1
|
Zhou M, Zhang X, Chen S, Xin Z, Zhang J. Non-coding RNAs and regulatory networks involved in the Ameson portunus (Microsporidia)-Portunus trituberculatus interaction. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110162. [PMID: 39884408 DOI: 10.1016/j.fsi.2025.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Ameson portunus, the causative agent of "toothpaste disease" in Portunus trituberculatus and "slurry-like syndrome" in Scylla paramamosain, has resulted in considerable economic losses in the marine crab aquaculture industry in China. Practical control strategies are yet unavailable. Non-coding RNAs (ncRNAs) are crucial components of gene regulation of intracellular parasites, however, their roles in regulating the microsporidia-host interaction remain limited. Here we conducted a whole-transcriptome RNA-seq analysis to identify ncRNAs and to establish the interaction regulatory networks to get further insights into the A. portunus-P. trituberculatus interaction. Totally, 2805 mRNAs, 484 lncRNAs, 5 circRNAs, and 496 miRNAs were identified from A. portunus. These ncRNAs are possibly important regulators for its own energy and substrate metabolism, thereby supporting the intracellular survival and proliferation of A. portunus. DNA replication-associated mRNAs were significantly up-regulated after P. trituberculatus infection with A. portunus. It can be hypothesized that up-regulated lncRNAs may be responsible for the up-regulation of these DNA replication-related genes by miRNAs in P. trituberculatus. The downregulation of metabolic pathways is one of possible strategies of P. trituberculatus to respond the infection of A. portunus. Cross-species miRNAs were suggested to play important roles in the cross-talk of P. trituberculatus-A. portunus, e.g. the disruption of the cytoskeletal organization and normal cell function of host by this microsporidian. The results enrich the knowledge of ncRNAs in microsporidia and offer new insights into microsporidia-host interactions.
Collapse
Affiliation(s)
- Min Zhou
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Xintong Zhang
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Shuqi Chen
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Zhaozhe Xin
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Jinyong Zhang
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Ang'ang'o LM, Herren JK, Tastan Bishop Ö. Bioinformatics analysis of the Microsporidia sp. MB genome: a malaria transmission-blocking symbiont of the Anopheles arabiensis mosquito. BMC Genomics 2024; 25:1132. [PMID: 39578727 PMCID: PMC11585130 DOI: 10.1186/s12864-024-11046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The use of microsporidia as a disease-transmission-blocking tool has garnered significant attention. Microsporidia sp. MB, known for its ability to block malaria development in mosquitoes, is an optimal candidate for supplementing malaria vector control methods. This symbiont, found in Anopheles mosquitoes, can be transmitted both vertically and horizontally with minimal effects on its mosquito host. Its genome, recently sequenced from An. arabiensis, comprises a compact 5.9 Mbp. RESULTS Here, we analyze the Microsporidia sp. MB genome, highlighting its major genomic features, gene content, and protein function. The genome contains 2247 genes, predominantly encoding enzymes. Unlike other members of the Enterocytozoonida group, Microsporidia sp. MB has retained most of the genes in the glycolytic pathway. Genes involved in RNA interference (RNAi) were also identified, suggesting a mechanism for host immune suppression. Importantly, meiosis-related genes (MRG) were detected, indicating potential for sexual reproduction in this organism. Comparative analyses revealed similarities with its closest relative, Vittaforma corneae, despite key differences in host interactions. CONCLUSION This study provides an in-depth analysis of the newly sequenced Microsporidia sp. MB genome, uncovering its unique adaptations for intracellular parasitism, including retention of essential metabolic pathways and RNAi machinery. The identification of MRGs suggests the possibility of sexual reproduction, offering insights into the symbiont's evolutionary strategies. Establishing a reference genome for Microsporidia sp. MB sets the foundation for future studies on its role in malaria transmission dynamics and host-parasite interactions.
