1
|
Malik AA, Shariq M, Sheikh JA, Zarin S, Ahuja Y, Fayaz H, Alam A, Ehtesham NZ, Hasnain SE. Activation of the lysosomal damage response and selective autophagy: the coordinated actions of galectins, TRIM proteins, and CGAS-STING1 in providing immunity against Mycobacterium tuberculosis. Crit Rev Microbiol 2025; 51:108-127. [PMID: 38470107 DOI: 10.1080/1040841x.2024.2321494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/16/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Autophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of M. tb by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as M. tb, are essential. These include LGALS3, LGALS8, and LGALS9, which respond to endomembrane damage and regulate endomembrane damage caused by toxic chemicals, protein aggregates, and intracellular pathogens, including M. tb. They also activate selective autophagy and de novo endolysosome biogenesis. LGALS3, LGALS9, and LGALS8 interact with various components to activate autophagy and repair damage, while CGAS-STING1 plays a critical role in providing immunity against M. tb by activating selective autophagy and producing type I IFNs with antimycobacterial functions. STING1 activates cGAMP-dependent autophagy which provides immunity against various pathogens. Additionally, cytoplasmic surveillance pathways activated by ds-DNA, such as inflammasomes mediated by NLRP3 and AIM2 complexes, control M. tb. Modulation of E3-Ub ligases with small regulatory molecules of LGALSs and TRIM proteins could be a novel host-based therapeutic approach for controlling TB.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, New Delhi, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Sheeba Zarin
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, New Delhi, India
| | - Yashika Ahuja
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anwar Alam
- Department of Biotechnology, School of Science and Engineering Technology, Sharda University, Greater Noida, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
2
|
Malik AA, Shariq M, Sheikh JA, Fayaz H, Srivastava G, Thakuri D, Ahuja Y, Ali S, Alam A, Ehtesham NZ, Hasnain SE. Regulation of Type I Interferon and Autophagy in Immunity against Mycobacterium Tuberculosis: Role of CGAS and STING1. Adv Biol (Weinh) 2024; 8:e2400174. [PMID: 38977406 DOI: 10.1002/adbi.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is a significant intracellular pathogen responsible for numerous infectious disease-related deaths worldwide. It uses ESX-1 T7SS to damage phagosomes and to enter the cytosol of host cells after phagocytosis. During infection, M. tb and host mitochondria release dsDNA, which activates the CGAS-STING1 pathway. This pathway leads to the production of type I interferons and proinflammatory cytokines and activates autophagy, which targets and degrades bacteria within autophagosomes. However, the role of type I IFNs in immunity against M. tb is controversial. While previous research has suggested a protective role, recent findings from cgas-sting1 knockout mouse studies have contradicted this. Additionally, a study using knockout mice and non-human primate models uncovered a new mechanism by which neutrophils recruited to lung infections form neutrophil extracellular traps. Activating plasmacytoid dendritic cells causes them to produce type I IFNs, which interfere with the function of interstitial macrophages and increase the likelihood of tuberculosis. Notably, M. tb uses its virulence proteins to disrupt the CGAS-STING1 signaling pathway leading to enhanced pathogenesis. Investigating the CGAS-STING1 pathway can help develop new ways to fight tuberculosis.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, 110029, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Haleema Fayaz
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Gauri Srivastava
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Deeksha Thakuri
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Yashika Ahuja
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Saquib Ali
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Anwar Alam
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Seyed E Hasnain
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, 110 016, India
| |
Collapse
|
3
|
Lo TH, Weng IC, Chen HL, Liu FT. The role of galectins in the regulation of autophagy and inflammasome in host immunity. Semin Immunopathol 2024; 46:6. [PMID: 39042263 DOI: 10.1007/s00281-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Galectins, a family of glycan-binding proteins have been shown to bind a wide range of glycans. In the cytoplasm, these glycans can be endogenous (or "self"), originating from damaged endocytic vesicles, or exogenous (or "non-self"), found on the surface of invading microbial pathogens. Galectins can detect these unusual cytosolic exposures to glycans and serve as critical regulators in orchestrating immune responses in innate and adaptive immunity. This review provides an overview of how galectins modulate host cellular responses, such as autophagy, xenophagy, and inflammasome-dependent cell death program, to infection.
