1
|
Das S, Unhale T, Marinach C, Valeriano Alegria BDC, Roux C, Madry H, Mohand Oumoussa B, Amino R, Iwanaga S, Briquet S, Silvie O. Constitutive expression of Cas9 and rapamycin-inducible Cre recombinase facilitates conditional genome editing in Plasmodium berghei. Sci Rep 2025; 15:2949. [PMID: 39849074 PMCID: PMC11758014 DOI: 10.1038/s41598-025-87114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes. Conventional reverse genetic tools cannot be used to study essential genes of the asexual blood stages, thereby necessitating the development of conditional strategies. Among various such strategies, the rapamycin-inducible dimerisable Cre (DiCre) recombinase system emerged as a powerful approach for conditional editing of essential genes in human-infecting P. falciparum and in the rodent malaria model parasite P. berghei. We previously generated a DiCre-expressing P. berghei line and validated it by conditionally deleting several essential asexual stage genes, revealing their important role also in sporozoites. Another potent tool is the CRISPR/Cas9 technology, which has enabled targeted genome editing with higher accuracy and specificity and greatly advanced genome engineering in Plasmodium spp. Here, we developed new P. berghei parasite lines by integrating the DiCre cassette and a fluorescent marker in parasites constitutively expressing Cas9. Owing to the dual integration of CRISPR/Cas9 and DiCre, these new lines allow unparalleled levels of gene modification and conditional regulation simultaneously. To illustrate the versatility of this new tool, we conditionally knocked out the essential gene encoding the claudin-like apicomplexan micronemal protein (CLAMP) in P. berghei and confirmed the role of CLAMP during invasion of erythrocytes.
Collapse
Affiliation(s)
- Samhita Das
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
| | - Tanaya Unhale
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
| | - Carine Marinach
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
| | - Belsy Del Carmen Valeriano Alegria
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
- Institut Pasteur, Laboratory of Ecology and Emergence of Arthropod-borne Pathogens, Paris, France
| | - Camille Roux
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
| | - Hélène Madry
- Sorbonne Université, Inserm, Production et Analyse des données en Sciences de la vie et Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, F-75005 Paris, France
| | - Badreddine Mohand Oumoussa
- Sorbonne Université, Inserm, Production et Analyse des données en Sciences de la vie et Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, F-75005 Paris, France
| | - Rogerio Amino
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity Unit, F-75015 Paris, France
| | - Shiroh Iwanaga
- Research Center for Infectious Disease Control, Department of Molecular Protozoology, Suita, Osaka 565-0871, Japan
| | - Sylvie Briquet
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France.
| | - Olivier Silvie
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France.
| |
Collapse
|
2
|
Le Berre M, Tubiana T, Reuterswärd Waldner P, Lazar N, Li de la Sierra-Gallay I, Santos JM, Llinás M, Nessler S. Structural characterization of the ACDC domain from ApiAP2 proteins, a potential molecular target against apicomplexan parasites. Acta Crystallogr D Struct Biol 2025; 81:38-48. [PMID: 39820027 PMCID: PMC11740583 DOI: 10.1107/s2059798324012518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025] Open
Abstract
The apicomplexan AP2 (ApiAP2) proteins are the best characterized family of DNA-binding proteins in Plasmodium spp. malaria parasites. Apart from the AP2 DNA-binding domain, there is little sequence similarity between ApiAP2 proteins. However, a conserved AP2-coincident domain mostly at the C-terminus (ACDC domain) is observed in a subset of the ApiAP2 proteins. The structure and function of this domain remain unknown. We report two crystal structures of ACDC domains derived from distinct Plasmodium ApiAP2 proteins, revealing a conserved, unique, noncanonical, four-helix bundle architecture. We used these structures to perform in silico docking calculations against a library of known antimalarial compounds and identified potential small-molecule ligands that bind in a highly conserved hydrophobic pocket that is present in all apicomplexan ACDC domains. These ligands provide a new molecular basis for the future design of ACDC inhibitors.