Collapse
Affiliation(s)
- Lilian Mbaisi Ang'ang'o
- Department of Biochemistry, Microbiology, and Bioinformatics, Research Unit in Bioinformatics (RUBi), Rhodes University, Makhanda, 6140, South Africa
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Jeremy Keith Herren
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| | - Özlem Tastan Bishop
- Department of Biochemistry, Microbiology, and Bioinformatics, Research Unit in Bioinformatics (RUBi), Rhodes University, Makhanda, 6140, South Africa.
| |
Collapse
|
3
|
Stratton CE, Bolds SA, Reisinger LS, Behringer DC, Khalaf A, Bojko J. Microsporidia and invertebrate hosts: genome-informed taxonomy surrounding a new lineage of crayfish-infecting Nosema spp. (Nosematida). FUNGAL DIVERS 2024; 128:167-190. [PMID: 39583760 PMCID: PMC7616845 DOI: 10.1007/s13225-024-00543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/19/2024] [Indexed: 11/26/2024]
Abstract
The Microsporidia, an often overlooked fungal lineage, exhibit increasing diversity and taxonomic understanding with the use of genomic techniques. They are obligate parasites infecting a diversity of hosts, including crustaceans. Crustacea are, in essence, ancient insects and their relationship with the Microsporidia is both diverse and convoluted. Relationships between crayfish and their microsporidian parasites display geospatial and taxonomic diversity. Through classical (histological, ultrastructural, developmental) and genomic (phylogenetic, phylogenomic) approaches, we expand the known diversity of crayfish-infecting microsporidia into the genus Nosema by describing three novel species from North America: Nosema astafloridana n. sp. infecting Procambarus pictus and Procambarus spiculifer, Nosema rusticus n. sp. infecting Faxonius rusticus, and Nosema wisconsinii n. sp. infecting Faxonius propinquus and Faxonius virilis. Additionally, we provide SSU sequence data for further Nosema diversity from Procambarus clarkii and Pacifasticus gambelii. The taxonomy of aquatic crustacean-infecting Nosema have been under scrutiny among microsporidiologists - using genomic data we solidify this systematic relationship. Our genomic data reveal phylogenomic divergence between terrestrial insect-infecting Nosema and aquatic crustacean-infecting Nosema but place our novel species within the Nosema. Comparative genomic analysis reveal that Nosema rusticus n. sp. is a tetraploid organism, making this the first known polyploid from the genus Nosema. Annotation of the genomic data highlight that crayfish-infecting Nosema have distinct proteomic differences when compared to amphipod and insect-infecting microsporidians. Alongside the new diversity uncovered and genome-supported systematics, we consider the role of these new 'invasive' parasites in biological invasion systems, exploring their relationship with their invasive hosts.
Collapse
Affiliation(s)
- Cheyenne E. Stratton
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA
| | - Sara A. Bolds
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA
- School of Natural Resources, University of Florida, Gainesville, Florida, 32611, USA
| | - Lindsey S. Reisinger
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA
| | - Donald C. Behringer
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Amjad Khalaf
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| |
Collapse
|
4
|
Zaccaron AZ, Stergiopoulos I. The dynamics of fungal genome organization and its impact on host adaptation and antifungal resistance. J Genet Genomics 2024:S1673-8527(24)00284-4. [PMID: 39522682 DOI: 10.1016/j.jgg.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Fungi are a diverse kingdom characterized by remarkable genomic plasticity that facilitates pathogenicity and adaptation to adverse environmental conditions. In this review, we delve into the dynamic organization of fungal genomes and its implications for host adaptation and antifungal resistance. We examine key features and the heterogeneity of genomes across different fungal species, including but not limited to their chromosome content, DNA composition, distribution and arrangement of their content across chromosomes, and other major traits. We further highlight how this variability in genomic traits influences their virulence and adaptation to adverse conditions. Fungal genomes exhibit large variations in size, gene content, and structural features, such as abundance of transposable elements (TEs), compartmentalization into gene-rich and TE-rich regions, and the presence or absence of dispensable chromosomes. Genomic structural variations are equally diverse in fungi, ranging from whole-chromosome duplications that may enhance tolerance to antifungal compounds, to targeted deletion of effector encoding genes that may promote virulence. Finally, the often-overlooked fungal mitochondrial genomes can also affect virulence and resistance to fungicides. Such and other features of fungal genome organization are reviewed and discussed in the context of host-microbe interactions and antifungal resistance.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis (UCD), Davis, CA, USA; Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis (UCD), Davis, CA, USA.
