1
|
Chen F, Guo S, Li Y, Lu Y, Liu L, Chen S, An J, Zhang G. Fusobacterium nucleatum-driven CX3CR1 + PD-L1 + phagocytes route to tumor tissues and reshape tumor microenvironment. Gut Microbes 2025; 17:2442037. [PMID: 39710592 DOI: 10.1080/19490976.2024.2442037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
The intracellular bacterium Fusobacterium nucleatum (Fn) mediates tumorigenesis and progression in colorectal cancer (CRC). However, the origin of intratumoral Fn and the role of Fn-infected immunocytes in the tumor microenvironment remain unclear. Here, we observed that Fn-infected neutrophils/macrophages (PMNs/MΦs), especially PMNs, accumulate in tumor tissues and fecal Fn abundance correlates positively with an abundance of blood PD-L1+ PMNs in CRC patients. Moreover, Fn accumulates in tumor tissues of tumor-bearing mice via intragingival infection and intravenous injection. Mechanistically, Fn can survive inside PMNs by reducing intracellular ROS levels and producing H2S. Specifically, the lysozyme inhibitor Fn1792 as a novel virulence factor of Fn suppressed apoptosis of phagocytes by inducing CX3CR1 expression. Furthermore, Fn-driven CX3CR1+PD-L1+ phagocytes transfer intracellular Fn to tumor cells, which recruit PMNs/MΦs through the CXCL2/8-CXCR2 and CCL5/CCR5 axes. Consequently, CX3CR1+PD-L1+ PMNs infiltration promotes CRC metastasis and weakens the efficacy of immunotherapy. Treatment with the doxycycline eradicated intracellular Fn, thereby reducing the CX3CR1+PD-L1+ PMNs populations and slowing Fn-promoted tumor growth and metastasis in mice. These results suggest phagocytes as Fn-presenting cells use mutualistic strategies to home to tumor tissues and induce immunosuppression, and treatment with ROS-enhanced antibiotics can inhibit Fn-positive tumor progression.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Songhe Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yiqiu Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongfan Lu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Le Liu
- Department of Gastroenterology, Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shengxin Chen
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Jun An
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Qin F, Zheng H, Wu J, Liu Z, Zheng Y, Yang X, Chen J, Deng W, Luo Z, Tan J, Cai W, Jian B, Zeng Y, Qin X, Liao H. APOC1 expressed in macrophages promotes the pulmonary metastasis of colorectal cancer via CCL2/CCL5. Int Immunopharmacol 2025; 154:114611. [PMID: 40194454 DOI: 10.1016/j.intimp.2025.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/16/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Metastasis is the main cause of death in colorectal cancer (CRC), and the lungs are common sites of metastasis. However, there is little effective target to intervene colorectal cancer pulmonary metastasis (CCPM), especially on its unique immune microenvironment. In this study, sixteen genes were identified as core CCPM-related differentially expressed genes (DEGs) between CRC and CCPM. Three genes including Apolipoprotein C1 (APOC1) were associated with prognosis, stage and metastasis of CRC. In immunohistochemistry, APOC1 was mainly expressed in macrophages, and expressed more in CCPM than CRC. Patients with synchronous CCPM, higher stage, poorer OS and CCPM-free interval tended to have higher expression. In experiments in vitro, knockdown of APOC1 in macrophages reduced the migration, invasion, and epithelial-mesenchymal transition of CRC cells. Knockdown of APOC1 in macrophages significantly decreased secretion of chemokines like CCL2 and CCL5. The pro-metastatic effect of macrophages expressing APOC1 was partially blocked by the antibodies of CCL2 and CCL5. Activation of STAT3 was a key process in APOC1's regulation of CCL2 and CCL5. In experiments in vivo, knockdown of APOC1 in macrophages reduced pulmonary metastasis. To conclude, APOC1 is one of core CCPM-related DEGs and associated with the metastasis and survival of CRC. Macrophages expressing APOC1 promote the CCPM by APOC1-STAT3-CCL2/CCL5 axis. APOC1 and macrophages expressing APOC1 play vital roles and may be potential therapeutic targets in CCPM.
