1
|
Wang W, Liu L, Zhu J, Xing Y, Jiao S, Wu Z. AI-Enhanced Visual-Spectral Synergy for Fast and Ultrasensitive Biodetection of Breast Cancer-Related miRNAs. ACS NANO 2024; 18:6266-6275. [PMID: 38252138 DOI: 10.1021/acsnano.3c10543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
In biomedical testing, artificial intelligence (AI)-enhanced analysis has gradually been applied to the diagnosis of certain diseases. This research employs AI algorithms to refine the precision of integrative detection, encompassing both visual results and fluorescence spectra from lateral flow assays (LFAs), which signal the presence of cancer-linked miRNAs. Specifically, the color shift of gold nanoparticles (GNPs) is paired with the red fluorescence from nitrogen vacancy color centers (NV-centers) in fluorescent nanodiamonds (FNDs) and is integrated into LFA strips. While GNPs amplify the fluorescence of FNDs, in turn, FNDs enhance the color intensity of GNPs. This reciprocal intensification of fluorescence and color can be synergistically augmented with AI algorithms, thereby improving the detection sensitivity for early diagnosis. Supported by the detection platform based on this strategy, the fastest detection results with a limit of detection (LOD) at the fM level and the R2 value of ∼0.9916 for miRNA can be obtained within 5 min. Meanwhile, by labeling the capture probes for miRNA-21 and miRNA-96 (both of which are early indicators of breast cancer) on separate T-lines, simultaneous detection of them can be achieved. The miRNA detection methods employed in this study may potentially be applied in the future for the early detection of breast cancer.
Collapse
Affiliation(s)
- Wei Wang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Jianxiong Zhu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Songlong Jiao
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
2
|
Duanmu L, Shen Y, Gong P, Zhang H, Meng X, Yu Y. Constant Pressure-Regulated Microdroplet Polymerase Chain Reaction in Microfluid Chips: A Methodological Study. MICROMACHINES 2023; 15:8. [PMID: 38276836 PMCID: PMC10820915 DOI: 10.3390/mi15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Digital polymerase chain reaction (PCR) technology in microfluidic systems often results in bubble formation post-amplification, leading to microdroplet fragmentation and compromised detection accuracy. To solve this issue, this study introduces a method based on the constant pressure regulation of microdroplets during PCR within microfluidic chips. An ideal pressure reference value for continuous pressure control was produced by examining air solubility in water at various pressures and temperatures as well as modeling air saturation solubility against pressure for various temperature scenarios. Employing a high-efficiency constant pressure device facilitates precise modulation of the microfluidic chip's inlet and outlet pressure. This ensures that air solubility remains unsaturated during PCR amplification, preventing bubble precipitation and maintaining microdroplet integrity. The device and chip were subsequently utilized for quantitative analysis of the human epidermal growth factor receptor (EGFR) exon 18 gene, with results indicating a strong linear relationship between detection signal and DNA concentration within a range of 101-105 copies/μL (R2 = 0.999). By thwarting bubble generation during PCR process, the constant pressure methodology enhances microdroplet stability and PCR efficiency, underscoring its significant potential for nucleic acid quantification and trace detection.
Collapse
Affiliation(s)
- Luyang Duanmu
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China;
| | - Youji Shen
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China; (Y.S.); (P.G.); (H.Z.); (X.M.)
| | - Ping Gong
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China; (Y.S.); (P.G.); (H.Z.); (X.M.)
| | - Hao Zhang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China; (Y.S.); (P.G.); (H.Z.); (X.M.)
| | - Xiangkai Meng
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China; (Y.S.); (P.G.); (H.Z.); (X.M.)
| | - Yuanhua Yu
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China;
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China; (Y.S.); (P.G.); (H.Z.); (X.M.)
| |
Collapse
|
3
|
Duanmu L, Yu Y, Meng X. Microdroplet PCR in Microfluidic Chip Based on Constant Pressure Regulation. MICROMACHINES 2023; 14:1257. [PMID: 37374842 DOI: 10.3390/mi14061257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
A device and method for the constant pressure regulation of microdroplet PCR in microfluidic chips are developed to optimize for the microdroplet movement, fragmentation, and bubble generation in microfluidic chips. In the developed device, an air source device is adopted to regulate the pressure in the chip, such that microdroplet generation and PCR amplification without bubbles can be achieved. In 3 min, the sample in 20 μL will be distributed into nearly 50,000 water-in-oil droplets exhibiting a diameter of about 87 μm, and the microdroplet will be subjected to a close arrangement in the chip without air bubbles. The device and chip are adopted to quantitatively detect human genes. As indicated by the experimental results, a good linear relationship exists between the detection signal and DNA concentration ranging from 101 to 105 copies/μL (R2 = 0.999). The microdroplet PCR devices based on constant pressure regulation chips exhibit a wide variety of advantages (e.g., achieving high pollution resistance, microdroplet fragmentation and integration avoidance, reducing human interference, and standardizing results). Thus, microdroplet PCR devices based on constant pressure regulation chips have promising applications for nucleic acid quantification.