| |
Collapse
|
5
|
Peyretaillade E, Akossi RF, Tournayre J, Delbac F, Wawrzyniak I. How to overcome constraints imposed by microsporidian genome features to ensure gene prediction? J Eukaryot Microbiol 2024; 71:e13038. [PMID: 38934348 DOI: 10.1111/jeu.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Since the advent of sequencing techniques and due to their continuous evolution, it has become easier and less expensive to obtain the complete genome sequence of any organism. Nevertheless, to elucidate all biological processes governing organism development, quality annotation is essential. In genome annotation, predicting gene structure is one of the most important and captivating challenges for computational biology. This aspect of annotation requires continual optimization, particularly for genomes as unusual as those of microsporidia. Indeed, this group of fungal-related parasites exhibits specific features (highly reduced gene sizes, sequences with high rate of evolution) linked to their evolution as intracellular parasites, requiring the implementation of specific annotation approaches to consider all these features. This review aimed to outline these characteristics and to assess the increasingly efficient approaches and tools that have enhanced the accuracy of gene prediction for microsporidia, both in terms of sensitivity and specificity. Subsequently, a final part will be dedicated to postgenomic approaches aimed at reinforcing the annotation data generated by prediction software. These approaches include the characterization of other understudied genes, such as those encoding regulatory noncoding RNAs or very small proteins, which also play crucial roles in the life cycle of these microorganisms.
Collapse
Affiliation(s)
| | - Reginal F Akossi
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérémy Tournayre
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Frédéric Delbac
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
6
|
Gang SS, Lažetić V. Microsporidia: Pervasive natural pathogens of Caenorhabditis elegans and related nematodes. J Eukaryot Microbiol 2024; 71:e13027. [PMID: 38702921 DOI: 10.1111/jeu.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 05/06/2024]
Abstract
The nematode Caenorhabditis elegans is an invaluable host model for studying infections caused by various pathogens, including microsporidia. Microsporidia represent the first natural pathogens identified in C. elegans, revealing the previously unknown Nematocida genus of microsporidia. Following this discovery, the utilization of nematodes as a model host has rapidly expanded our understanding of microsporidia biology and has provided key insights into the cell and molecular mechanisms of antimicrosporidia defenses. Here, we first review the isolation history, morphological characteristics, life cycles, tissue tropism, genetics, and host immune responses for the four most well-characterized Nematocida species that infect C. elegans. We then highlight additional examples of microsporidia that infect related terrestrial and aquatic nematodes, including parasitic nematodes. To conclude, we assess exciting potential applications of the nematode-microsporidia system while addressing the technical advances necessary to facilitate future growth in this field.
Collapse
Affiliation(s)
- Spencer S Gang
- Molecular Biology Department, Colorado College, Colorado Springs, Colorado, USA
| | - Vladimir Lažetić
- Department of Biological Sciences, Columbian College of Arts & Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Tersigni J, Tamim El Jarkass H, James EB, Reinke AW. Interactions between microsporidia and other members of the microbiome. J Eukaryot Microbiol 2024; 71:e13025. [PMID: 38561869 DOI: 10.1111/jeu.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The microbiome is the collection of microbes that are associated with a host. Microsporidia are intracellular eukaryotic parasites that can infect most types of animals. In the last decade, there has been much progress to define the relationship between microsporidia and the microbiome. In this review, we cover an increasing number of reports suggesting that microsporidia are common components of the microbiome in both invertebrates and vertebrates. These microsporidia infections can range from mutualistic to pathogenic, causing several physiological phenotypes, including death. Infection with microsporidia often causes a disruption in the normal microbiome, with both increases and decreases of bacterial, fungal, viral, and protozoan species being observed. This impact on the microbiome can occur through upregulation and downregulation of innate immunity as well as morphological changes to tissues that impact interactions with these microbes. Other microbes, particularly bacteria, can inhibit microsporidia and have been exploited to control microsporidia infections. These bacteria can function through regulating immunity, secreting anti-microsporidia compounds, and, in engineered versions, expressing double-stranded RNA targeting microsporidia genes. We end this review by discussing potential future directions to further understand the complex interactions between microsporidia and the other members of the microbiome.
