1
|
Rimple PA, Olafsson EB, Markus BM, Wang F, Augusto L, Lourido S, Carruthers VB. Metabolic adaptability and nutrient scavenging in Toxoplasma gondii: insights from ingestion pathway-deficient mutants. mSphere 2025; 10:e0101124. [PMID: 40172222 PMCID: PMC12039266 DOI: 10.1128/msphere.01011-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/04/2025] [Indexed: 04/04/2025] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii replicates within a specialized compartment called the parasitophorous vacuole (PV). Recent work showed that despite living within a PV, Toxoplasma endocytoses proteins from the cytosol of infected host cells via a so-called ingestion pathway. The ingestion pathway is initiated by dense granule protein GRA14, which binds host endosomal sorting complex required for transport (ESCRT) machinery to bud vesicles into the lumen of the PV. The protein-containing vesicles are internalized by the parasite and trafficked to the plant vacuole-like compartment (PLVAC), where cathepsin protease L (CPL) degrades the cargo, and the chloroquine resistance transporter (CRT) exports the resulting peptides and amino acids to the parasite cytosol. However, although the ingestion pathway was proposed to be a conduit for nutrients, there is limited evidence for this hypothesis. We reasoned that if Toxoplasma uses the ingestion pathway to acquire nutrients, then parasites lacking GRA14, CPL, or CRT should rely more on biosynthetic pathways or alternative scavenging pathways. To explore this, we conducted a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screen in wild-type (WT) parasites and Δgra14, Δcpl, and Δcrt mutants to identify genes that become more fitness conferring in ingestion-deficient parasites. Our screen revealed a significant overlap of genes that potentially become more fitness conferring in the ingestion mutants compared to WT. Pathway analysis indicated that Δcpl and Δcrt mutants relied more on pyrimidine biosynthesis, fatty acid biosynthesis, tricarboxylic acid (TCA) cycle, and lysine degradation. Bulk metabolomic analysis showed reduced levels of glycolytic intermediates and amino acids in the ingestion mutants compared to WT, highlighting the pathway's potential role in host resource scavenging. Interestingly, Δcpl and Δcrt showed an exacerbated growth defect when cultured in amino acid-depleted media, suggesting that disrupting proteolysis or the export of proteolytic products from the PLVAC affects parasite survival during nutrient scarcity. IMPORTANCE Toxoplasma gondii is an obligate intracellular pathogen that infects virtually any nucleated cell in most warm-blooded animals. Infections are asymptomatic in most cases, but people with weakened immunity can experience severe disease. For the parasite to replicate within the host, it must efficiently acquire essential nutrients, especially as it is unable to make several key metabolites. Understanding the mechanisms by which Toxoplasma scavenges nutrients from the host is crucial for identifying potential therapeutic targets. Our study suggests that the ingestion pathway contributes to sustaining parasite metabolites and parasite replication under amino acid-limiting conditions. This work advances our understanding of the metabolic adaptability of Toxoplasma.
Collapse
Affiliation(s)
- Patrick A. Rimple
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Einar B. Olafsson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Benedikt M. Markus
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Fengrong Wang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Leonardo Augusto
- Department of Pathology and Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Tachibana Y, Yamamoto M. Recent advances in identifying and characterizing secretory proteins of Toxoplasma gondii by CRISPR-based screening. Parasitol Int 2025; 105:102997. [PMID: 39586398 DOI: 10.1016/j.parint.2024.102997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
The apicomplexan parasite, Toxoplasma gondii, develops unique secretory organelles, such as micronemes, rhoptries, and dense granules, which do not exist in other well-studied eukaryotic organisms. These secretory organelles are key features of apicomplexan parasites and discharge various proteins that are essential for invasion, replication, egress, host-parasite interactions, and virulence. Many studies have therefore focused on identifying and characterizing the proteins secreted by T. gondii that play essential roles in pathology and that can be targeted for therapeutics and vaccine development. The recent development of functional genetic screens based on CRISPR/Cas9 technology has revolutionized this field and has enabled the identification of genes that contribute to parasite fitness in vitro and in vivo. Consequently, characterization of genes identified by unbiased CRISPR screens has revealed novel aspects of apicomplexan biology. In this review, we describe the development of CRIPSR-based screening technology for T. gondii, and recent advances in our understanding of secretory proteins identified and characterized by CRISPR-based screening.
