1
|
Grzegorzewicz AE, Bui DT, De P, Kitova EN, Belardinelli JM, Angala SK, Palčeková Z, Vill K, Kalscheuer R, Klassen JS, Jackson M. Biosynthesis and Fatty Acid- and Cation-Binding Properties of Mycobacterium tuberculosis Methylglucose Lipopolysaccharides. ACS Infect Dis 2025; 11:1114-1128. [PMID: 40295170 DOI: 10.1021/acsinfecdis.4c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Methylglucose lipopolysaccharides (MGLPs) are small cytoplasmic polysaccharides produced by mycobacteria and a few Nocardia species. Although their ability to form 1:1 complexes with long-chain fatty acids and acyl-CoAs in vitro has long suggested that they play a role in fatty acid and lipid metabolism, direct evidence for this assumption has been waiting for the availability of mutants with well-defined MGLP contents and fatty acyl-binding properties. Here, we report on the generation of eight mycobacterial mutants with various defects in the biosynthesis of MGLPs. The characterization of the MGLP content of these mutants provides the most comprehensive picture of the MGLP biosynthetic machinery to date. Importantly, the successful generation of three mutants in which MGLP synthesis is abolished indicates that, despite their conservation in mycobacteria, MGLPs are not essential for growth under standard laboratory conditions. Analysis of the fatty acyl-binding properties of truncated forms of MGLPs produced by some mutants provided unexpected new insight into the structural determinants governing the ability of MGLPs to form complexes with long acyl-CoAs calling for a revision of the structural model of these lipopolysaccharides. The characterization of the MGLP produced by the different mutants further unveiled previously unknown cation-binding properties associated with acylated forms of these polysaccharides. The availability of well-defined Mycobacterium tuberculosis MGLP mutants opens the way to a precise assessment of the role of these unique cytoplasmic lipopolysaccharides in the physiology and virulence of this vital bacterial pathogen.
Collapse
Affiliation(s)
- Anna E Grzegorzewicz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Duong T Bui
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Prithwiraj De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Elena N Kitova
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Kristin Vill
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Rainer Kalscheuer
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - John S Klassen
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| |
Collapse
|
2
|
Schultz BJ, Walker S. Acyltransferases that Modify Cell Surface Polymers Across the Membrane. Biochemistry 2025; 64:1728-1749. [PMID: 40171682 PMCID: PMC12021268 DOI: 10.1021/acs.biochem.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cell surface oligosaccharides and related polymers are commonly decorated with acyl esters that alter their structural properties and influence their interactions with other molecules. In many cases, these esters are added to polymers that are already positioned on the extracytoplasmic side of a membrane, presenting cells with a chemical challenge because the high-energy acyl donors used for these modifications are made in the cytoplasm. How activated acyl groups are passed from the cytoplasm to extra-cytoplasmic polymers has been a longstanding question. Recent mechanistic work has shown that many bacterial acyl transfer pathways operate by shuttling acyl groups through two covalent intermediates to their final destination on an extracellular polymer. Key to these and other pathways are cross-membrane acyltransferases─enzymes that catalyze transfer of acyl groups from a donor on one side of the membrane to a recipient on the other side. Here we review what has been learned recently about how cross-membrane acyltransferases in polymer acylation pathways function, highlighting the chemical and biosynthetic logic used by two key protein families, membrane-bound O-acyltransferases (MBOATs) and acyltransferase-3 (AT3) proteins. We also point out outstanding questions and avenues for further exploration.
Collapse
Affiliation(s)
- Bailey J. Schultz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Franklin A, Salgueiro VC, Layton AJ, Sullivan R, Mize T, Vázquez-Iniesta L, Benedict ST, Gurcha SS, Anso I, Besra GS, Banzhaf M, Lovering AL, Williams SJ, Guerin ME, Scott NE, Prados-Rosales R, Lowe EC, Moynihan PJ. The mycobacterial glycoside hydrolase LamH enables capsular arabinomannan release and stimulates growth. Nat Commun 2024; 15:5740. [PMID: 38982040 PMCID: PMC11233589 DOI: 10.1038/s41467-024-50051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Mycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are trafficked from the bacterium to the host via unknown mechanisms. Arabinomannan is thought to be a capsular derivative of these molecules, lacking a lipid anchor. However, the mechanism by which this material is generated has yet to be elucidated. Here, we describe the identification of a glycoside hydrolase family 76 enzyme that we term LamH (Rv0365c in Mycobacterium tuberculosis) which specifically cleaves α-1,6-mannoside linkages within LM and LAM, driving its export to the capsule releasing its phosphatidyl-myo-inositol mannoside lipid anchor. Unexpectedly, we found that the catalytic activity of this enzyme is important for efficient exit from stationary phase cultures, potentially implicating arabinomannan as a signal for growth phase transition. Finally, we demonstrate that LamH is important for M. tuberculosis survival in macrophages.