Collapse
Affiliation(s)
- Marine Le Berre
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-SaclayCEA, CNRS91198Gif-sur-YvetteFrance
| | - Thibault Tubiana
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-SaclayCEA, CNRS91198Gif-sur-YvetteFrance
| | - Philippa Reuterswärd Waldner
- Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityState CollegePA16802USA
- Huck Center for Malaria ResearchThe Pennsylvania State UniversityState CollegePA16802USA
| | - Noureddine Lazar
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-SaclayCEA, CNRS91198Gif-sur-YvetteFrance
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-SaclayCEA, CNRS91198Gif-sur-YvetteFrance
| | - Joana M. Santos
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-SaclayCEA, CNRS91198Gif-sur-YvetteFrance
| | - Manuel Llinás
- Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityState CollegePA16802USA
- Huck Center for Malaria ResearchThe Pennsylvania State UniversityState CollegePA16802USA
- Department of ChemistryThe Pennsylvania State UniversityState CollegePA16802USA
| | - Sylvie Nessler
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-SaclayCEA, CNRS91198Gif-sur-YvetteFrance
| |
Collapse
|
3
|
Singhal R, Prata IO, Bonnell VA, Llinás M. Unraveling the complexities of ApiAP2 regulation in Plasmodium falciparum. Trends Parasitol 2024; 40:987-999. [PMID: 39419713 DOI: 10.1016/j.pt.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
The regulation of gene expression in Plasmodium spp., the causative agents of malaria, relies on precise transcriptional control. Malaria parasites encode a limited repertoire of sequence-specific transcriptional regulators dominated by the apicomplexan APETALA 2 (ApiAP2) protein family. ApiAP2 DNA-binding proteins play critical roles at all stages of the parasite life cycle. Recent studies have provided mechanistic insight into the functional roles of many ApiAP2 proteins. Two major areas that have advanced significantly are the identification of ApiAP2-containing protein complexes and the role of ApiAP2 proteins in malaria parasite sexual development. In this review, we present recent advances on the functional biology of ApiAP2 proteins and their role in regulating gene expression across the blood stages of the parasite life cycle.
Collapse
Affiliation(s)
- Ritwik Singhal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Isadora O Prata
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Victoria A Bonnell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Wang J, Chai Y, Yang J, Ye Y, Luo J, Yin H, Guan G. Dissecting the role of transcription factor AP2-M in Babesia asexual replication. FASEB J 2024; 38:e70119. [PMID: 39441647 DOI: 10.1096/fj.202400127rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Babesia spp. are obligate intracellular parasites that invade host cells to complete their asexual development and transmission. Here, we identified a transcription factor AP2-M (BXIN_0799) in Babesia sp. Xinjiang (Bxj), a member of the Apicomplexan AP2 family, which regulates gene expression related to red blood cell (RBC) invasion and cell cycle progression. Our genome-wide analysis of (Cut-Tag) data shows that AP2-M specifically recognized DNA motifs in the promoters of target genes. AP2-M target genes included other AP2 gene family members and epigenetic markers, which could modulate gene expression involved in RBC invasion, merozoite morphology, and cell cycle phases, as indicated by RNA sequencing, proteomics, and single-cell RNA sequencing (scRNA-seq) data from an ap2-m gene disrupted strain (AP2-M (-)). We conclude that AP2-M appeared to contribute to the process of red blood cell invasion, maintain merozoite morphology, and cell cycle progression through GS and MS phases.
Collapse
Affiliation(s)
- Jinming Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yijun Chai
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Jifei Yang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yuxin Ye
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Jianxun Luo
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Hong Yin
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guiquan Guan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Bonnell V, Zhang Y, Brown A, Horton J, Josling G, Chiu TP, Rohs R, Mahony S, Gordân R, Llinás M. DNA sequence and chromatin differentiate sequence-specific transcription factor binding in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res 2024; 52:10161-10179. [PMID: 38966997 PMCID: PMC11417369 DOI: 10.1093/nar/gkae585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Development of the malaria parasite, Plasmodium falciparum, is regulated by a limited number of sequence-specific transcription factors (TFs). However, the mechanisms by which these TFs recognize genome-wide binding sites is largely unknown. To address TF specificity, we investigated the binding of two TF subsets that either bind CACACA or GTGCAC DNA sequence motifs and further characterized two additional ApiAP2 TFs, PfAP2-G and PfAP2-EXP, which bind unique DNA motifs (GTAC and TGCATGCA). We also interrogated the impact of DNA sequence and chromatin context on P. falciparum TF binding by integrating high-throughput in vitro and in vivo binding assays, DNA shape predictions, epigenetic post-translational modifications, and chromatin accessibility. We found that DNA sequence context minimally impacts binding site selection for paralogous CACACA-binding TFs, while chromatin accessibility, epigenetic patterns, co-factor recruitment, and dimerization correlate with differential binding. In contrast, GTGCAC-binding TFs prefer different DNA sequence context in addition to chromatin dynamics. Finally, we determined that TFs that preferentially bind divergent DNA motifs may bind overlapping genomic regions due to low-affinity binding to other sequence motifs. Our results demonstrate that TF binding site selection relies on a combination of DNA sequence and chromatin features, thereby contributing to the complexity of P. falciparum gene regulatory mechanisms.