Collapse
Affiliation(s)
- Yuta Tachibana
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan; Center for Advanced Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Hildebrandt F, N Matias A, Treeck M. A CRISPR view on genetic screens in Toxoplasma gondii. Curr Opin Microbiol 2025; 83:102577. [PMID: 39778479 DOI: 10.1016/j.mib.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Genome editing technologies, such as CRISPR-Cas9, have revolutionised the study of genes in a variety of organisms, including unicellular parasites. Today, the CRISPR-Cas9 technology is vastly applied in high-throughput screens to investigate interactions between the Apicomplexan parasite Toxoplasma gondii and its hosts. In vitro and in vivo T. gondii screens performed in naive and restrictive conditions have led to the discovery of essential and fitness-conferring T. gondii genes, as well as factors important for virulence and dissemination. Recent studies have adapted the CRISPR-Cas9 screening technology to study T. gondii genes based on phenotypes unrelated to parasite survival. These advances were achieved by using conditional systems coupled with imaging, as well as single-cell RNA sequencing and phenotypic selection. Here, we review the state-of-the-art of CRISPR-Cas9 screening technologies with a focus on T. gondii, highlighting strengths, current limitations and future avenues for its development, including its application to other Apicomplexan species.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Ana N Matias
- Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Moritz Treeck
- Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal.
| |
Collapse
|
4
|
Rimple PA, Olafsson EB, Markus BM, Wang F, Augusto L, Lourido S, Carruthers VB. Metabolic Adaptability and Nutrient Scavenging in Toxoplasma gondii: Insights from Ingestion Pathway-Deficient Mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625683. [PMID: 39651188 PMCID: PMC11623567 DOI: 10.1101/2024.11.27.625683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The obligate intracellular parasite Toxoplasma gondii replicates within a specialized compartment called the parasitophorous vacuole (PV). Recent work showed that despite living within a PV, Toxoplasma endocytoses proteins from the cytosol of infected host cells via a so-called ingestion pathway. The ingestion pathway is initiated by dense granule protein GRA14, which binds host ESCRT machinery to bud vesicles into the lumen of the PV. The protein-containing vesicles are internalized by the parasite and trafficked to the Plant Vacuole-like compartment (PLVAC), where cathepsin protease L (CPL) degrades the cargo and the chloroquine resistance transporter (CRT) exports the resulting peptides and amino acids to the parasite cytosol. However, although the ingestion pathway was proposed to be a conduit for nutrients, there is limited evidence for this hypothesis. We reasoned that if Toxoplasma uses the ingestion pathway to acquire nutrients, then parasites lacking GRA14, CPL, or CRT should rely more on biosynthetic pathways or alternative scavenging pathways. To explore this, we conducted a genome-wide CRISPR screen in wild-type (WT) parasites and Δ gra14 , Δ cpl , and Δ crt mutants to identify genes that become more fitness conferring in ingestion-deficient parasites. Our screen revealed a significant overlap of genes that become more fitness conferring in the ingestion mutants compared to WT. Pathway analysis indicated that Δ cpl and Δ crt mutants relied more on pyrimidine biosynthesis, fatty acid biosynthesis, TCA cycle, and lysine degradation. Bulk metabolomic analysis showed reduced levels of glycolytic intermediates and amino acids in the ingestion mutants compared to WT, highlighting the pathway's potential role in host resource scavenging. Interestingly, ingestion mutants showed an exacerbated growth defect when grown in amino acid-depleted media, suggesting a role for the Toxoplasma ingestion pathway during nutrient scarcity. Importance Toxoplasma gondii is an obligate intracellular pathogen that infects virtually any nucleated cell in most warm-blooded animals. Infections are asymptomatic in most cases but people with weakened immunity can experience severe disease. For the parasite to replicate within the host, it must efficiently acquire essential nutrients, especially as it is unable to make several key metabolites. Understanding the mechanisms by which Toxoplasma scavenges nutrients from the host is crucial for identifying potential therapeutic targets. Our study highlights the function of the ingestion pathway in sustaining parasite metabolites and contributes to parasite replication under amino acid limiting conditions. This work advances our understanding of the metabolic adaptability of Toxoplasma .