Collapse
Affiliation(s)
- Luyang Duanmu
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Yuanhua Yu
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Xiangkai Meng
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
4
|
Miglietta L, Xu K, Chhaya P, Kreitmann L, Hill-Cawthorne K, Bolt F, Holmes A, Georgiou P, Rodriguez-Manzano J. Adaptive Filtering Framework to Remove Nonspecific and Low-Efficiency Reactions in Multiplex Digital PCR Based on Sigmoidal Trends. Anal Chem 2022; 94:14159-14168. [PMID: 36190816 PMCID: PMC9583074 DOI: 10.1021/acs.analchem.2c01883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022]
Abstract
Real-time digital polymerase chain reaction (qdPCR) coupled with machine learning (ML) methods has shown the potential to unlock scientific breakthroughs, particularly in the field of molecular diagnostics for infectious diseases. One promising application of this emerging field explores single fluorescent channel PCR multiplex by extracting target-specific kinetic and thermodynamic information contained in amplification curves, also known as data-driven multiplexing. However, accurate target classification is compromised by the presence of undesired amplification events and not ideal reaction conditions. Therefore, here, we proposed a novel framework to identify and filter out nonspecific and low-efficient reactions from qdPCR data using outlier detection algorithms purely based on sigmoidal trends of amplification curves. As a proof-of-concept, this framework is implemented to improve the classification performance of the recently reported data-driven multiplexing method called amplification curve analysis (ACA), using available published data where the ACA is demonstrated to screen carbapenemase-producing organisms in clinical isolates. Furthermore, we developed a novel strategy, named adaptive mapping filter (AMF), to adjust the percentage of outliers removed according to the number of positive counts in qdPCR. From an overall total of 152,000 amplification events, 116,222 positive amplification reactions were evaluated before and after filtering by comparing against melting peak distribution, proving that abnormal amplification curves (outliers) are linked to shifted melting distribution or decreased PCR efficiency. The ACA was applied to assess classification performance before and after AMF, showing an improved sensitivity of 1.2% when using inliers compared to a decrement of 19.6% when using outliers (p-value < 0.0001), removing 53.5% of all wrong melting curves based only on the amplification shape. This work explores the correlation between the kinetics of amplification curves and the thermodynamics of melting curves, and it demonstrates that filtering out nonspecific or low-efficient reactions can significantly improve the classification accuracy for cutting-edge multiplexing methodologies.
Collapse
Affiliation(s)
- Luca Miglietta
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, LondonW12 0NN, U.K.
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, LondonSW7 2AZ, U.K.
| | - Ke Xu
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, LondonW12 0NN, U.K.
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, LondonSW7 2AZ, U.K.
| | - Priya Chhaya
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, LondonSW7 2AZ, U.K.
| | - Louis Kreitmann
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, LondonW12 0NN, U.K.
| | - Kerri Hill-Cawthorne
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, LondonW12 0NN, U.K.
| | - Frances Bolt
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, LondonW12 0NN, U.K.
| | - Alison Holmes
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, LondonW12 0NN, U.K.
| | - Pantelis Georgiou
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, LondonSW7 2AZ, U.K.
| | - Jesus Rodriguez-Manzano
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, LondonW12 0NN, U.K.
| |
Collapse
|
5
|
Highly multiplex PCR assays by coupling the 5'-flap endonuclease activity of Taq DNA polymerase and molecular beacon reporters. Proc Natl Acad Sci U S A 2022; 119:2110672119. [PMID: 35197282 PMCID: PMC8892341 DOI: 10.1073/pnas.2110672119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 01/23/2023] Open
Abstract
We describe a highly multiplex PCR approach that can identify 10-fold more targets in current real-time PCR assays without additional enzymes or separate reactions. This single-step, single-tube, homogeneous detection approach, termed MeltArray, is achieved by coupling the 5′-flap endonuclease activity of the Taq DNA polymerase and multiple annealing sites of the molecular beacon reporters. The 5′-flap endonuclease cleaves a probe specifically into a “mediator” primer, and one molecular beacon reporter allows for the extension of multiple “mediator” primers to produce a series of fluorescent hybrids with different melting temperatures unique to each target. The overall number of targets detectable per reaction is equal to the number of the reporters multiplied by the number of mediator primers per reporter. Real-time PCR is the most utilized nucleic acid testing tool in clinical settings. However, the number of targets detectable per reaction are restricted by current modes. Here, we describe a single-step, multiplex approach capable of detecting dozens of targets per reaction in a real-time PCR thermal cycler. The approach, termed MeltArray, utilizes the 5′-flap endonuclease activity of Taq DNA polymerase to cleave a mediator probe into a mediator primer that can bind to a molecular beacon reporter, which allows for the extension of multiple mediator primers to produce a series of fluorescent hybrids of different melting temperatures unique to each target. Using multiple molecular beacon reporters labeled with different fluorophores, the overall number of targets is equal to the number of the reporters multiplied by that of mediator primers per reporter. The use of MeltArray was explored in various scenarios, including in a 20-plex assay that detects human Y chromosome microdeletions, a 62-plex assay that determines Escherichia coli serovars, a 24-plex assay that simultaneously identifies and quantitates respiratory pathogens, and a minisequencing assay that identifies KRAS mutations, and all of these different assays were validated with clinical samples. MeltArray approach should find widespread use in clinical settings owing to its combined merits of multiplicity, versatility, simplicity, and accessibility.