Collapse
Affiliation(s)
- Victoria A Bonnell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuning Zhang
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Alan S Brown
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - John Horton
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Gabrielle A Josling
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Nishi T, Kaneko I, Iwanaga S, Yuda M. PbARID-associated chromatin remodeling events are essential for gametocyte development in Plasmodium. Nucleic Acids Res 2024; 52:5624-5642. [PMID: 38554111 PMCID: PMC11162789 DOI: 10.1093/nar/gkae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
Gametocyte development of the Plasmodium parasite is a key step for transmission of the parasite. Male and female gametocytes are produced from a subpopulation of asexual blood-stage parasites, but the mechanisms that regulate the differentiation of sexual stages are still under investigation. In this study, we investigated the role of PbARID, a putative subunit of a SWI/SNF chromatin remodeling complex, in transcriptional regulation during the gametocyte development of P. berghei. PbARID expression starts in early gametocytes before the manifestation of male and female-specific features, and disruption of its gene results in the complete loss of gametocytes with detectable male features and the production of abnormal female gametocytes. ChIP-seq analysis of PbARID showed that it forms a complex with gSNF2, an ATPase subunit of the SWI/SNF chromatin remodeling complex, associating with the male cis-regulatory element, TGTCT. Further ChIP-seq of PbARID in gsnf2-knockout parasites revealed an association of PbARID with another cis-regulatory element, TGCACA. RIME and DNA-binding assays suggested that HDP1 is the transcription factor that recruits PbARID to the TGCACA motif. Our results indicated that PbARID could function in two chromatin remodeling events and paly essential roles in both male and female gametocyte development.
Collapse
Affiliation(s)
- Tsubasa Nishi
- Department of Medicine, Mie University, Tsu 514-8507, Japan
| | - Izumi Kaneko
- Department of Medicine, Mie University, Tsu 514-8507, Japan
| | - Shiroh Iwanaga
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Masao Yuda
- Department of Medicine, Mie University, Tsu 514-8507, Japan
| |
Collapse
|
7
|
Liu C, Tang J, Liang K, Liu P, Li Z. Ready for renascence in mosquito: The regulation of gene expression in Plasmodium sexual development. Acta Trop 2024; 254:107191. [PMID: 38554994 DOI: 10.1016/j.actatropica.2024.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Malaria remains one of the most perilous vector-borne infectious diseases for humans globally. Sexual gametocyte represents the exclusive stage at which malaria parasites are transmitted from the vertebrate to the Anopheles host. The feasible and effective approach to prevent malaria transmission is by addressing the sexual developmental processes, that is, gametocytogenesis and gametogenesis. Thus, this review will comprehensively cover advances in the regulation of gene expression surrounding the transmissible stages, including epigenetic, transcriptional, and post-transcriptional control.
Collapse
Affiliation(s)
- Cong Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingjing Tang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Kejia Liang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peng Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhenkui Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
8
|
Dogga SK, Rop JC, Cudini J, Farr E, Dara A, Ouologuem D, Djimdé AA, Talman AM, Lawniczak MKN. A single cell atlas of sexual development in Plasmodium falciparum. Science 2024; 384:eadj4088. [PMID: 38696552 DOI: 10.1126/science.adj4088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
The developmental decision made by malaria parasites to become sexual underlies all malaria transmission. Here, we describe a rich atlas of short- and long-read single-cell transcriptomes of over 37,000 Plasmodium falciparum cells across intraerythrocytic asexual and sexual development. We used the atlas to explore transcriptional modules and exon usage along sexual development and expanded it to include malaria parasites collected from four Malian individuals naturally infected with multiple P. falciparum strains. We investigated genotypic and transcriptional heterogeneity within and among these wild strains at the single-cell level, finding differential expression between different strains even within the same host. These data are a key addition to the Malaria Cell Atlas interactive data resource, enabling a deeper understanding of the biology and diversity of transmission stages.