Collapse
Affiliation(s)
- Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hung-Lin Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Dermatology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
4
|
Guallar-Garrido S, Soldati T. Exploring host-pathogen interactions in the Dictyostelium discoideum-Mycobacterium marinum infection model of tuberculosis. Dis Model Mech 2024; 17:dmm050698. [PMID: 39037280 PMCID: PMC11552500 DOI: 10.1242/dmm.050698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis is a pathogenic mycobacterium that causes tuberculosis. Tuberculosis is a significant global health concern that poses numerous clinical challenges, particularly in terms of finding effective treatments for patients. Throughout evolution, host immune cells have developed cell-autonomous defence strategies to restrain and eliminate mycobacteria. Concurrently, mycobacteria have evolved an array of virulence factors to counteract these host defences, resulting in a dynamic interaction between host and pathogen. Here, we review recent findings, including those arising from the use of the amoeba Dictyostelium discoideum as a model to investigate key mycobacterial infection pathways. D. discoideum serves as a scalable and genetically tractable model for human phagocytes, providing valuable insights into the intricate mechanisms of host-pathogen interactions. We also highlight certain similarities between M. tuberculosis and Mycobacterium marinum, and the use of M. marinum to more safely investigate mycobacteria in D. discoideum.
Collapse
Affiliation(s)
- Sandra Guallar-Garrido
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|
5
|
Nikitopoulou I, Vassiliou AG, Athanasiou N, Jahaj E, Akinosoglou K, Dimopoulou I, Orfanos SE, Dimakopoulou V, Schinas G, Tzouvelekis A, Aidinis V, Kotanidou A. Increased Levels of Galectin-3 in Critical COVID-19. Int J Mol Sci 2023; 24:15833. [PMID: 37958814 PMCID: PMC10650562 DOI: 10.3390/ijms242115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Severe COVID-19 is related to hyperinflammation and multiple organ injury, including respiratory failure, thus requiring intensive care unit (ICU) admission. Galectin-3, a carbohydrate-binding protein exhibiting pleiotropic effects, has been previously recognized to participate in inflammation, the immune response to infections and fibrosis. The aim of this study was to evaluate the relationship between galectin-3 and the clinical severity of COVID-19, as well as assess the prognostic accuracy of galectin-3 for the probability of ICU mortality. The study included 235 COVID-19 patients with active disease, treated in two different Greek hospitals in total. Our results showed that median galectin-3 serum levels on admission were significantly increased in critical COVID-19 patients (7.2 ng/mL), as compared to the median levels of patients with less severe disease (2.9 ng/mL, p = 0.003). Galectin-3 levels of the non-survivors hospitalized in the ICU were significantly higher than those of the survivors (median 9.1 ng/mL versus 5.8 ng/mL, p = 0.001). The prognostic accuracy of galectin-3 for the probability of ICU mortality was studied with a receiver operating characteristic (ROC) curve and a multivariate analysis further demonstrated that galectin-3 concentration at hospital admission could be assumed as an independent risk factor associated with ICU mortality. Our results were validated with galectin-3 measurements in a second patient cohort from a different Greek university hospital. Our results, apart from strongly confirming and advancing previous knowledge with two patient cohorts, explore the possibility of predicting ICU mortality, which could provide useful information to clinicians. Therefore, galectin-3 seems to establish its involvement in the prognosis of hospitalized COVID-19 patients, suggesting that it could serve as a promising biomarker in critical COVID-19.
Collapse
Affiliation(s)
- Ioanna Nikitopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Alice G. Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Nikolaos Athanasiou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Edison Jahaj
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Karolina Akinosoglou
- Division of Internal Medicine, University General Hospital of Patras, 26504 Patras, Greece; (K.A.); (V.D.); (G.S.)
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Stylianos E. Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Vasiliki Dimakopoulou
- Division of Internal Medicine, University General Hospital of Patras, 26504 Patras, Greece; (K.A.); (V.D.); (G.S.)
| | - Georgios Schinas
- Division of Internal Medicine, University General Hospital of Patras, 26504 Patras, Greece; (K.A.); (V.D.); (G.S.)