Collapse
|
6
|
Moniri A, Miglietta L, Holmes A, Georgiou P, Rodriguez-Manzano J. High-Level Multiplexing in Digital PCR with Intercalating Dyes by Coupling Real-Time Kinetics and Melting Curve Analysis. Anal Chem 2020; 92:14181-14188. [PMID: 32954724 DOI: 10.1021/acs.analchem.0c03298] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Digital polymerase chain reaction (dPCR) is a mature technique that has enabled scientific breakthroughs in several fields. However, this technology is primarily used in research environments with high-level multiplexing, representing a major challenge. Here, we propose a novel method for multiplexing, referred to as amplification and melting curve analysis (AMCA), which leverages the kinetic information in real-time amplification data and the thermodynamic melting profile using an affordable intercalating dye (EvaGreen). The method trains a system composed of supervised machine learning models for accurate classification, by virtue of the large volume of data from dPCR platforms. As a case study, we develop a new 9-plex assay to detect mobilized colistin resistant genes as clinically relevant targets for antimicrobial resistance. Over 100,000 amplification events have been analyzed, and for the positive reactions, the AMCA approach reports a classification accuracy of 99.33 ± 0.13%, an increase of 10.0% over using melting curve analysis. This work provides an affordable method of high-level multiplexing without fluorescent probes, extending the benefits of dPCR in research and clinical settings.
Collapse
Affiliation(s)
- Ahmad Moniri
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Luca Miglietta
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Alison Holmes
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London W12 0NN, U.K
| | - Pantelis Georgiou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Jesus Rodriguez-Manzano
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K.,NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London W12 0NN, U.K
| |
Collapse
|
7
|
Gouda AS, Przypis Ł, Walczak K, Jørgensen PT, Wengel J. Carbazole modified oligonucleotides: synthesis, hybridization studies and fluorescence properties. Org Biomol Chem 2020; 18:6935-6948. [PMID: 32936176 DOI: 10.1039/d0ob01553a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthesis of the novel thiophenyl carbazole phosphoramidite DNA building block 5 was accomplished in four steps using a Suzuki-Miyaura cross-coupling reaction from the core carbazole and it was seamlessly accommodated into a 9-mer DNA-based oligonucleotide by incorporation at the flanking 5'-end in combination with a central insertion of an LNA-T nucleotide. The carbazole-containing oligonucleotide was combined in different duplex hybrids, which were characterized by thermal denaturation, circular dichroism and fluorescence studies. The carbazole monomer modulates the duplex stability in various ways. Thus, monomer Z increased the thermal stability of the 9-mer towards the complementary 9-mer/15-mer DNA duplex by 4.2 °C. Furthermore, indications of its intercalation into the duplex were obtained by modeling studies and robust decreases in fluorescence emission intensities upon duplex formation. In contrast, no clear intercalating tendency was corroborated for monomer Z within the DNA/RNA hybrid duplex as indicated by moderate quenching of the fluorescence and similar duplex thermal stabilities relative to the corresponding control duplex. The recognition efficiencies of the carbazole modified oligonucleotide toward single nucleotide mismatches were studied with two 15-mer model targets (DNA and RNA). For both systems, mismatches positioned at the juxtaposition of the carbazole monomer showed pronounced deceases in thermal denaturation temperature. Steady-state fluorescence emission studies of all mismatched duplexes with incorporation of Z monomer typically displayed efficient fluorescence quenching.
Collapse
Affiliation(s)
- Alaa S Gouda
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | | | |
Collapse
|
8
|
Huertas CS, Calvo-Lozano O, Mitchell A, Lechuga LM. Advanced Evanescent-Wave Optical Biosensors for the Detection of Nucleic Acids: An Analytic Perspective. Front Chem 2019; 7:724. [PMID: 31709240 PMCID: PMC6823211 DOI: 10.3389/fchem.2019.00724] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Evanescent-wave optical biosensors have become an attractive alternative for the screening of nucleic acids in the clinical context. They possess highly sensitive transducers able to perform detection of a wide range of nucleic acid-based biomarkers without the need of any label or marker. These optical biosensor platforms are very versatile, allowing the incorporation of an almost limitless range of biorecognition probes precisely and robustly adhered to the sensor surface by covalent surface chemistry approaches. In addition, their application can be further enhanced by their combination with different processes, thanks to their integration with complex and automated microfluidic systems, facilitating the development of multiplexed and user-friendly platforms. The objective of this work is to provide a comprehensive synopsis of cutting-edge analytical strategies based on these label-free optical biosensors able to deal with the drawbacks related to DNA and RNA detection, from single point mutations assays and epigenetic alterations, to bacterial infections. Several plasmonic and silicon photonic-based biosensors are described together with their most recent applications in this area. We also identify and analyse the main challenges faced when attempting to harness this technology and how several innovative approaches introduced in the last years manage those issues, including the use of new biorecognition probes, surface functionalization approaches, signal amplification and enhancement strategies, as well as, sophisticated microfluidic solutions.
Collapse
Affiliation(s)
- Cesar S. Huertas
- Integrated Photonics and Applications Centre, School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Olalla Calvo-Lozano
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, CIBER-BBN, Barcelona, Spain
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre, School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, CIBER-BBN, Barcelona, Spain
| |
Collapse
|
9
|
Moniri A, Rodriguez-Manzano J, Malpartida-Cardenas K, Yu LS, Didelot X, Holmes A, Georgiou P. Framework for DNA Quantification and Outlier Detection Using Multidimensional Standard Curves. Anal Chem 2019; 91:7426-7434. [PMID: 31056898 PMCID: PMC6551572 DOI: 10.1021/acs.analchem.9b01466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Real-time PCR is a highly sensitive
and powerful technology for
the quantification of DNA and has become the method of choice in microbiology,
bioengineering, and molecular biology. Currently, the analysis of
real-time PCR data is hampered by only considering a single feature
of the amplification profile to generate a standard curve. The current
“gold standard” is the cycle-threshold (Ct) method which is known to provide poor quantification
under inconsistent reaction efficiencies. Multiple single-feature
methods have been developed to overcome the limitations of the Ct method; however, there is an unexplored area
of combining multiple features in order to benefit from their joint
information. Here, we propose a novel framework that combines existing
standard curve methods into a multidimensional standard curve. This
is achieved by considering multiple features together such that each
amplification curve is viewed as a point in a multidimensional space.