Collapse
Affiliation(s)
- Fei Qin
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Haosheng Zheng
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jiayan Wu
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zui Liu
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yuzhen Zheng
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xingping Yang
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Junguo Chen
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Weihao Deng
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Ziyin Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jian Tan
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Weijie Cai
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Bozhu Jian
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yushuai Zeng
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xianyu Qin
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| | - Hongying Liao
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
3
|
Nakatsu G, Ko D, Michaud M, Franzosa EA, Morgan XC, Huttenhower C, Garrett WS. Virulence factor discovery identifies associations between the Fic gene family and Fap2 + fusobacteria in colorectal cancer microbiomes. mBio 2025; 16:e0373224. [PMID: 39807864 PMCID: PMC11796403 DOI: 10.1128/mbio.03732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Fusobacterium is a bacterium associated with colorectal cancer (CRC) tumorigenesis, progression, and metastasis. Fap2 is a fusobacteria-specific outer membrane galactose-binding lectin that mediates Fusobacterium adherence to and invasion of CRC tumors. Advances in omics analyses provide an opportunity to profile and identify microbial genomic features that correlate with the cancer-associated bacterial virulence factor Fap2. Here, we analyze genomes of Fusobacterium colon tumor isolates and find that a family of post-translational modification enzymes containing Fic domains is associated with Fap2 positivity in these strains. We demonstrate that Fic family genes expand with the presence of Fap2 in the fusobacterial pangenome. Through comparative genomic analysis, we find that Fap2+ Fusobacteriota are highly enriched with Fic gene families compared to other cancer-associated and human gut microbiome bacterial taxa. Using a global data set of CRC shotgun metagenomes, we show that fusobacterial Fic and Fap2 genes frequently co-occur in the fecal microbiomes of individuals with late-stage CRC. We further characterize specific Fic gene families harbored by Fap2+ Fusobacterium animalis genomes and detect recombination events and elements of horizontal gene transfer via synteny analysis of Fic gene loci. Exposure of a F. animalis strain to a colon adenocarcinoma cell line increases gene expression of fusobacterial Fic and virulence-associated adhesins. Finally, we demonstrate that Fic proteins are synthesized by F. animalis as Fic peptides are detectable in F. animalis monoculture supernatants. Taken together, our study uncovers Fic genes as potential virulence factors in Fap2+ fusobacterial genomes.IMPORTANCEAccumulating data support that bacterial members of the intra-tumoral microbiota critically influence colorectal cancer progression. Yet, relatively little is known about non-adhesin fusobacterial virulence factors that may influence carcinogenesis. Our genomic analysis and expression assays in fusobacteria identify Fic domain-containing genes, well-studied virulence factors in pathogenic bacteria, as potential fusobacterial virulence features. The Fic family proteins that we find are encoded by fusobacteria and expressed by Fusobacterium animalis merit future investigation to assess their roles in colorectal cancer development and progression.
Collapse
Affiliation(s)
- Geicho Nakatsu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
| | - Duhyun Ko
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
| | - Monia Michaud
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
| | - Eric A. Franzosa
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Xochitl C. Morgan
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Curtis Huttenhower
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Wendy S. Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Xu J, Wu X, Yang L, Xu X. The intervention of B. longum metabolites in Fnevs' carcinogenic capacity: A potential double-edged sword. Exp Cell Res 2025; 445:114407. [PMID: 39793748 DOI: 10.1016/j.yexcr.2025.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant tumors globally. Fusobacterium nucleatum and its metabolites are effective biological targets for colon cancer promotion. Probiotics such as Bifidobacterium can block the occurrence and development of CRC by regulating the host intestinal mucosal immunity, eliminating carcinogens, and interfering with tumor cell proliferation and apoptosis. We selected six Bifidobacterium species to explore the inhibitory effect of their cell-free supernatant (CFS) on Fusobacterium nucleatum, and screened the best functional strain Bifidobacterium longum (B. longum) to explore its intervention effect on Fnevs infection of CRC cells. In the genus Bifidobacterium, B. longum-CFS can effectively inhibit the growth and membrane formation of Fusobacterium nucleatum. The metabolites of B. longum can inhibit the proliferation, migration and invasion of Fnevs-infected CRC cells. However, the transcriptomic analysis of Fnevs-infected CRC cells treated with Bl-CFS revealed that Bl-CFS exerted inhibitory effects on the expression of specific oncogenes (e.g., Myc, IL16, KCNN2, ACSBG1, Pum1, MET, NR5A2), while simultaneously promoting the expression of other oncogenes. This modulation potentially enhances the proliferation, epithelial-mesenchymal transition (EMT), stemness properties and other characteristics associated with CRC cells. Metabolomics also showed that Bl-CFS altered organic acid and lipid metabolism in Fnevs-infected CRC cells, and switched energy supply from aerobic glucose metabolism (TCA cycle) to anaerobic glycolysis, which increased the malignancy potential of CRC cells. The observed outcome may be attributed to the presence of both probiotics and toxic substances in the metabolites derived from Bifidobacterium longum. Therefore, this study concludes that the anti-colorectal cancer (CRC) effect of natural metabolites derived from Bifidobacterium longum is limited. Future investigations should focus on refining these natural substances and optimizing their composition ratios to extract their essence while eliminating impurities, thereby obtaining anticancer biologics with exceptional and consistent efficacy.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Xinyu Wu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, PR China.
