for a mutation in this gene, nhr-31(ye123) animals showed significantly reduced expression of most of the subunits of the C. elegans vacuolar ATPase (vATPase). Mutants in the vATPase subunits unc-32 and vha-7 also show resistance to Cry14Aa and/or Cry14Ab. These data demonstrate that nhr-31 and the vATPase play a significant role in the intoxication of C. elegans by Cry14A family proteins, that reduction in vATPase levels result in high resistance to Cry14A family proteins, and that such resistance comes at a high fitness cost. Based on the relative difficulty of finding resistant mutants and the fitness cost associated with the vATPase pathway, our data suggest that transgenic Cry14Ab plants may hold up well to resistance by nematode parasites.
Collapse
Affiliation(s)
- Youmie Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Thanh-Thanh Nguyen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Daniel J. Durning
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Takao Ishidate
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Craig C. Mello
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Yan Hu
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Current address: Biology Department, Worcester State University, Worcester, Massachusetts, United States of America
| | - Theodore W. Kahn
- BASF Corporation, Research Triangle Park, North Carolina, United States of America
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
3
|
Hsieh HC, Huang IH, Chang SW, Chen PL, Su YC, Wang S, Tsai WJ, Chen PH, Aroian RV, Chen CS. PRMT-7/PRMT7 activates HLH-30/TFEB to guard plasma membrane integrity compromised by bacterial pore-forming toxins. Autophagy 2024; 20:1335-1358. [PMID: 38261662 PMCID: PMC11210913 DOI: 10.1080/15548627.2024.2306655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
Bacterial pore-forming toxins (PFTs) that disrupt host plasma membrane integrity (PMI) significantly contribute to the virulence of various pathogens. However, how host cells protect PMI in response to PFT perforation in vivo remains obscure. Previously, we demonstrated that the HLH-30/TFEB-dependent intrinsic cellular defense (INCED) is elicited by PFT to maintain PMI in Caenorhabditis elegans intestinal epithelium. Yet, the molecular mechanism for the full activation of HLH-30/TFEB by PFT remains elusive. Here, we reveal that PRMT-7 (protein arginine methyltransferase-7) is indispensable to the nuclear transactivation of HLH-30 elicited by PFTs. We demonstrate that PRMT-7 participates in the methylation of HLH-30 on its RAG complex binding domain to facilitate its nuclear localization and activation. Moreover, we showed that PRMT7 is evolutionarily conserved to regulate TFEB cellular localization and repair plasma damage caused by PFTs in human intestinal cells. Together, our observations not only unveil a novel PRMT-7/PRMT7-dependent post-translational regulation of HLH-30/TFEB but also shed insight on the evolutionarily conserved mechanism of the INCED against PFT in metazoans.
Collapse
Affiliation(s)
- Hui-Chen Hsieh
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Hsiang Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shao-Wen Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Su
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jiun Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Hung Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Niu X, Jiang J, Sun Y, Hull JJ, Ma W, Hua H, Lin Y. Knockdown of MAPK p38-linked genes increases the susceptibility of Chilo suppressalis larvae to various transgenic Bt rice lines. Int J Biol Macromol 2024; 266:130815. [PMID: 38537847 DOI: 10.1016/j.ijbiomac.2024.130815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/11/2024] [Accepted: 03/10/2024] [Indexed: 04/01/2024]
Abstract
Bacillus thuringiensis (Bt) toxins have provided exceptional control of agricultural insect pests, however, over reliance on the proteins would potentially contribute to the development of field tolerance. Developing new sustainable insect pest control methods that target the mechanisms underlying Bt tolerance can potentially support the Bt control paradigm while also providing insights into basic insect physiology. The MAPK p38 pathway is strongly associated with Bt tolerance in Chilo suppressalis, a major pest of rice. To gain insights into how this pathway impacts tolerance, high-throughput screening of C. suppressalis larval midguts initially identified eight novel target genes. Increased larval sensitivity to the transgenic cry1Ca rice strain T1C-19 was observed following RNA interference-mediated knockdown of four of the genes, Cscnc, Csgcp, Cszfp26 and CsZMYM1. Similar enhanced sensitivity to the TT51 (expressing Cry1Ab/1Ac) and T2A-1 (expressing Cry2Aa) transgenic rice lines occurred when Cszfp26 and CsZMYM1 were knocked down. All four target genes are downstream of the MAPK p38 pathway but do not participate in negative feedback loop of the pathway. These results implicate Cscnc, Csgcp, Cszfp and CsZMYM1 in the C. suppressalis transgenic cry1Ca rice tolerance mechanism regulated by MAPK p38. These findings further enhance our understanding of the MAPK p38-dependent molecular mechanisms underlying Bt tolerance in C. suppressalis and open new avenues of tolerance management to develop.