Contrary to only considering a single-feature, in the multidimensional
space, data points do not fall exactly on the standard curve, which
enables a similarity measure between amplification curves based on
distances between data points. We show that this framework expands
the capabilities of standard curves in order to optimize quantification
performance, provide a measure of how suitable an amplification curve
is for a standard, and thus automatically detect outliers and increase
the reliability of quantification. Our aim is to provide an affordable
solution to enhance existing diagnostic settings through maximizing
the amount of information extracted from conventional instruments.
Collapse
Affiliation(s)
- Ahmad Moniri
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering , Imperial College London , London SW7 2AZ , U.K
| | - Jesus Rodriguez-Manzano
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering , Imperial College London , London SW7 2AZ , U.K
| | - Kenny Malpartida-Cardenas
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering , Imperial College London , London SW7 2AZ , U.K
| | - Ling-Shan Yu
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering , Imperial College London , London SW7 2AZ , U.K
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics , University of Warwick , Coventry CV4 7AL , U.K
| | - Alison Holmes
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance , Imperial College London , Hammersmith Hospital Campus, London W12 0NN , U.K
| | - Pantelis Georgiou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering , Imperial College London , London SW7 2AZ , U.K
| |
Collapse
|
10
|
Hornum M, Stendevad J, Sharma PK, Kumar P, Nielsen RB, Petersen M, Nielsen P. Base-Pairing Properties of Double-Headed Nucleotides. Chemistry 2019; 25:7387-7395. [PMID: 30942502 DOI: 10.1002/chem.201901077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 12/28/2022]
Abstract
Nucleotides that contain two nucleobases (double-headed nucleotides) have the potential to condense the information of two separate nucleotides into one. This presupposes that both bases must successfully pair with a cognate strand. Here, double-headed nucleotides that feature cytosine, guanine, thymine, adenine, hypoxanthine, and diaminopurine linked to the C2'-position of an arabinose scaffold were developed and examined in full detail. These monomeric units were efficiently prepared by convergent synthesis and incorporated into DNA oligonucleotides by means of the automated phosphoramidite method. Their pairing efficiency was assessed by UV-based melting-temperature analysis in several contexts and extensive molecular dynamics studies. Altogether, the results show that these double-headed nucleotides have a well-defined structure and invariably behave as functional dinucleotide mimics in DNA duplexes.
Collapse
Affiliation(s)
- Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Julie Stendevad
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Pawan Kumar
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Rasmus B Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Michael Petersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
11
|
Querard J, Gautier A, Le Saux T, Jullien L. Expanding discriminative dimensions for analysis and imaging. Chem Sci 2015; 6:2968-2978. [PMID: 28706678 PMCID: PMC5490003 DOI: 10.1039/c4sc03955f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/18/2015] [Indexed: 01/01/2023] Open
Abstract
OPTIMAL can discriminate – without any separation or washing step – a targeted photoswitchable probe used as labelling or titration contrast agent among various interfering compounds, photoswitchable or not.
Eliminating the contribution of interfering compounds is a key step in chemical analysis. In complex media, one possible approach is to perform a preliminary separation. However purification is often demanding, long, and costly; it may also considerably alter the properties of interacting components of the mixture (e.g. in a living cell). Hence there is a strong interest for developing separation-free non-invasive analytical protocols. Using photoswitchable probes as labelling and titration contrast agents, we demonstrate that the association of a modulated monochromatic light excitation with a kinetic filtering of the overall observable is much more attractive than constant excitation to read-out the contribution from a target probe under adverse conditions. An extensive theoretical framework enabled us to optimize the out-of-phase concentration first-order response of a photoswitchable probe to modulated illumination by appropriately matching the average light intensity and the radial frequency of the light modulation to the probe dynamics. Thus, we can selectively and quantitatively extract from an overall signal the contribution from a target photoswitchable probe within a mixture of species, photoswitchable or not. This simple titration strategy is more specifically developed in the context of fluorescence imaging, which offers promising perspectives.