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Li T, Zhao Z, Peng M, Zhang L, Wang C, Luo F, Zeng M, Sun K, Fang Z, Luo Y, Xie Y, Lv C, Wang J, Huang JD, Zhou H, Sun H. Multi-omics analysis reveals the interplay between intratumoral bacteria and glioma. mSystems 2025; 10:e0045724. [PMID: 39660865 PMCID: PMC11748541 DOI: 10.1128/msystems.00457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Emerging evidence highlights the potential impact of intratumoral microbiota on cancer. However, the microbial composition and function in glioma remains elusive. Consequently, our study aimed to investigate the microbial community composition in glioma tissues and elucidate its role in glioma development. We parallelly performed microbial profiling, transcriptome sequencing, and metabolomics detection on tumor and adjacent normal brain tissues obtained from 50 glioma patients. We employed immunohistochemistry, multicolor immunofluorescence, and fluorescence in situ hybridization (FISH) staining to observe the presence and location of bacteria. Furthermore, an animal model was employed to validate the impact of key bacteria on glioma development. Six genera were found to be significantly enriched in glioma tissues compared to adjacent normal brain tissues, including Fusobacterium, Longibaculum, Intestinimonas, Pasteurella, Limosilactobacillus, and Arthrobacter. Both bacterial RNA and lipopolysaccharides (LPS) were observed in glioma tissues. Integrated microbiomics, transcriptomics, and metabolomics revealed that genes associated with intratumoral microbes were enriched in multiple synapse-associated pathways and that metabolites associated with intratumoral microbes were (R)-N-methylsalsolinol, N-acetylaspartylglutamic acid, and N-acetyl-l-aspartic acid. Further mediation analysis suggested that the intratumoral microbiome may affect the expression of neuron-related genes through bacteria-associated metabolites. In addition, both in vivo and in vitro models of glioma show that Fusobacterium nucleatum promotes glioma proliferation and upregulates CCL2, CXCL1, and CXCL2 levels. Our findings shed light on the intricate interplay between intratumoral bacteria and glioma. IMPORTANCE Our study adopted a multi-omics approach to unravel the impact of intratumoral microbes on neuron-related gene expression through bacteria-associated metabolites. Importantly, we found bacterial RNA and LPS signals within glioma tissues, which were traditionally considered sterile. We identified key microbiota within glioma tissues, including Fusobacterium nucleatum (Fn). Through in vivo and in vitro experiments, we identified the crucial role of Fn in promoting glioma progression, suggesting that Fn could be a potential diagnostic and therapeutic target for glioma patients. These findings offer valuable insights into the intricate interplay between intratumoral bacteria and glioma, offering novel inspiration to the realm of glioma biology.
Collapse
Affiliation(s)
- Ting Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanyi Zhao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Meichang Peng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Feiyang Luo
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kaijian Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhencheng Fang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunhao Luo
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yugu Xie
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cui Lv
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxuan Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Dong Huang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hongwei Zhou
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Chiscuzzu F, Crescio C, Varrucciu S, Rizzo D, Sali M, Delogu G, Bussu F. Current Evidence on the Relation Between Microbiota and Oral Cancer-The Role of Fusobacterium nucleatum-A Narrative Review. Cancers (Basel) 2025; 17:171. [PMID: 39857953 PMCID: PMC11763498 DOI: 10.3390/cancers17020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one the most prevalent head and neck cancers and represents a major cause of morbidity and mortality worldwide. The main established risk factors for OSCC include tobacco and alcohol consumption and betel quid chewing, which may contribute alone or in combination with other environmental factors to carcinogenesis. The oral microbiota is emerging as a key player in the establishment of the molecular and cellular mechanisms that may trigger or promote carcinogenesis, including in the oral cavity. Among the bacterial species found in the oral microbiota, Fusobacterium nucleatum, an anaerobic bacterium commonly found in oral biofilms and a periodontal pathogen, has gained attention due to solid evidence implicating F. nucleatum in colorectal cancer (CRC). F. nucleatum has been shown to induce chronic inflammation, promote cell proliferation and trigger cellular invasion while deploying immune evasion mechanisms. These experimental findings were first obtained in in vitro and in vivo models of CRC and are being confirmed in studies on OSCC. In this review, we summarize the most recent findings on the role of F. nucleatum in OSCC, discuss the clinical implications in terms of prognosis and provide an overview of the key mechanisms involved. Moreover, we identify research questions and aspects that require investigations to clarify the role of F. nucleatum in OSCC. We anticipate that studies in this emerging field may have a significant clinical impact on the diagnosis, prognosis and management of OSCC.