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University General Hospital of Patras, 26504 Patras, Greece;
| | - Vassilis Aidinis
- Institute of Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece;
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| |
Collapse
|
6
|
Deretic V. Atg8ylation as a host-protective mechanism against Mycobacterium tuberculosis. FRONTIERS IN TUBERCULOSIS 2023; 1:1275882. [PMID: 37901138 PMCID: PMC10612523 DOI: 10.3389/ftubr.2023.1275882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Nearly two decades have passed since the first report on autophagy acting as a cell-autonomous defense against Mycobacterium tuberculosis. This helped usher a new area of research within the field of host-pathogen interactions and led to the recognition of autophagy as an immunological mechanism. Interest grew in the fundamental mechanisms of antimicrobial autophagy and in the prophylactic and therapeutic potential for tuberculosis. However, puzzling in vivo data have begun to emerge in murine models of M. tuberculosis infection. The control of infection in mice affirmed the effects of certain autophagy genes, specifically ATG5, but not of other ATGs. Recent studies with a more complete inactivation of ATG genes now show that multiple ATG genes are indeed necessary for protection against M. tuberculosis. These particular ATG genes are involved in the process of membrane atg8ylation. Atg8ylation in mammalian cells is a broad response to membrane stress, damage and remodeling of which canonical autophagy is one of the multiple downstream outputs. The current developments clarify the controversies and open new avenues for both fundamental and translational studies.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| |
Collapse
|
7
|
Morrison HM, Craft J, Rivera-Lugo R, Johnson JR, Golovkine GR, Bell SL, Dodd CE, Van Dis E, Beatty WL, Margolis SR, Repasy T, Shaker I, Lee AY, Vance RE, Stanley SA, Watson RO, Krogan NJ, Portnoy DA, Penn BH, Cox JS. Deficiency in Galectin-3, -8, and -9 impairs immunity to chronic Mycobacterium tuberculosis infection but not acute infection with multiple intracellular pathogens. PLoS Pathog 2023; 19:e1011088. [PMID: 37352334 PMCID: PMC10325092 DOI: 10.1371/journal.ppat.1011088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/06/2023] [Accepted: 05/01/2023] [Indexed: 06/25/2023] Open
Abstract
Macrophages employ an array of pattern recognition receptors to detect and eliminate intracellular pathogens that access the cytosol. The cytosolic carbohydrate sensors Galectin-3, -8, and -9 (Gal-3, Gal-8, and Gal-9) recognize damaged pathogen-containing phagosomes, and Gal-3 and Gal-8 are reported to restrict bacterial growth via autophagy in cultured cells. However, the contribution of these galectins to host resistance during bacterial infection in vivo remains unclear. We found that Gal-9 binds directly to Mycobacterium tuberculosis (Mtb) and Salmonella enterica serovar Typhimurium (Stm) and localizes to Mtb in macrophages. To determine the combined contribution of membrane damage-sensing galectins to immunity, we generated Gal-3, -8, and -9 triple knockout (TKO) mice. Mtb infection of primary macrophages from TKO mice resulted in defective autophagic flux but normal bacterial replication. Surprisingly, these mice had no discernable defect in resistance to acute infection with Mtb, Stm or Listeria monocytogenes, and had only modest impairments in bacterial growth restriction and CD4 T cell activation during chronic Mtb infection. Collectively, these findings indicate that while Gal-3, -8, and -9 respond to an array of intracellular pathogens, together these membrane damage-sensing galectins play a limited role in host resistance to bacterial infection.
Collapse
Affiliation(s)
- Huntly M. Morrison
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Julia Craft
- Department of Internal Medicine, Division of Infectious Diseases, University of California, Davis, Davis, California, United States of America
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Jeffery R. Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco; Quantitative Biosciences Institute (QBI), University of California, San Francisco; Gladstone Institutes, San Francisco, California, United States of America
| | - Guillaume R. Golovkine
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Samantha L. Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of Medicine, Bryan, Texas, United States of America
| | - Claire E. Dodd
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Erik Van Dis
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shally R. Margolis
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Teresa Repasy
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Isaac Shaker
- Department of Internal Medicine, Division of Infectious Diseases, University of California, Davis, Davis, California, United States of America
| | - Angus Y. Lee
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, California, United States of America
| | - Russell E. Vance
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah A. Stanley
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, California, United States of America
| | - Robert O. Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of Medicine, Bryan, Texas, United States of America
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco; Quantitative Biosciences Institute (QBI), University of California, San Francisco; Gladstone Institutes, San Francisco, California, United States of America
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Bennett H. Penn
- Department of Internal Medicine, Division of Infectious Diseases, University of California, Davis, Davis, California, United States of America
| | - Jeffery S. Cox
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|