Collapse
Affiliation(s)
- Jérôme Querard
- Ecole Normale Supérieure-PSL Research University , Département de Chimie , 24, rue Lhomond , F-75005 Paris , France . ; ; ; Tel: +33 4432 3333.,Sorbonne Universités , UPMC Univ Paris 06 , PASTEUR , F-75005 , Paris , France.,CNRS , UMR 8640 PASTEUR , F-75005 , Paris , France
| | - Arnaud Gautier
- Ecole Normale Supérieure-PSL Research University , Département de Chimie , 24, rue Lhomond , F-75005 Paris , France . ; ; ; Tel: +33 4432 3333.,Sorbonne Universités , UPMC Univ Paris 06 , PASTEUR , F-75005 , Paris , France.,CNRS , UMR 8640 PASTEUR , F-75005 , Paris , France
| | - Thomas Le Saux
- Ecole Normale Supérieure-PSL Research University , Département de Chimie , 24, rue Lhomond , F-75005 Paris , France . ; ; ; Tel: +33 4432 3333.,Sorbonne Universités , UPMC Univ Paris 06 , PASTEUR , F-75005 , Paris , France.,CNRS , UMR 8640 PASTEUR , F-75005 , Paris , France
| | - Ludovic Jullien
- Ecole Normale Supérieure-PSL Research University , Département de Chimie , 24, rue Lhomond , F-75005 Paris , France . ; ; ; Tel: +33 4432 3333.,Sorbonne Universités , UPMC Univ Paris 06 , PASTEUR , F-75005 , Paris , France.,CNRS , UMR 8640 PASTEUR , F-75005 , Paris , France
| |
Collapse
|
12
|
Comparison of different DNA binding fluorescent dyes for applications of high-resolution melting analysis. Clin Biochem 2015; 48:609-16. [PMID: 25641335 DOI: 10.1016/j.clinbiochem.2015.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Different applications of high-resolution melting (HRM) analysis have been adopted for a wide range of research and clinical applications. This study compares the performance of selected DNA binding fluorescent dyes for their possible application in HRM. DESIGN AND METHODS We compared twelve dyes with basic properties considered relevant for PCR amplification and melting curve analysis. These included PCR inhibition, fluorescence intensity, the ability to generate melting curves and their effect on melting temperature (Tm). Seven of these dyes with promising properties were then evaluated for possible use in basic HRM applications; such as small amplicon genotyping, genotyping of a 1 kb insertion/deletion polymorphism, probe-based genotyping and mutation screening. RESULTS Five dyes failed to exhibit promising properties during the first part of the study, and these were excluded from further testing. Of the remaining dyes, SYTO11, SYTO13 and SYTO16 showed better PCR inhibitory and Tm affecting properties compared to commercial HRM dyes LCGreen Plus, EvaGreen and ResoLight. Although the SYTO dyes generally exhibited good discrimination powers in HRM applications, SYTO11 and SYTO14 gave low signal intensity and lower quality results. CONCLUSIONS Our results suggest that the best performing dyes for HRM are those commercially offered for HRM analyses. However, the performance of SYTO16 and SYTO13 was comparable to the HRM dyes in the majority of our assays, thus demonstrating that they are also quite suitable for both real-time PCR and HRM applications.
Collapse
|
13
|
Senapati S, Slouka Z, Shah SS, Behura SK, Shi Z, Stack MS, Severson DW, Chang HC. An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion phenomenon. Biosens Bioelectron 2014; 60:92-100. [PMID: 24787123 PMCID: PMC4445831 DOI: 10.1016/j.bios.2014.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/23/2022]
Abstract
We present a novel low-cost biosensor for rapid, sensitive and selective detection of nucleic acids based on an ionic diode feature of an anion exchange nanoporous membrane under DC bias. The ionic diode feature is associated with external surface charge inversion on the positively charged anion exchange nanomembrane upon hybridization of negatively charged nucleic acid molecules to single-stranded oligoprobes functionalized on the membrane surface resulting in the formation of a cation selective monolayer. The resulting bipolar membrane causes a transition from electroconvection-controlled to water-splitting controlled ion conductance, with a large ion current signature that can be used to accurately quantify the hybridized nucleic acids. The platform is capable of distinguishing two base-pair mismatches in a 22-base pairing segment of microRNAs associated with oral cancer, as well as serotype-specific detection of dengue virus. We also show the sensor' capability to selectively capture target nucleic acids from a heterogeneous mixture. The limit of detection is 1 pM for short 27 base target molecules in a 15-min assay. Similar hybridization results are shown for short DNA molecules as well as RNAs from Brucella and Escherichia coli. The versatility and simplicity of this low-cost biosensor should enable point-of-care diagnostics in food, medical and environmental safety markets.
Collapse
Affiliation(s)
- Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Advanced Diagnostics & Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zdenek Slouka
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sunny S Shah
- Advanced Diagnostics & Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Susanta K Behura
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zonggao Shi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - M Sharon Stack
- Advanced Diagnostics & Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David W Severson
- Advanced Diagnostics & Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Advanced Diagnostics & Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
14
|
Sun L, Fan Z, Weng X, Ye X, Long J, Fu K, Yan S, Wang B, Zhuo Y, Liu X, Lao K. Rapid detection of Down's syndrome using quantitative real-time PCR (qPCR) targeting segmental duplications on chromosomes 21 and 11. Gene 2014; 552:272-6. [PMID: 25256276 DOI: 10.1016/j.gene.2014.09.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/09/2014] [Accepted: 09/19/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Development of a qPCR test for the detection of trisomy 21 using segmental duplications. METHODS Segmental duplications in the TTC3 gene on chromosome 21 and the KDM2A gene on chromosome 11 were selected as molecular markers for the diagnostic qPCR assay. A set of consensus primers selected from the conserved regions of these segmental duplications were used to amplify internal diverse sequences that were detected and quantified with different probes labeled with distinct fluorescence. The copy numbers of these two fragments were determined based on the ΔCq values of qPCR. The results of qPCR for prenatal and neonatal screening of Down's syndrome were compared with the conventional karyotype analysis by testing 82 normal individuals and 50 subjects with Down's syndrome. RESULTS The ΔCq values of segmental duplications on chr21 and 11 ranged between 0.33 and 0.75 in normal individuals, and between 0.91 and 1.18 in subjects with Down's syndrome. The ΔCq values of these two segmental duplications clearly discriminated Down's syndrome from normal individuals (P<0.001). Furthermore, the qPCR results were consistent with karyotype analysis. CONCLUSION Our qPCR can be used for rapid prenatal and neonatal screening of Down's syndrome.