Collapse
Affiliation(s)
| | - Claudia Crescio
- Otolaryngology Division, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy; (D.R.); (F.B.)
| | - Simona Varrucciu
- Department of Medicine Surgery and Pharmacy, Sassari University, 07100 Sassari, Italy;
| | - Davide Rizzo
- Otolaryngology Division, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy; (D.R.); (F.B.)
- Department of Medicine Surgery and Pharmacy, Sassari University, 07100 Sassari, Italy;
| | - Michela Sali
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Department of Laboratory and Infectivology Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Delogu
- Mater Olbia Hospital, 07026 Olbia, Italy; (F.C.); (G.D.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco Bussu
- Otolaryngology Division, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy; (D.R.); (F.B.)
- Department of Medicine Surgery and Pharmacy, Sassari University, 07100 Sassari, Italy;
| |
Collapse
|
7
|
Luo W, Han J, Peng X, Zhou X, Gong T, Zheng X. The role of Fusobacterium nucleatum in cancer and its implications for clinical applications. Mol Oral Microbiol 2024; 39:417-432. [PMID: 38988217 DOI: 10.1111/omi.12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
Fusobacterium nucleatum, a gram-negative anaerobic bacterium abundantly found in the human oral cavity, is widely recognized as a key pathobiont responsible for the initiation and progression of periodontal diseases due to its remarkable aggregative capabilities. Numerous clinical studies have linked F. nucleatum with unfavorable prognostic outcomes in various malignancies. In further research, scholars have partially elucidated the mechanisms underlying F. nucleatum's impact on various types of cancer, thus gaining a certain comprehension of the role played by F. nucleatum in cancer. In this comprehensive review, we present an in-depth synthesis of the interplay between F. nucleatum and different cancers, focusing on aspects such as tumor initiation, metastasis, chemoresistance, and modulation of the tumor immune microenvironment and immunotherapy. The implications for cancer diagnosis and treatment are also summarized. The objective of this review is to enhance our comprehension of the intricate relationship between F. nucleatum and oncogenic pathogenesis, while emphasizing potential therapeutic strategies.
Collapse
Affiliation(s)
- Wanyi Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Juxi Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Tao Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
8
|
Liu S, Yin J, Wan D, Yin Y. The Role of Iron in Intestinal Mucus: Perspectives from Both the Host and Gut Microbiota. Adv Nutr 2024; 15:100307. [PMID: 39341502 PMCID: PMC11533511 DOI: 10.1016/j.advnut.2024.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
Although research on the role of iron in host immunity has a history spanning decades, it is only relatively recently that attention has been directed toward the biological effects of iron on the intestinal mucus layer, prompted by an evolving understanding of the role of this material in immune defense. The mucus layer, secreted by intestinal goblet cells, covers the intestinal epithelium, and given its unique location, interactions between the host and gut microbiota, as well as among constituent microbiota, occur frequently within the mucus layer. Iron, as an essential nutrient for the vast majority of life forms, regulates immune responses from both the host and microbial perspectives. In this review, we summarize the iron metabolism of both the host and gut microbiota and describe how iron contributes to intestinal mucosal homeostasis via the intestinal mucus layer with respect to both host and constituent gut microbiota. The findings described herein offer a new perspective on iron-mediated intestinal mucosal barrier function.