Collapse
|
5
|
Tachibana Y, Sasai M, Yamamoto M. CRISPR screens identify genes essential for in vivo virulence among proteins of hyperLOPIT-unassigned subcellular localization in Toxoplasma. mBio 2024; 15:e0172824. [PMID: 39082802 PMCID: PMC11389413 DOI: 10.1128/mbio.01728-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 09/12/2024] Open
Abstract
The research field to identify and characterize genes essential for in vivo virulence in Toxoplasma gondii has been dramatically advanced by a series of in vivo clustered regularly interspaced short palindromic repeats (CRISPR) screens. Although subcellular localizations of thousands of proteins were predicted by the spatial proteomic method called hyperLOPIT, those of more than 1,000 proteins remained unassigned, and their essentiality in virulence was also unknown. In this study, we generated two small-scale gRNA libraries targeting approximately 600 hyperLOPIT-unassigned proteins and performed in vivo CRISPR screens. As a result, we identified several genes essential for in vivo virulence that were previously unreported. We further characterized two candidates, TgGTPase and TgRimM, which are localized in the cytoplasm and the apicoplast, respectively. Both genes are essential for parasite virulence and widely conserved in the phylum Apicomplexa. Collectively, our current study provides a resource for estimating the in vivo essentiality of Toxoplasma proteins with previously unknown localizations.IMPORTANCEToxoplasma gondii is a protozoan parasite that causes severe infection in immunocompromised patients or newborns. Toxoplasma possesses more than 8,000 genes; however, the genes essential for in vivo virulence were not fully identified. The apicomplexan parasites, including Toxoplasma, developed unique organelles that do not exist in other model organisms; thus, determining the subcellular location of parasite proteins is important for understanding their functions. Here, we used in vivo genetic screens that enabled us to investigate hundreds of genes in Toxoplasma during mouse infection. We screened approximately 600 parasite proteins with previously unknown subcellular localizations. We identified many novel genes that confer parasite virulence in mice. Among the top hits, we characterized two genes essential for in vivo virulence, TgGTPase and TgRimM, which are widely conserved in the phylum Apicomplexa. Our findings will contribute to understanding how apicomplexans adapt to the host environment and cause disease.