Collapse
Affiliation(s)
| | - Jesse C Rop
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | | | - Elias Farr
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Institute for Computational Biomedicine, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Antoine Dara
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Dinkorma Ouologuem
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Abdoulaye A Djimdé
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Arthur M Talman
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | | |
Collapse
|
9
|
Le Berre M, Tubiana T, Reuterswärd Waldner P, Lazar N, Li de la Sierra I, Santos JM, Llinás M, Nessler S. Structural characterization of the ACDC domain from ApiAP2 proteins of the malaria parasite. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579679. [PMID: 38370614 PMCID: PMC10871335 DOI: 10.1101/2024.02.09.579679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The Apicomplexan AP2 (ApiAP2) proteins are the best characterized family of DNA-binding proteins in the malaria parasite. Apart from the AP2 DNA-binding domain, there is little sequence similarity between ApiAP2 proteins and no other functional domains have been extensively characterized. One protein domain, which is present in a subset of the ApiAP2 proteins, is the conserved AP2-coincident domain mostly at the C-terminus (ACDC domain). Here we solved for the first time the crystal structure of the ACDC domain from two distinct Plasmodium falciparum ApiAP2 proteins and one orthologue from P. vivax , revealing a non-canonical four-helix bundle. Despite little sequence conservation between the ACDC domains from the two proteins, the structures are remarkably similar and do not resemble that of any other known protein domains. Due to their unique protein architecture and lack of homologues in the human genome, we performed in silico docking calculations against a library of known antimalarial compounds and we identified a small molecule that can potentially bind to any Apicomplexan ACDC domain within a pocket highly conserved amongst ApiAP2 proteins. Inhibitors based on this compound would disrupt the function of the ACDC domain and thus of the ApiAP2 proteins containing it, providing a new therapeutic window for targeting the malaria parasite and other Apicomplexans.
Collapse
|
10
|
Murata Y, Nishi T, Kaneko I, Iwanaga S, Yuda M. Coordinated regulation of gene expression in Plasmodium female gametocytes by two transcription factors. eLife 2024; 12:RP88317. [PMID: 38252559 PMCID: PMC10945693 DOI: 10.7554/elife.88317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Gametocytes play key roles in the Plasmodium lifecycle. They are essential for sexual reproduction as precursors of the gametes. They also play an essential role in parasite transmission to mosquitoes. Elucidation of the gene regulation at this stage is essential for understanding these two processes at the molecular level and for developing new strategies to break the parasite lifecycle. We identified a novel Plasmodium transcription factor (TF), designated as a partner of AP2-FG or PFG. In this article, we report that this TF regulates the gene expression in female gametocytes in concert with another female-specific TF AP2-FG. Upon the disruption of PFG, majority of female-specific genes were significantly downregulated, and female gametocyte lost the ability to produce ookinetes. ChIP-seq analysis showed that it was located in the same position as AP2-FG, indicating that these two TFs form a complex. ChIP-seq analysis of PFG in AP2-FG-disrupted parasites and ChIP-seq analysis of AP2-FG in PFG-disrupted parasites demonstrated that PFG mediates the binding of AP2-FG to a ten-base motif and that AP2-FG binds another motif, GCTCA, in the absence of PFG. In promoter assays, this five-base motif was identified as another female-specific cis-acting element. Genes under the control of the two forms of AP2-FG, with or without PFG, partly overlapped; however, each form had target preferences. These results suggested that combinations of these two forms generate various expression patterns among the extensive genes expressed in female gametocytes.
Collapse
Affiliation(s)
- Yuho Murata
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| | - Tsubasa Nishi
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| | - Izumi Kaneko
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Center for Infectious Disease ControlOsakaJapan
| | - Masao Yuda
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| |
Collapse
|