Collapse
Affiliation(s)
- Shuan Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Guo S, Xing S, Wu Z, Chen F, Pan X, Li Q, Liu W, Zhang G. Leucine restriction ameliorates Fusobacterium nucleatum-driven malignant progression and radioresistance in nasopharyngeal carcinoma. Cell Rep Med 2024; 5:101753. [PMID: 39357525 PMCID: PMC11513822 DOI: 10.1016/j.xcrm.2024.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/19/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Radiotherapy resistance is the main cause of treatment failure among patients with nasopharyngeal carcinoma (NPC). Recently, increasing evidence has linked the presence of intratumoral Fusobacterium nucleatum (Fn) with the malignant progression and therapeutic resistance of multiple tumor types, but its influence on NPC has remained largely unknown. We found that Fn is prevalent in the tumor tissue of patients with NPC and is associated with radioresistance. Fn invaded and proliferated inside NPC cells and aggravated tumor progression. Mechanistically, Fn slowed mitochondrial dysfunction by promoting mitochondrial fusion and decreasing ROS generation, preventing radiation-induced oxidative damage. Fn inhibited PANoptosis by the SLC7A5/leucine-mTORC1 axis during irradiation stress, thus promoting radioresistance. Treatment with the mitochondria-targeted antibiotics or dietary restriction of leucine reduced intratumoral Fn load, resensitizing tumors to radiotherapy in vivo. These findings demonstrate that Fn has the potential to be a predictive marker for radioresistance and to help guide individualized treatment for patients with NPC.
Collapse
Affiliation(s)
- Songhe Guo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Shan Xing
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - ZhenYu Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Fangfang Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xiaoyun Pan
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Qifan Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Wanli Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China.
| |
Collapse
|
10
|
Shi Z, Li Z, Zhang M. Emerging roles of intratumor microbiota in cancer: tumorigenesis and management strategies. J Transl Med 2024; 22:837. [PMID: 39261861 PMCID: PMC11391643 DOI: 10.1186/s12967-024-05640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
The intricate interplay between the host and its microbiota has garnered increasing attention in the past decade. Specifically, the emerging recognition of microorganisms within diverse cancer tissues, previously presumed sterile, has ignited a resurgence of enthusiasm and research endeavors. Four potential migratory routes have been identified as the sources of intratumoral microbial "dark matter," including direct invasion of mucosal barriers, spreading from normal adjacent tissue, hematogenous spread, and lymphatic drainage, which contribute to the highly heterogeneous features of intratumor microbiota. Importantly, multitudes of studies delineated the roles of intratumor microbiota in cancer initiation and progression, elucidating underlying mechanisms such as genetic alterations, epigenetic modifications, immune dysfunctions, activating oncogenic pathways, and inducing metastasis. With the deepening understanding of intratumoral microbial composition, novel microbiota-based strategies for early cancer diagnosis and prognostic stratification continue to emerge. Furthermore, intratumor microbiota exerts significant influence on the efficacy of cancer therapeutics, particularly immunotherapy, making it an enticing target for intervention in cancer treatment. In this review, we present a comprehensive discussion of the current understanding pertaining to the developmental history, heterogeneous profiles, underlying originations, and carcinogenic mechanisms of intratumor microbiota, and uncover its potential predictive and intervention values, as well as several inevitable challenges as a target for personalized cancer management strategies.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China.
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China.
| |
Collapse
|
11
|
Yu R, Wang S, Han L. Relevance of harmful intratumoral microbiota in cancer progression and its clinical application. Biomed Pharmacother 2024; 178:117238. [PMID: 39106707 DOI: 10.1016/j.biopha.2024.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024] Open
Abstract
Microorganisms are closely related to human health, and changes in the microbiome can lead to the occurrence of diseases. With advances in sequencing technology and research, it has been discovered that intratumoral microbiota exists in various cancer tissues and differs in various cancers. Microorganism can colonize tumor tissues through intestine of damaged mucosal barrier, proximity to normal tissues and bloodstream circulation. Increasing evidence suggests that intratumoral microbiota promotes tumor progression by increasing genomic instability, affecting host immune systems, promoting tumor migration, and regulating tumor signaling pathways. This review article summarizes the latest progress in intratumoral microbiome research, including the development history of intratumoral microbiota, their composition and sources within tumors, their distribution in various cancer tissues, as well as their role in cancer development. Furthermore, the application of intratumoral microbiota in clinical settings is emphasized and we innovatively summarize the clinical trials involving microbial applications for cancer diagnosis and treatment across different countries.