Collapse
Affiliation(s)
- Yuta Tachibana
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Li J, Kang Y, Wu ZX, Yang SF, Tian YY, Zhu XQ, Zheng XN. Live-attenuated PruΔgra72 strain of Toxoplasma gondii induces strong protective immunity against acute and chronic toxoplasmosis in mice. Parasit Vectors 2024; 17:377. [PMID: 39237959 PMCID: PMC11378421 DOI: 10.1186/s13071-024-06461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Toxoplasma gondii is an intracellular opportunistic pathogenic protozoan that poses serious threats, particularly in immunocompromised individuals. In the absence of a robust prophylactic measure, the mitigation and management of toxoplasmosis present formidable challenges to public health. We recently found that GRA72 plays an important role in parasitophorous vacuole (PV) morphology, growth and virulence of T. gondii. However, whether gra72-deficient strain can be used as a vaccine remains unknown. METHODS We first examined the attenuated virulence of gra72 gene knockout strain (PruΔgra72) and the parasite load in organs of the infected mice. Subsequently, we evaluated the immune-protective effects of the PruΔgra72 vaccination against challenge with various types of T. gondii tachyzoites and Pru cysts. Furthermore, levels of antibodies and cytokines induced by PruΔgra72 vaccination were examined. Statistical analysis was conducted by Student's t-test or Mantel-Cox log-rank test based on data obtained from three independent experiments with GraphPad Prism 8.0. RESULTS We found that PruΔgra72 strain exhibited a significantly attenuated virulence even at the highest dose of 5 × 107 tachyzoites in Kunming mice model. The significant decrease of brain cyst burden and parasite load in the organs of the PruΔgra72-infected mice suggested its potentiality as a live-attenuated vaccine. Hence, we explored the protective immunity of PruΔgra72 vaccination against toxoplasmosis. Results showed that vaccination with 5 × 106 PruΔgra72 tachyzoites triggered a strong and sustained Th1-biased immune response, marked by significantly increased levels of anti-T. gondii IgG antibodies, and significantly higher levels of Th1 type cytokines (IL-2, IL-12 and IFN-γ) compared to that of Th2 type (IL-4 and IL-10). Vaccination with 5 × 106 PruΔgra72 tachyzoites in mice conferred long-term protection against T. gondii infection by less virulent tachyzoites (ToxoDB#9 PYS and Pru strains) and Pru cysts, provided partial protection against acute infection by high virulent Type I RH tachyzoites and significantly decreased brain cyst burden of chronically infected mice. CONCLUSIONS The avirulent PruΔgra72 induced strong protective immunity against acute and chronic T. gondii infection and is a promising candidate for developing a safe and effective live-attenuated vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Yu Kang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Ze-Xuan Wu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Shu-Feng Yang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Yu-Yang Tian
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China.
| | - Xiao-Nan Zheng
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China.
| |
Collapse
|
7
|
Giuliano CJ, Wei KJ, Harling FM, Waldman BS, Farringer MA, Boydston EA, Lan TCT, Thomas RW, Herneisen AL, Sanderlin AG, Coppens I, Dvorin JD, Lourido S. CRISPR-based functional profiling of the Toxoplasma gondii genome during acute murine infection. Nat Microbiol 2024; 9:2323-2343. [PMID: 38977907 PMCID: PMC11811839 DOI: 10.1038/s41564-024-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
Examining host-pathogen interactions in animals can capture aspects of infection that are obscured in cell culture. Using CRISPR-based screens, we functionally profile the entire genome of the apicomplexan parasite Toxoplasma gondii during murine infection. Barcoded gRNAs enabled bottleneck detection and mapping of population structures within parasite lineages. Over 300 genes with previously unknown roles in infection were found to modulate parasite fitness in mice. Candidates span multiple axes of host-parasite interaction. Rhoptry Apical Surface Protein 1 was characterized as a mediator of host-cell tropism that facilitates repeated invasion attempts. GTP cyclohydrolase I was also required for fitness in mice and druggable through a repurposed compound, 2,4-diamino-6-hydroxypyrimidine. This compound synergized with pyrimethamine against T. gondii and malaria-causing Plasmodium falciparum parasites. This work represents a complete survey of an apicomplexan genome during infection of an animal host and points to novel interfaces of host-parasite interaction.
Collapse
Affiliation(s)
| | - Kenneth J Wei
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | | | - Benjamin S Waldman
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | - Madeline A Farringer
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Biological Sciences in Public Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Raina W Thomas
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | - Alice L Herneisen
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | | | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, MA, USA.