Collapse
Affiliation(s)
- Lei Sun
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Hospital, Guangxi, China.
| | - Zuqian Fan
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Hospital, Guangxi, China
| | - Xunjin Weng
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Hospital, Guangxi, China
| | - Xuehe Ye
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Hospital, Guangxi, China
| | - Ju Long
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Hospital, Guangxi, China
| | - Kepeng Fu
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Hospital, Guangxi, China
| | - Shanhuo Yan
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Hospital, Guangxi, China
| | - Bo Wang
- Genetics Laboratory, Hubei Maternal and Child Health Hospital, Hubei, China
| | - Yongguang Zhuo
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Hospital, Guangxi, China
| | - Xinxing Liu
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Hospital, Guangxi, China
| | - Kegan Lao
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Hospital, Guangxi, China
| |
Collapse
|
15
|
Al Atalah B, De Vleesschauwer D, Xu J, Fouquaert E, Höfte M, Van Damme EJM. Transcriptional behavior of EUL-related rice lectins toward important abiotic and biotic stresses. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:986-992. [PMID: 24974324 DOI: 10.1016/j.jplph.2014.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
The rice genome encodes several genes for putative carbohydrate-binding proteins belonging to the family of Euonymus related lectins (EULs). This lectin family was discovered recently and evidence shows that the expression of these proteins is subject to multiple environmental stresses. In this study, quantitative reverse transcription PCR (qRT-PCR) was conducted on rice seedlings exposed to various abiotic (150mM NaCl, 100mM mannitol, and 100μM abscisic acid (ABA)) and biotic (Xanthomonas oryzae pv. oryzae and Magnaporthe oryzae) stresses to compare the transcriptional behavior of the EULs and a known stress related lectin Orysata belonging to the family of jacalin-related lectins. All EUL transcripts were strongly up-regulated after ABA and NaCl treatments in the roots whereas the overall expression level was generally lower and more variable in the shoots. Moreover, all abiotic stresses induced Orysata in both tissues except for mannitol treatment which failed to show an effect in the roots. Orysata also strongly accumulated after X. oryzae pv. oryzae infection, as were various D-type EUL lectins. In contrast, some of the EUL proteins, including OrysaEULS3, OrysaEULD1A and OrysaEULD2, as well as Orysata were significantly down-regulated upon M. oryzae attack, suggesting fungal manipulation of these genes. Collectively, our results clearly show that rice expresses multiple carbohydrate-binding proteins in response to a wide variety of abiotic and biotic stress conditions. We hypothesize that the Euonymus related proteins fulfill a prominent role in sensing and responding to multiple environmental cues.
Collapse
Affiliation(s)
- Bassam Al Atalah
- Ghent University, Dept. Molecular Biotechnology, Lab of Biochemistry and Glycobiology, Coupure Links 653, 9000 Ghent, Belgium
| | - David De Vleesschauwer
- Ghent University, Dept. Plant Protection, Lab of Phytopathology, Coupure Links 653, 9000 Ghent, Belgium
| | - Jing Xu
- Ghent University, Dept. Plant Protection, Lab of Phytopathology, Coupure Links 653, 9000 Ghent, Belgium
| | - Elke Fouquaert
- Ghent University, Dept. Molecular Biotechnology, Lab of Biochemistry and Glycobiology, Coupure Links 653, 9000 Ghent, Belgium
| | - Monica Höfte
- Ghent University, Dept. Plant Protection, Lab of Phytopathology, Coupure Links 653, 9000 Ghent, Belgium
| | - Els J M Van Damme
- Ghent University, Dept. Molecular Biotechnology, Lab of Biochemistry and Glycobiology, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
16
|
Abstract
The advent of the polymerase chain reaction and the availability of data from various global human genome projects should make it possible, using a DNA sample isolated from white blood cells, to diagnose rapidly and accurately almost any monogenic condition resulting from single nucleotide changes. DNA-based diagnosis for malignant hyperthermia (MH) is an attractive proposition, because it could replace the invasive and morbid caffeine-halothane/in vitro contracture tests of skeletal muscle biopsy tissue. Moreover, MH is preventable if an accurate diagnosis of susceptibility can be made before general anesthesia, the most common trigger of an MH episode. Diagnosis of MH using DNA was suggested as early as 1990 when the skeletal muscle ryanodine receptor gene (RYR1), and a single point mutation therein, was linked to MH susceptibility. In 1994, a single point mutation in the α 1 subunit of the dihydropyridine receptor gene (CACNA1S) was identified and also subsequently shown to be causative of MH. In the succeeding years, the number of identified mutations in RYR1 has grown, as has the number of potential susceptibility loci, although no other gene has yet been definitively associated with MH. In addition, it has become clear that MH is associated with either of these 2 genes (RYR1 and CACNA1S) in only 50% to 70% of affected families. While DNA testing for MH susceptibility has now become widespread, it still does not replace the in vitro contracture tests. Whole exome sequence analysis makes it potentially possible to identify all variants within human coding regions, but the complexity of the genome, the heterogeneity of MH, the limitations of bioinformatic tools, and the lack of precise genotype/phenotype correlations are all confounding factors. In addition, the requirement for demonstration of causality, by in vitro functional analysis, of any familial mutation currently precludes DNA-based diagnosis as the sole test for MH susceptibility. Nevertheless, familial DNA testing for MH susceptibility is now widespread although limited to a positive diagnosis and to those few mutations that have been functionally characterized. Identification of new susceptibility genes remains elusive. When new genes are identified, it will be the role of the biochemists, physiologists, and biophysicists to devise functional assays in appropriate systems. This will remain the bottleneck unless high throughput platforms can be designed for functional work. Analysis of entire genomes from several individuals simultaneously is a reality. DNA testing for MH, based on current criteria, remains the dream.