Collapse
Affiliation(s)
- Runze Yu
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
12
|
Peng F, Hu M, Su Z, Hu L, Guo L, Yang K. Intratumoral Microbiota as a Target for Advanced Cancer Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405331. [PMID: 39054925 DOI: 10.1002/adma.202405331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Indexed: 07/27/2024]
Abstract
In recent years, advancements in microbial sequencing technology have sparked an increasing interest in the bacteria residing within solid tumors and its distribution and functions in various tumors. Intratumoral bacteria critically modulate tumor oncogenesis and development through DNA damage induction, chronic inflammation, epigenetic alterations, and metabolic and immune regulation, while also influencing cancer treatment efficacy by affecting drug metabolism. In response to these discoveries, a variety of anti-cancer therapies targeting these microorganisms have emerged. These approaches encompass oncolytic therapy utilizing tumor-associated bacteria, the design of biomaterials based on intratumoral bacteria, the use of intratumoral bacterial components for drug delivery systems, and comprehensive strategies aimed at the eradication of tumor-promoting bacteria. Herein, this review article summarizes the distribution patterns of bacteria in different solid tumors, examines their impact on tumors, and evaluates current therapeutic strategies centered on tumor-associated bacteria. Furthermore, the challenges and prospects for developing drugs that target these bacterial communities are also explored, promising new directions for cancer treatment.
Collapse
Affiliation(s)
- Fei Peng
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Mengyuan Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyue Su
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Kai Yang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
13
|
Salim F, Mizutani S, Shiba S, Takamaru H, Yamada M, Nakajima T, Yachida T, Soga T, Saito Y, Fukuda S, Yachida S, Yamada T. Fusobacterium species are distinctly associated with patients with Lynch syndrome colorectal cancer. iScience 2024; 27:110181. [PMID: 38993678 PMCID: PMC11237946 DOI: 10.1016/j.isci.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024] Open
Abstract
Accumulating evidence demonstrates clear correlation between the gut microbiota and sporadic colorectal cancer (CRC). Despite this, there is limited understanding of the association between the gut microbiota and CRC in Lynch Syndrome (LS), a hereditary type of CRC. Here, we analyzed fecal shotgun metagenomic and targeted metabolomic of 71 Japanese LS subjects. A previously published Japanese sporadic CRC cohort, which includes non-LS controls, was utilized as a non-LS cohort (n = 437). LS subjects exhibited reduced microbial diversity and low-Faecalibacterium enterotypes compared to non-LS. Patients with LS-CRC had higher levels of Fusobacterium nucleatum and fap2. Differential fecal metabolites and functional genes suggest heightened degradation of lysine and arginine in LS-CRC. A comparison between LS and non-LS subjects prior to adenoma formation revealed distinct fecal metabolites of LS subjects. These findings suggest that the gut microbiota plays a more responsive role in CRC tumorigenesis in patients with LS than those without LS.
Collapse
Affiliation(s)
- Felix Salim
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Sayaka Mizutani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Satoshi Shiba
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroyuki Takamaru
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku 104-0045, Tokyo, Japan
| | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku 104-0045, Tokyo, Japan
| | - Takeshi Nakajima
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku 104-0045, Tokyo, Japan
| | - Tatsuo Yachida
- Department of Gastroenterology & Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku 104-0045, Tokyo, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa 210-0821, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Metagen, Inc., Tsuruoka, Yamagata 997-0052, Japan
- Metagen Theurapeutics, Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
- Metagen, Inc., Tsuruoka, Yamagata 997-0052, Japan
- Metagen Theurapeutics, Inc., Tsuruoka, Yamagata 997-0052, Japan
- digzyme, Inc., Minato-ku, Tokyo 105-0004, Japan
| |
Collapse
|
14
|
Yu LC, Li YP, Xin YM, Mao M, Pan YX, Qu YX, Luo ZD, Zhang Y, Zhang X. Application of Fusobacterium nucleatum as a biomarker in gastrointestinal malignancies. World J Gastrointest Oncol 2024; 16:2271-2283. [PMID: 38994170 PMCID: PMC11236247 DOI: 10.4251/wjgo.v16.i6.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
The morbidity and mortality of gastrointestinal (GI) malignancies are among the highest in the world, posing a serious threat to human health. Because of the insidious onset of the cancer, it is difficult for patients to be diagnosed at an early stage, and it rapidly progresses to an advanced stage, resulting in poor treatment and prognosis. Fusobacterium nucleatum (F. nucleatum) is a gram-negative, spore-free anaerobic bacterium that primarily colonizes the oral cavity and is implicated in the development of colorectal, esophageal, gastric, and pancreatic cancers via various intricate mechanisms. Recent development in novel research suggests that F. nucleatum may function as a biomarker in GI malignancies. Detecting the abundance of F. nucleatum in stool, saliva, and serum samples of patients may aid in the diagnosis, risk assessment, and prognosis monitoring of GI malignancies. This editorial systematically describes the biological roles and mechanisms of F. nucleatum in GI malignancies focusing on the application of F. nucleatum as a biomarker in the diagnosis and prognosis of GI malignancies to promote the clinical translation of F. nucleatum and GI tumors-related research.