- Biology Department, MIT, Cambridge, MA, USA.
| |
Collapse
|
8
|
Zheng XN, Li TT, Elsheikha HM, Wang M, Sun LX, Wu XJ, Fu BQ, Zhu XQ, Wang JL. GRA47 is important for the morphology and permeability of the parasitophorous vacuole in Toxoplasma gondii. Int J Parasitol 2024; 54:583-596. [PMID: 38936501 DOI: 10.1016/j.ijpara.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Establishing an intact intracellular parasitophorous vacuole (PV) that enables efficient nutrient uptake and protein trafficking is essential for the survival and proliferation of Toxoplasma gondii. Although the PV membrane (PVM)-localized dense granule protein 17 (GRA17) and GRA23 mediate the permeability of the PVM to small molecules, including nutrient uptake and excretion of metabolic by-products, the molecular mechanism by which T. gondii acquires nutrients remains unclear. In this study, we showed that the secreted protein GRA47 contributed to normal PV morphology, PVM permeability to small molecules, growth, and virulence in T. gondii. Co-immunoprecipitation analysis demonstrated potential interaction of GRA47 with GRA72, and the loss of GRA72 affected PV morphology, parasite growth and infectivity. To investigate the biological relationship among GRA47, GRA72, GRA17 and GRA23, attempts were made to construct strains with double gene deletion and overexpressing strains. Only Δgra23Δgra72 was successfully constructed. This strain exhibited a significant increase in the proportion of aberrant PVs compared with the Δgra23 strain. Overexpressing one of the three related GRAs partially rescued PVs with aberrant morphology in Δgra47, Δgra72 and Δgra17, while the expression of the Plasmodium falciparum PVM protein PfExp2, an ortholog of GRA17 and GRA23, fully rescued the PV morphological defect in all three Δgra strains. These results suggest that these GRA proteins may not be functionally redundant but rather work in different ways to regulate nutrient acquisition. These findings highlight the versatility of the nutrient uptake mechanisms in T. gondii, which may contribute to the parasite's remarkable ability to grow in different cellular niches in a very broad range of hosts.
Collapse
Affiliation(s)
- Xiao-Nan Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China
| | - Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Li-Xiu Sun
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Xiao-Jing Wu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China.
| | - Jin-Lei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China.
| |
Collapse
|
9
|
Carruthers VB, Dou Z. Deciphering protein prenylation in endocytic trafficking in Toxoplasma gondii. mBio 2024; 15:e0028324. [PMID: 38407123 PMCID: PMC11005354 DOI: 10.1128/mbio.00283-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Toxoplasma gondii is a widespread intracellular protozoan pathogen infecting virtually all warm-blooded animals. This parasite acquires host-derived resources to support its replication inside a membrane-bound parasitophorous vacuole within infected host cells. Previous research has discovered that Toxoplasma actively endocytoses host proteins and transports them to a lysosome-equivalent structure for digestion. However, few molecular determinants required for trafficking of host-derived material within the parasite were known. A recent study (Q.-Q. Wang, M. Sun, T. Tang, D.-H. Lai, et al., mBio 14:e01309-23, 2023, https://doi.org/10.1128/mbio.01309-23) identified a critical role for membrane anchoring of proteins via prenylation in the trafficking of endocytosed host proteins by Toxoplasma, including an essential Toxoplasma ortholog of Rab1B. The authors also found that TgRab1 is crucial for protein trafficking of the rhoptry secretory organelles, indicating a dual role in endocytic and exocytic protein trafficking. This study sets the stage for further dissecting endomembrane trafficking in Toxoplasma, along with potentially exploiting protein prenylation as a target for therapeutic development.
Collapse
Affiliation(s)
- Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
10
|
Hesping E, Boddey JA. Whole-genome CRISPR screens to understand Apicomplexan-host interactions. Mol Microbiol 2024; 121:717-726. [PMID: 38225194 DOI: 10.1111/mmi.15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024]
Abstract
Apicomplexan parasites are aetiological agents of numerous diseases in humans and livestock. Functional genomics studies in these parasites enable the identification of biological mechanisms and protein functions that can be targeted for therapeutic intervention. Recent improvements in forward genetics and whole-genome screens utilising CRISPR/Cas technology have revolutionised the functional analysis of genes during Apicomplexan infection of host cells. Here, we highlight key discoveries from CRISPR/Cas9 screens in Apicomplexa or their infected host cells and discuss remaining challenges to maximise this technology that may help answer fundamental questions about parasite-host interactions.