Collapse
Affiliation(s)
- Kathryn M Stowell
- From the Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
17
|
Boyd JH, McConechy M, Walley KR. Acute organ injury is associated with alterations in the cell-free plasma transcriptome. Intensive Care Med Exp 2014; 2:7. [PMID: 26266904 PMCID: PMC4513035 DOI: 10.1186/2197-425x-2-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/23/2014] [Indexed: 11/25/2022] Open
Abstract
Background Despite a genomic revolution in biological sciences, clinical medicine has yet to integrate diagnostics based upon gene expression into practice. While commonly used plasma protein assays rely on organ-specific origins, nearly all nucleic acid in whole blood is derived from white blood cells limiting their utility to diagnose non-immune disorders. The aim of the study was to use cell-free plasma to define circulating messenger RNA sequences diagnostic of acute organ injury, including myocardial infarction (MI) and acute kidney injury (AKI). Methods In healthy human subjects (N = 4) and patients with acute MI (N = 4), we characterized the concentration and nature of circulating plasma RNA through spectrophotometry and chromatography. Through reverse transcriptase polymerase chain reaction (RT-PCR) of amplicons up to 939 base pairs, we determined whether this mRNA was intact but of insufficient quantity to sequence. In mice, we induced an acute anterior myocardial infarction through 1 h of ischemia followed by reperfusion of the left anterior descending (LAD) artery. We compared the cell-free plasma transcriptome using cDNA microarray in sham-operated mice compared to ischemia upon reperfusion and at 1 and 4 h. To determine organ specificity, we compared this profile to acute ischemia-reperfusion of the kidney. Results In humans, there is more plasma RNA in those with acute MI than in healthy controls. In mice, ischemia-reperfusion of the LAD artery resulted in a time-dependent regulation of 589 circulating mRNA transcripts with less than a 5% overlap in sequences from acute ischemia-reperfusion injury of the kidney. Conclusions The mRNA derived from cell-free plasma defines organ injury in a time and injury-specific pattern. Electronic supplementary material The online version of this article (doi:10.1186/2197-425X-2-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John H Boyd
- Centre for Heart Lung Innovation, St. Paul's Hospital, Room 166, 1081 Burrard Street, Vancouver, British Columbia, V6Z 1Y6, Canada,
| | | | | |
Collapse
|
18
|
Zhu J, Song X, Xiang G, Feng Z, Guo H, Mei D, Zhang G, Wang D, Mitchelson K, Xing W, Cheng J. A rapid automatic processing platform for bead label-assisted microarray analysis: application for genetic hearing-loss mutation detection. ACTA ACUST UNITED AC 2013; 19:144-52. [PMID: 23975388 DOI: 10.1177/2211068213491096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Molecular diagnostics using microarrays are increasingly being used in clinical diagnosis because of their high throughput, sensitivity, and accuracy. However, standard microarray processing takes several hours and involves manual steps during hybridization, slide clean up, and imaging. Here we describe the development of an integrated platform that automates these individual steps as well as significantly shortens the processing time and improves reproducibility. The platform integrates such key elements as a microfluidic chip, flow control system, temperature control system, imaging system, and automated analysis of clinical results. Bead labeling of microarray signals required a simple imaging system and allowed continuous monitoring of the microarray processing. To demonstrate utility, the automated platform was used to genotype hereditary hearing-loss gene mutations. Compared with conventional microarray processing procedures, the platform increases the efficiency and reproducibility of hybridization, speeding microarray processing through to result analysis. The platform also continuously monitors the microarray signals, which can be used to facilitate optimization of microarray processing conditions. In addition, the modular design of the platform lends itself to development of simultaneous processing of multiple microfluidic chips. We believe the novel features of the platform will benefit its use in clinical settings in which fast, low-complexity molecular genetic testing is required.
Collapse
Affiliation(s)
- Jiang Zhu
- 1CapitalBio Corporation, Beijing, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rao X, Lai D, Huang X. A new method for quantitative real-time polymerase chain reaction data analysis. J Comput Biol 2013; 20:703-11. [PMID: 23841653 DOI: 10.1089/cmb.2012.0279] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantitative real-time polymerase chain reaction (qPCR) is a sensitive gene quantification method that has been extensively used in biological and biomedical fields. The currently used methods for PCR data analysis, including the threshold cycle method and linear and nonlinear model-fitting methods, all require subtracting background fluorescence. However, the removal of background fluorescence can hardly be accurate and therefore can distort results. We propose a new method, the taking-difference linear regression method, to overcome this limitation. Briefly, for each two consecutive PCR cycles, we subtract the fluorescence in the former cycle from that in the latter cycle, transforming the n cycle raw data into n-1 cycle data. Then, linear regression is applied to the natural logarithm of the transformed data. Finally, PCR amplification efficiencies and the initial DNA molecular numbers are calculated for each reaction. This taking-difference method avoids the error in subtracting an unknown background, and thus it is more accurate and reliable. This method is easy to perform, and this strategy can be extended to all current methods for PCR data analysis.