Collapse
Affiliation(s)
- Xurong Niu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States
| | - Jialiang Jiang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States
| | - Yajie Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States
| | - J Joe Hull
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States
| | - Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States
| |
Collapse
|
5
|
Pees B, Peters L, Treitz C, Hamerich IK, Kissoyan KAB, Tholey A, Dierking K. The Caenorhabditis elegans proteome response to two protective Pseudomonas symbionts. mBio 2024; 15:e0346323. [PMID: 38411078 PMCID: PMC11005407 DOI: 10.1128/mbio.03463-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
The Caenorhabditis elegans natural microbiota isolates Pseudomonas lurida MYb11 and Pseudomonas fluorescens MYb115 protect the host against pathogens through distinct mechanisms. While P. lurida produces an antimicrobial compound and directly inhibits pathogen growth, P. fluorescens MYb115 protects the host without affecting pathogen growth. It is unknown how these two protective microbes affect host biological processes. We used a proteomics approach to elucidate the C. elegans response to MYb11 and MYb115. We found that both Pseudomonas isolates increase vitellogenin protein production in young adults, which confirms previous findings on the effect of microbiota on C. elegans reproductive timing. Moreover, the C. elegans responses to MYb11 and MYb115 exhibit common signatures with the response to other vitamin B12-producing bacteria, emphasizing the importance of vitamin B12 in C. elegans-microbe metabolic interactions. We further analyzed signatures in the C. elegans response specific to MYb11 or MYb115. We provide evidence for distinct modifications in lipid metabolism by both symbiotic microbes. We could identify the activation of host-pathogen defense responses as an MYb11-specific proteome signature and provide evidence that the intermediate filament protein IFB-2 is required for MYb115-mediated protection. These results indicate that MYb11 not only produces an antimicrobial compound but also activates host antimicrobial defenses, which together might increase resistance to infection. In contrast, MYb115 affects host processes such as lipid metabolism and cytoskeleton dynamics, which might increase host tolerance to infection. Overall, this study pinpoints proteins of interest that form the basis for additional exploration into the mechanisms underlying C. elegans microbiota-mediated protection from pathogen infection and other microbiota-mediated traits.IMPORTANCESymbiotic bacteria can defend their host against pathogen infection. While some protective symbionts directly interact with pathogenic bacteria, other protective symbionts elicit a response in the host that improves its own pathogen defenses. To better understand how a host responds to protective symbionts, we examined which host proteins are affected by two protective Pseudomonas bacteria in the model nematode Caenorhabditis elegans. We found that the C. elegans response to its protective symbionts is manifold, which was reflected in changes in proteins that are involved in metabolism, the immune system, and cell structure. This study provides a foundation for exploring the contribution of the host response to symbiont-mediated protection from pathogen infection.
Collapse
Affiliation(s)
- Barbara Pees
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Lena Peters
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Christian Treitz
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrecht University, Kiel, Germany
| | - Inga K. Hamerich
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Kohar A. B. Kissoyan
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrecht University, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| |
Collapse
|
6
|
Williams PDE, Brewer MT, Aroian R, Robertson AP, Martin RJ. The nematode ( Ascaris suum) intestine is a location of synergistic anthelmintic effects of Cry5B and levamisole. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567786. [PMID: 38045368 PMCID: PMC10690214 DOI: 10.1101/2023.11.20.567786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A novel group of biocidal compounds are the Crystal 3D (Cry) and Cytolytic (Cyt) proteins produced by Bacillus thuringiensis (Bt). Some Bt Cry proteins have a selective nematocidal activity, with Cry5B being the most studied. Cry5B kills nematode parasites by binding selectively to membrane glycosphingolipids, then forming pores in the cell membranes of the intestine leading to damage. Cry5B selectively targets multiple species of nematodes from different clades and has no effect against mammalian hosts. Levamisole is a cholinomimetic anthelmintic that acts by selectively opening L-subtype nicotinic acetylcholine receptor ion-channels (L-AChRs) that have been found on muscles of nematodes. A synergistic nematocidal interaction between levamisole and Cry5B has been described previously, but the location, mechanism and time-course of this synergism is not known. In this study we follow the timeline of the effects of levamisole and Cry5B on the Ca2+ levels in enterocyte cells from the intestine of Ascaris suum using fluorescence imaging. The peak Ca2+ responses to levamisole were observed after approximately 10 minutes while the peak responses to activated Cry5B were observed after approximately 80 minutes. When levamisole and Cry5B were applied simultaneously, we observed that the responses to Cry5B were bigger and occurred sooner than when it was applied by itself. It is proposed that there is an irreversible cytoplasmic Ca2+ overload that leads to necrotic cell-death in the enterocyte that is induced by levamisole opening Ca2+ permeable L-subtype nAChRs and the development of Ca2+ permeable Cry5B toxin pores in enterocyte plasma membranes. The effects of levamisole potentiate and speed the actions of Cry5B.
Collapse
Affiliation(s)
- Paul D. E. Williams
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Matthew T. Brewer
- Department of Veterinary Pathology, Iowa State University, Ames, Iowa, United States of America
| | - Raffi Aroian
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|