Collapse
Affiliation(s)
- Long-Chen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Ya-Ping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yue-Ming Xin
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Mai Mao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Ya-Xin Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yi-Xuan Qu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Zheng-Dong Luo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| |
Collapse
|
15
|
Chen Z, Huang L. Fusobacterium nucleatum carcinogenesis and drug delivery interventions. Adv Drug Deliv Rev 2024; 209:115319. [PMID: 38643839 PMCID: PMC11459907 DOI: 10.1016/j.addr.2024.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/16/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The microbiome has emerged as a significant biomarker and modulator in cancer development and treatment response. Recent research highlights the notable role of Fusobacterium nucleatum (F. nucleatum) in various tumor types, including breast, colorectal, esophageal, gastric, pancreatic, and lung cancers. Accumulating evidence suggests that the local microbial community forms an integral component of the tumor microenvironment, with bacterial communities within tumors displaying specificity to tumor types. Mechanistic investigations indicate that tumor-associated microbiota can directly influence tumor initiation, progression, and responses to chemotherapy or immunotherapy. This article presents a comprehensive review of microbial communities especially F. nucleatum in tumor tissue, exploring their roles and underlying mechanisms in tumor development, treatment, and prevention. When the tumor-associated F. nucleatum is killed, the host immune response is activated to recognize tumor cells. Bacteria epitopes restricted by the host antigens, can be identified for future anti-bacteria/tumor vaccine development.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, NC 27599, United States
| | - Leaf Huang
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, NC 27599, United States.
| |
Collapse
|
16
|
Fan S, Zhou L, Zhang W, Wang D, Tang D. Role of imbalanced gut microbiota in promoting CRC metastasis: from theory to clinical application. Cell Commun Signal 2024; 22:232. [PMID: 38637851 PMCID: PMC11025274 DOI: 10.1186/s12964-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
Metastasis poses a major challenge in colorectal cancer (CRC) treatment and remains a primary cause of mortality among patients with CRC. Recent investigations have elucidated the involvement of disrupted gut microbiota homeostasis in various facets of CRC metastasis, exerting a pivotal influence in shaping the metastatic microenvironment, triggering epithelial-mesenchymal transition (EMT), and so on. Moreover, therapeutic interventions targeting the gut microbiota demonstrate promise in enhancing the efficacy of conventional treatments for metastatic CRC (mCRC), presenting novel avenues for mCRC clinical management. Grounded in the "seed and soil" hypothesis, this review consolidates insights into the mechanisms by which imbalanced gut microbiota promotes mCRC and highlights recent strides in leveraging gut microbiota modulation for the clinical prevention and treatment of mCRC. Emphasis is placed on the considerable potential of manipulating gut microbiota within clinical settings for managing mCRC.
Collapse
Affiliation(s)
- Shiying Fan
- Clinical Medical College, Yangzhou University, 225000, Yangzhou, P. R. China
| | - Lujia Zhou
- Clinical Medical College, Yangzhou University, 225000, Yangzhou, P. R. China
| | - Wenjie Zhang
- School of Medicine, Chongqing University, 400030, Chongqing, P. R. China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, 225000, Yangzhou, P. R. China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, 225000, Yangzhou, P. R. China.
| |
Collapse
|
17
|
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, Zhou M, Lv Z, Wang S, Jin Y. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther 2024; 9:15. [PMID: 38195689 PMCID: PMC10776793 DOI: 10.1038/s41392-023-01693-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes. Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.