Collapse
Affiliation(s)
- Aaron Franklin
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Vivian C Salgueiro
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | | | - Rudi Sullivan
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Todd Mize
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Lucía Vázquez-Iniesta
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | | | | | - Itxaso Anso
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona, Spanish National Research Council, Barcelona Science Park, c/Baldiri Reixac 10-12, Tower R, 08028, Barcelona, Catalonia, Spain
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Manuel Banzhaf
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rafael Prados-Rosales
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Elisabeth C Lowe
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
4
|
De K, Belardinelli JM, Pandurangan AP, Ehianeta T, Lian E, Palčeková Z, Lam H, Gonzalez-Juarrero M, Bryant JM, Blundell TL, Parkhill J, Floto RA, Lowary TL, Wheat WH, Jackson M. Lipoarabinomannan modification as a source of phenotypic heterogeneity in host-adapted Mycobacterium abscessus isolates. Proc Natl Acad Sci U S A 2024; 121:e2403206121. [PMID: 38630725 PMCID: PMC11046677 DOI: 10.1073/pnas.2403206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Mycobacterium abscessus is increasingly recognized as the causative agent of chronic pulmonary infections in humans. One of the genes found to be under strong evolutionary pressure during adaptation of M. abscessus to the human lung is embC which encodes an arabinosyltransferase required for the biosynthesis of the cell envelope lipoglycan, lipoarabinomannan (LAM). To assess the impact of patient-derived embC mutations on the physiology and virulence of M. abscessus, mutations were introduced in the isogenic background of M. abscessus ATCC 19977 and the resulting strains probed for phenotypic changes in a variety of in vitro and host cell-based assays relevant to infection. We show that patient-derived mutational variations in EmbC result in an unexpectedly large number of changes in the physiology of M. abscessus, and its interactions with innate immune cells. Not only did the mutants produce previously unknown forms of LAM with a truncated arabinan domain and 3-linked oligomannoside chains, they also displayed significantly altered cording, sliding motility, and biofilm-forming capacities. The mutants further differed from wild-type M. abscessus in their ability to replicate and induce inflammatory responses in human monocyte-derived macrophages and epithelial cells. The fact that different embC mutations were associated with distinct physiologic and pathogenic outcomes indicates that structural alterations in LAM caused by nonsynonymous nucleotide polymorphisms in embC may be a rapid, one-step, way for M. abscessus to generate broad-spectrum diversity beneficial to survival within the heterogeneous and constantly evolving environment of the infected human airway.
Collapse
Affiliation(s)
- Kavita De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Juan M. Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Arun Prasad Pandurangan
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Biomedical Campus, Trumpington, CambridgeCB2 OBB, United Kingdom
| | - Teddy Ehianeta
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
| | - Elena Lian
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Ha Lam
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Josephine M. Bryant
- Parasites and Microbes Programme, Wellcome Sanger Institute, HinxtonCB10 1SA, United Kingdom
| | - Tom L. Blundell
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Biomedical Campus, Trumpington, CambridgeCB2 OBB, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - R. Andres Floto
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Biomedical Campus, Trumpington, CambridgeCB2 OBB, United Kingdom
- Molecular Immunity Unit, Department of Medicine, Medical Research Council-Laboratory of Molecular Biology, University of Cambridge, Trumpington, CambridgeCB2 0QH, United Kingdom
- University of Cambridge Centre for AI in Medicine, Cambridge CB3 0WA, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, CambridgeCB2 0AY, United Kingdom
| | - Todd L. Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei106, Taiwan
| | - William H. Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| |
Collapse
|
5
|
Palčeková Z, De K, Angala SK, Gilleron M, Zuberogoitia S, Gouxette L, Soto-Ojeda M, Gonzalez-Juarrero M, Obregón-Henao A, Nigou J, Wheat WH, Jackson M. Impact of Methylthioxylose Substituents on the Biological Activities of Lipomannan and Lipoarabinomannan in Mycobacterium tuberculosis. ACS Infect Dis 2024; 10:1379-1390. [PMID: 38511206 PMCID: PMC11014759 DOI: 10.1021/acsinfecdis.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Two lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM), play various, albeit incompletely defined, roles in the interactions of mycobacteria with the host. Growing evidence points to the modification of LM and LAM with discrete covalent substituents as a strategy used by these bacteria to modulate their biological activities. One such substituent, originally identified in Mycobacterium tuberculosis (Mtb), is a 5-methylthio-d-xylose (MTX) sugar, which accounts for the antioxidative properties of LAM. The widespread distribution of this motif across Mtb isolates from several epidemiologically important lineages have stimulated interest in MTX-modified LAM as a biomarker of tuberculosis infection. Yet, several lines of evidence indicate that MTX may not be restricted to Mtb and that this motif may substitute more acceptors than originally thought. Using a highly specific monoclonal antibody to the MTX capping motif of Mtb LAM, we here show that MTX motifs not only substitute the mannoside caps of LAM but also the mannan core of LM in Mtb. MTX substituents were also found on the LM and LAM of pathogenic, slow-growing nontuberculous mycobacteria. The presence of MTX substituents on the LM and LAM from Mtb enhances the pro-apoptotic properties of both lipoglycans on LPS-stimulated THP-1 macrophages. A comparison of the cytokines and chemokines produced by resting and LPS-activated THP-1 cells upon exposure to MTX-proficient versus MTX-deficient LM further indicates that MTX substituents confer anti-inflammatory properties upon LM. These findings add to our understanding of the glycan-based strategies employed by slow-growing pathogenic mycobacteria to alter the host immune response to infection.