Collapse
Affiliation(s)
- Jonathan Tersigni
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Edward B James
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Fayet M, Long M, Han B, Belkorchia A, Delbac F, Polonais V. New insights into Microsporidia polar tube function and invasion mechanism. J Eukaryot Microbiol 2024; 71:e13043. [PMID: 38973152 DOI: 10.1111/jeu.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Microsporidia comprise a large phylum of single-cell and obligate intracellular parasites that can infect a wide range of invertebrate and vertebrate hosts including humans. These fungal-related parasites are characterized by a highly reduced genome, a strong energy dependence on their host, but also by their unique invasion organelle known as the polar tube which is coiled within the resistant spore. Upon appropriate environmental stimulation, the long hollow polar tube (ranging from 50 to 500 μm in length) is extruded at ultra-fast speeds (300 μm/s) from the spore acting as a harpoon-like organelle to transport and deliver the infectious material or sporoplasm into the host cell. To date, seven polar tube proteins (PTPs) with distinct localizations along the extruded polar tube have been described. For example, the specific location of PTP4 and PTP7 at the tip of the polar tube supports their role in interacting with cellular receptor(s). This chapter provides a brief overview on the current understanding of polar tube structure and dynamics of extrusion, primarily through recent advancements in cryo-tomography and 3D reconstruction. It also explores the various mechanisms used for host cell invasion. Finally, recent studies on the structure and maturation of sporoplasm and its moving through the tube are discussed.
Collapse
Affiliation(s)
- Maurine Fayet
- Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Bing Han
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Abdel Belkorchia
- Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Frédéric Delbac
- Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Valerie Polonais
- Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
9
|
González R, Félix MA. Caenorhabditis elegans immune responses to microsporidia and viruses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105148. [PMID: 38325500 DOI: 10.1016/j.dci.2024.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The model organism Caenorhabditis elegans is susceptible to infection by obligate intracellular pathogens, specifically microsporidia and viruses. These intracellular pathogens infect intestinal cells, or, for some microsporidia, epidermal cells. Strikingly, intestinal cell infections by viruses or microsporidia trigger a common transcriptional response, activated in part by the ZIP-1 transcription factor. Among the strongest activated genes in this response are ubiquitin-pathway members and members of the pals family, an intriguing gene family with cross-regulations of different members of genomic clusters. Some of the induced genes participate in host defense against the pathogens, for example through ubiquitin-mediated inhibition. Other mechanisms defend the host specifically against viral infections, including antiviral RNA interference and uridylation. These various immune responses are altered by environmental factors and by intraspecific genetic variation of the host. These pathogens were first isolated 15 years ago and much remains to be discovered using C. elegans genetics; also, other intracellular pathogens of C. elegans may yet to be discovered.
Collapse
Affiliation(s)
- Rubén González
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France.
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France
| |
Collapse
|
10
|
Huang Q, Chen J, Pan G, Reinke AW. Screening of the Pandemic Response Box identifies anti-microsporidia compounds. PLoS Negl Trop Dis 2023; 17:e0011806. [PMID: 38064503 PMCID: PMC10732440 DOI: 10.1371/journal.pntd.0011806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/20/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Microsporidia are fungal obligate intracellular pathogens, which infect most animals and cause microsporidiosis. Despite the serious threat that microsporidia pose to humans and agricultural animals, few drugs are available for the treatment and control of microsporidia. To identify novel inhibitors, we took advantage of the model organism Caenorhabditis elegans infected with its natural microsporidian Nematocida parisii. We used this system to screen the Pandemic Response Box, a collection of 400 diverse compounds with known antimicrobial activity. After testing these compounds in a 96-well format at high (100 μM) and low (40 μM) concentrations, we identified four inhibitors that restored the ability of C. elegans to produce progeny in the presence of N. parisii. All four compounds reduced the pathogen load of both N. parisii and Pancytospora epiphaga, a C. elegans-infecting microsporidia related to human-infecting species. One of these compounds, a known inhibitor of a viral protease, MMV1006203, inhibited invasion and prevented the firing of spores. A bis-indole derivative, MMV1593539, decreased spore viability. An albendazole analog, MMV1782387, inhibited proliferation of N. parisii. We tested albendazole as well as 5 other analogs and observed that MMV1782387 was amongst the strongest inhibitors of N. parisii and displayed the least host toxicity. Our study further demonstrates the effectiveness of the C. elegans-N. parisii system for discovering microsporidia inhibitors and the compounds we identified provide potential scaffolds for anti-microsporidia drug development.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jie Chen
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|