Collapse
Affiliation(s)
- Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daquan Meng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Mengmeng Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
18
|
Krieger M, Guo M, Merritt J. Reexamining the role of Fusobacterium nucleatum subspecies in clinical and experimental studies. Gut Microbes 2024; 16:2415490. [PMID: 39394990 PMCID: PMC11486156 DOI: 10.1080/19490976.2024.2415490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
The Gram-negative anaerobic species Fusobacterium nucleatum was originally described as a commensal organism from the human oral microbiome. However, it is now widely recognized as a key inflammophilic pathobiont associated with a wide variety of oral and extraoral diseases. Historically, F. nucleatum has been classified into four subspecies that have been generally considered as functionally interchangeable in their pathogenic potential. Recent studies have challenged this notion, as clinical data reveal a highly biased distribution of F. nucleatum subspecies within disease sites of both inflammatory oral diseases and various malignancies. This review details the historical basis for the F. nucleatum subspecies designations and summarizes our current understanding of the similarities and distinctions between these organisms to provide important context for future clinical and laboratory studies of F. nucleatum.
Collapse
Affiliation(s)
- Madeline Krieger
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Mingzhe Guo
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| |
Collapse
|
19
|
Li Y, Xing S, Chen F, Li Q, Dou S, Huang Y, An J, Liu W, Zhang G. Intracellular Fusobacterium nucleatum infection attenuates antitumor immunity in esophageal squamous cell carcinoma. Nat Commun 2023; 14:5788. [PMID: 37723150 PMCID: PMC10507087 DOI: 10.1038/s41467-023-40987-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/16/2023] [Indexed: 09/20/2023] Open
Abstract
Currently, the influence of the tumor microbiome on the effectiveness of immunotherapy remains largely unknown. Intratumoural Fusobacterium nucleatum (Fn) functions as an oncogenic bacterium and can promote tumor progression in esophageal squamous cell carcinoma (ESCC). Our previous study revealed that Fn is a facultative intracellular bacterium and that its virulence factor Fn-Dps facilitates the intracellular survival of Fn. In this study, we find that Fn DNA is enriched in the nonresponder (NR) group among ESCC patients receiving PD-1 inhibitor and that the serum antibody level of Fn is significantly higher in the NR group than in the responder (R) group. In addition, Fn infection has an opposite impact on the efficacy of αPD-L1 treatment in animals. Mechanistically, we confirm that Fn can inhibit the proliferation and cytokine secretion of T cells and that Fn-Dps binds to the PD-L1 gene promoter activating transcription factor-3 (ATF3) to transcriptionally upregulate PD-L1 expression. Our results suggest that it may be an important therapeutic strategy to eradicate intratumoral Fn infection before initiating ESCC immunotherapies.
Collapse
Affiliation(s)
- Yiqiu Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shan Xing
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fangfang Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qifan Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuheng Dou
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuying Huang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun An
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Yuedong Hospital, Guangzhou, China.
| | - Wanli Liu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
20
|
Gong D, Adomako-Bonsu AG, Wang M, Li J. Three specific gut bacteria in the occurrence and development of colorectal cancer: a concerted effort. PeerJ 2023; 11:e15777. [PMID: 37554340 PMCID: PMC10405800 DOI: 10.7717/peerj.15777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Colorectal cancer (CRC), which develops from the gradual evolution of tubular adenomas and serrated polyps in the colon and rectum, has a poor prognosis and a high mortality rate. In addition to genetics, lifestyle, and chronic diseases, intestinal integrity and microbiota (which facilitate digestion, metabolism, and immune regulation) could promote CRC development. For example, enterotoxigenic Bacteroides fragilis, genotoxic Escherichia coli (pks+ E. coli), and Fusobacterium nucleatum, members of the intestinal microbiota, are highly correlated in CRC. This review describes the roles and mechanisms of these three bacteria in CRC development. Their interaction during CRC initiation and progression has also been proposed. Our view is that in the precancerous stage of colorectal cancer, ETBF causes inflammation, leading to potential changes in intestinal ecology that may provide the basic conditions for pks+ E. coli colonization and induction of oncogenic mutations, when cancerous intestinal epithelial cells can further recruit F. nucleatum to colonise the lesion site and F. nucleatum may contribute to CRC advancement by primarily the development of cancer cells, stemization, and proliferation, which could create new and tailored preventive, screening and therapeutic interventions. However, there is the most dominant microbiota in each stage of CRC development, not neglecting the possibility that two or even all three bacteria could be engaged at any stage of the disease. The relationship between the associated gut microbiota and CRC development may provide important information for therapeutic strategies to assess the potential use of the associated gut microbiota in CRC studies, antibiotic therapy, and prevention strategies.
Collapse
Affiliation(s)
- Dengmei Gong
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Amma G Adomako-Bonsu
- Institute of Toxicology and Pharmacology, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Maijian Wang
- Gastrointestinal Surgery, Affiliate Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jida Li
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|