Collapse
Affiliation(s)
- Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Kavita De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Sophie Zuberogoitia
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Lucie Gouxette
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Maritza Soto-Ojeda
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Andrés Obregón-Henao
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - William H. Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| |
Collapse
|
6
|
Franklin A, Layton AJ, Mize T, Salgueiro VC, Sullivan R, Benedict ST, Gurcha SS, Anso I, Besra GS, Banzhaf M, Lovering AL, Williams SJ, Guerin ME, Scott NE, Prados-Rosales R, Lowe EC, Moynihan PJ. The mycobacterial glycoside hydrolase LamH enables capsular arabinomannan release and stimulates growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563968. [PMID: 37961452 PMCID: PMC10634837 DOI: 10.1101/2023.10.26.563968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important amongst these are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are both trafficked out of the bacterium to the host via unknown mechanisms. An important class of exported LM/LAM is the capsular derivative of these molecules which is devoid of its lipid anchor. Here, we describe the identification of a glycoside hydrolase family 76 enzyme that we term LamH which specifically cleaves α-1,6-mannoside linkages within LM and LAM, driving its export to the capsule releasing its phosphatidyl-myo-inositol mannoside lipid anchor. Unexpectedly, we found that the catalytic activity of this enzyme is important for efficient exit from stationary phase cultures where arabinomannan acts as a signal for growth phase transition. Finally, we demonstrate that LamH is important for Mycobacterium tuberculosis survival in macrophages. These data provide a new framework for understanding the biological role of LAM in mycobacteria.
Collapse
Affiliation(s)
- Aaron Franklin
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Abigail J. Layton
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Todd Mize
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Vivian C. Salgueiro
- Department of Preventive Medicine, Public Health and Microbiology. School of Medicine. Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Rudi Sullivan
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Samuel T. Benedict
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Sudagar S. Gurcha
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Itxaso Anso
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Manuel Banzhaf
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Andrew L. Lovering
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marcelo E. Guerin
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Rafael Prados-Rosales
- Department of Preventive Medicine, Public Health and Microbiology. School of Medicine. Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Elisabeth C. Lowe
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, U.K., NE2 4HH
| | | |
Collapse
|
7
|
Torrelles JB, Chatterjee D. Collected Thoughts on Mycobacterial Lipoarabinomannan, a Cell Envelope Lipoglycan. Pathogens 2023; 12:1281. [PMID: 38003746 PMCID: PMC10675199 DOI: 10.3390/pathogens12111281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The presence of lipoarabinomannan (LAM) in the Mycobacterium tuberculosis (Mtb) cell envelope was first reported close to 100 years ago. Since then, numerous studies have been dedicated to the isolation, purification, structural definition, and elucidation of the biological properties of Mtb LAM. In this review, we present a brief historical perspective on the discovery of Mtb LAM and the herculean efforts devoted to structurally characterizing the molecule because of its unique structural and biological features. The significance of LAM remains high to this date, mainly due to its distinct immunological properties in conjunction with its role as a biomarker for diagnostic tests due to its identification in urine, and thus can serve as a point-of-care diagnostic test for tuberculosis (TB). In recent decades, LAM has been thoroughly studied and massive amounts of information on this intriguing molecule are now available. In this review, we give the readers a historical perspective and an update on the current knowledge of LAM with information on the inherent carbohydrate composition, which is unique due to the often puzzling sugar residues that are specifically found on LAM. We then guide the readers through the complex and myriad immunological outcomes, which are strictly dependent on LAM's chemical structure. Furthermore, we present issues that remain unresolved and represent the immediate future of LAM research. Addressing the chemistry, functions, and roles of LAM will lead to innovative ways to manipulate the processes that involve this controversial and fascinating biomolecule.
Collapse
Affiliation(s)
- Jordi B. Torrelles
- International Center for the Advancement of Research and Education (I • Care), Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|