Collapse
Affiliation(s)
- Eva Hesping
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Justin A Boddey
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Bitew MA, Gaete PS, Swale C, Maru P, Contreras JE, Saeij JPJ. Two Toxoplasma gondii putative pore-forming proteins, GRA47 and GRA72, influence small molecule permeability of the parasitophorous vacuole. mBio 2024; 15:e0308123. [PMID: 38380952 PMCID: PMC10936148 DOI: 10.1128/mbio.03081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Toxoplasma gondii, a medically important intracellular parasite, uses GRA proteins secreted from dense granule organelles to mediate nutrient flux across the parasitophorous vacuole membrane (PVM). GRA17 and GRA23 are known pore-forming proteins on the PVM involved in this process, but the roles of additional proteins have remained largely uncharacterized. We recently identified GRA72 as synthetically lethal with GRA17. Deleting GRA72 produced similar phenotypes to Δgra17 parasites, and computational predictions suggested it forms a pore. To understand how GRA72 functions, we performed immunoprecipitation experiments and identified GRA47 as an interactor of GRA72. Deletion of GRA47 resulted in an aberrant "bubble vacuole" morphology with reduced small molecule permeability, mirroring the phenotype observed in GRA17 and GRA72 knockouts. Structural predictions indicated that GRA47 and GRA72 form heptameric and hexameric pores, respectively, with conserved histidine residues lining the pore. Mutational analysis highlighted the critical role of these histidines for protein functionality. Validation through electrophysiology confirmed alterations in membrane conductance, corroborating their pore-forming capabilities. Furthermore, Δgra47 parasites and parasites expressing GRA47 with a histidine mutation had reduced in vitro proliferation and attenuated virulence in mice. Our findings show the important roles of GRA47 and GRA72 in regulating PVM permeability, thereby expanding the repertoire of potential therapeutic targets against Toxoplasma infections. IMPORTANCE Toxoplasma gondii is a parasite that poses significant health risks to those with impaired immunity. It replicates inside host cells shielded by the PVM, which controls nutrient and waste exchange with the host. GRA72, previously identified as essential in the absence of the GRA17 nutrient channel, is implicated in forming an alternative nutrient channel. Here we found that GRA47 associates with GRA72 and is also important for the PVM's permeability to small molecules. Removal of GRA47 leads to distorted vacuoles and impairs small molecule transport across the PVM, resembling the effects of GRA17 and GRA72 deletions. Structural models suggest GRA47 and GRA72 form distinct pore structures, with a pore-lining histidine critical to their function. Toxoplasma strains lacking GRA47 or those with a histidine mutation have impaired growth and reduced virulence in mice, highlighting these proteins as potential targets for new treatments against toxoplasmosis.
Collapse
Affiliation(s)
- Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, University of California, Davis, California, USA
| | - Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Parag Maru
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, University of California, Davis, California, USA
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
12
|
Pitman EL, Counihan NA, Modak JK, Chowdury M, Gilson PR, Webb CT, de Koning-Ward TF. Dissecting EXP2 sequence requirements for protein export in malaria parasites. Front Cell Infect Microbiol 2024; 13:1332146. [PMID: 38282616 PMCID: PMC10811066 DOI: 10.3389/fcimb.2023.1332146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
Apicomplexan parasites that reside within a parasitophorous vacuole harbor a conserved pore-forming protein that enables small-molecule transfer across the parasitophorous vacuole membrane (PVM). In Plasmodium parasites that cause malaria, this nutrient pore is formed by EXP2 which can complement the function of GRA17, an orthologous protein in Toxoplasma gondii. EXP2, however, has an additional function in Plasmodium parasites, serving also as the pore-forming component of the protein export machinery PTEX. To examine how EXP2 can play this additional role, transgenes that encoded truncations of EXP2, GRA17, hybrid GRA17-EXP2, or EXP2 under the transcriptional control of different promoters were expressed in EXP2 knockdown parasites to determine which could complement EXP2 function. This revealed that EXP2 is a unique pore-forming protein, and its protein export role in P. falciparum cannot be complemented by T. gondii GRA17. This was despite the addition of the EXP2 assembly strand and part of the linker helix to GRA17, which are regions necessary for the interaction of EXP2 with the other core PTEX components. This indicates that the body region of EXP2 plays a critical role in PTEX assembly and/or that the absence of other T. gondii GRA proteins in P. falciparum leads to its reduced efficiency of insertion into the PVM and complementation potential. Altering the timing and abundance of EXP2 expression did not affect protein export but affected parasite viability, indicating that the unique transcriptional profile of EXP2 when compared to other PTEX components enables it to serve an additional role in nutrient exchange.
Collapse
Affiliation(s)
- Ethan L. Pitman
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Natalie A. Counihan
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Joyanta K. Modak
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Mrittika Chowdury
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Paul R. Gilson
- Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Chaille T. Webb
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia
| | - Tania F. de Koning-Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| |
Collapse
|
13
|
Bitew MA, Gaete PS, Swale C, Maru P, Contreras JE, Saeij JPJ. GRA47 and GRA72 are Toxoplasma gondii pore-forming proteins that influence small molecule permeability of the parasitophorous vacuole. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567216. [PMID: 38014337 PMCID: PMC10680723 DOI: 10.1101/2023.11.15.567216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Toxoplasma gondii, a medically important intracellular parasite, uses GRA proteins, secreted from dense granule organelles, to mediate nutrient flux across the parasitophorous vacuole membrane (PVM). GRA17 and GRA23 are known pore-forming proteins on the PVM involved in this process, but the roles of additional proteins have remained largely uncharacterized. We recently identified GRA72 as synthetically lethal with GRA17. Deleting GRA72 produced similar phenotypes to Δgra17 parasites, and computational predictions suggested it forms a pore. To understand how GRA72 functions we performed immunoprecipitation experiments and identified GRA47 as an interactor of GRA72. Deletion of GRA47 resulted in an aberrant 'bubble vacuole' morphology with reduced small molecule permeability, mirroring the phenotype observed in GRA17 and GRA72 knockouts. Structural predictions indicated that GRA47 and GRA72 form heptameric and hexameric pores, respectively, with conserved histidine residues lining the pore. Mutational analysis highlighted the critical role of these histidines for protein functionality. Validation through electrophysiology confirmed alterations in membrane conductance, corroborating their pore-forming capabilities. Furthermore, Δgra47 parasites and parasites expressing GRA47 with a histidine mutation had reduced in vitro proliferation and attenuated virulence in mice. Our findings show the important roles of GRA47 and GRA72 in regulating PVM permeability, thereby expanding the repertoire of potential therapeutic targets against Toxoplasma infections.
Collapse
Affiliation(s)
- Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis. Davis, California, USA
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, California, USA
| | - Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Parag Maru
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis. Davis, California, USA
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, California, USA
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis. Davis, California, USA
| |
Collapse
|
14
|
Henshall IG, Spielmann T. Critical interdependencies between Plasmodium nutrient flux and drugs. Trends Parasitol 2023; 39:936-944. [PMID: 37716852 PMCID: PMC10580322 DOI: 10.1016/j.pt.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Nutrient import and waste efflux are critical dependencies for intracellular Plasmodium falciparum parasites. Nutrient transport proteins are often lineage specific and can provide unique targets for antimalarial drug development. P. falciparum nutrient transport pathways can be a double-edged sword for the parasite, not only mediating the import of nutrients and excretion of waste products but also providing an access route for drugs. Here we briefly summarise the nutrient acquisition pathways of intracellular P. falciparum blood-stage parasites and then highlight how these pathways influence many aspects relevant to antimalarial drugs, resulting in complex and often underappreciated interdependencies.
Collapse
Affiliation(s)
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|