Collapse
Affiliation(s)
- Xiayu Rao
- Division of Biostatistics, The University of Texas School of Public Health, Houston, Texas, USA
| | | | | |
Collapse
|
20
|
Guescini M, Sisti D, Rocchi MBL, Panebianco R, Tibollo P, Stocchi V. Accurate and precise DNA quantification in the presence of different amplification efficiencies using an improved Cy0 method. PLoS One 2013; 8:e68481. [PMID: 23861909 PMCID: PMC3704541 DOI: 10.1371/journal.pone.0068481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/05/2013] [Indexed: 12/23/2022] Open
Abstract
Quantitative real-time PCR represents a highly sensitive and powerful technology for the quantification of DNA. Although real-time PCR is well accepted as the gold standard in nucleic acid quantification, there is a largely unexplored area of experimental conditions that limit the application of the Ct method. As an alternative, our research team has recently proposed the Cy0 method, which can compensate for small amplification variations among the samples being compared. However, when there is a marked decrease in amplification efficiency, the Cy0 is impaired, hence determining reaction efficiency is essential to achieve a reliable quantification. The proposed improvement in Cy0 is based on the use of the kinetic parameters calculated in the curve inflection point to compensate for efficiency variations. Three experimental models were used: inhibition of primer extension, non-optimal primer annealing and a very small biological sample. In all these models, the improved Cy0 method increased quantification accuracy up to about 500% without affecting precision. Furthermore, the stability of this procedure was enhanced integrating it with the SOD method. In short, the improved Cy0 method represents a simple yet powerful approach for reliable DNA quantification even in the presence of marked efficiency variations.
Collapse
Affiliation(s)
- Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Via I Maggetti, Urbino, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Bortolozzi R, Ihmels H, Thomas L, Tian M, Viola G. 9-(4-Dimethylaminophenyl)benzo[b]quinolizinium: a near-infrared fluorophore for the multicolor analysis of proteins and nucleic acids in living cells. Chemistry 2013; 19:8736-41. [PMID: 23703698 DOI: 10.1002/chem.201301164] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Roberta Bortolozzi
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, University of Padova, via Giustiniani 3, I-35128 Padova, Italy
| | | | | | | | | |
Collapse
|
22
|
Vallefuoco L, Sorrentino R, Spalletti Cernia D, Colucci G, Portella G. The cobas p 630 instrument: a dedicated pre-analytic solution to optimize COBAS® AmpliPrep/COBAS® TaqMan® system workflow and turn-around-time. J Virol Methods 2012; 186:86-8. [PMID: 22827959 DOI: 10.1016/j.jviromet.2012.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 11/16/2022]
Abstract
The cobas p 630, a fully automated pre-analytical instrument for primary tube handling recently introduced to complete the Cobas(®) TaqMan systems portfolio, was evaluated in conjunction with: the COBAS(®) AmpliPrep/COBAS(®) TaqMan HBV Test, v2.0, COBAS(®) AmpliPrep/COBAS(®) TaqMan HCV Test, v1.0 and COBAS(®) AmpliPrep/COBAS(®) TaqMan HIV Test, v2.0. The instrument performance in transferring samples from primary to secondary tubes, its impact in improving COBAS(®) AmpliPrep/COBAS(®) TaqMan workflow and hands-on reduction and the risk of possible cross-contamination were assessed. Samples from 42 HBsAg positive, 42 HCV and 42 HIV antibody (Ab) positive patients as well as 21 healthy blood donors were processed with or without automated primary tubes. HIV, HCV and HBsAg positive samples showed a correlation index of 0.999, 0.987 and of 0.994, respectively. To assess for cross-contamination, high titer HBV DNA positive samples, HCV RNA and HIV RNA positive samples were distributed in the cobas p 630 in alternate tube positions, adjacent to negative control samples within the same rack. None of the healthy donor samples showed any reactivity. Based on these results, the cobas p 630 can improve workflow and sample tracing in laboratories performing molecular tests, and reduce turnaround time, errors, and risks.
Collapse
Affiliation(s)
- L Vallefuoco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Napoli, Italy
| | | | | | | | | |
Collapse
|
23
|
High-resolution melting analysis of 15 genes in 60 patients with cytochrome-c oxidase deficiency. J Hum Genet 2012; 57:442-8. [PMID: 22592081 DOI: 10.1038/jhg.2012.49] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytochrome-c oxidase (COX) deficiency is one of the common childhood mitochondrial disorders. Mutations in genes for the assembly factors SURF1 and SCO2 are prevalent in children with COX deficiency in the Slavonic population. Molecular diagnosis is difficult because of the number of genes involved in COX biogenesis and assembly. The aim of this study was to screen for mutations in 15 nuclear genes that encode the 10 structural subunits, their isoforms and two assembly factors of COX in 60 unrelated Czech children with COX deficiency. Nine novel variants were identified in exons and adjacent intronic regions of COX4I2, COX6A1, COX6A2, COX7A1, COX7A2 and COX10 using high-resolution melting (HRM) analysis. Online bioinformatics servers were used to predict the importance of the newly identified amino-acid substitutions. The newly characterized variants updated the contemporary spectrum of known genetic sequence variations that are present in the Czech population, which will be important for further targeted mutation screening in Czech COX-deficient children. HRM and predictive bioinformatics methodologies are advantageous because they are low-cost screening tools that complement large-scale genomic studies and reduce the required time and effort.
Collapse
|
24
|
Kricka LJ, Savory J. International year of Chemistry 2011. A guide to the history of clinical chemistry. Clin Chem 2011; 57:1118-26. [PMID: 21507911 DOI: 10.1373/clinchem.2011.165233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND This review was written as part of the celebration of the International Year of Chemistry 2011. CONTENT In this review we provide a chronicle of the history of clinical chemistry, with a focus on North America. We outline major methodological advances and trace the development of professional societies and journals dedicated to clinical chemistry. This review also serves as a guide to reference materials for those interested in the history of clinical chemistry. The various resources available, in sound recordings, videos, moving images, image and document archives, museums, and websites dedicated to diagnostic company timelines, are surveyed. SUMMARY These resources provide a map of how the medical subspecialty of clinical chemistry arrived at its present state. This information will undoubtedly help visionaries to determine in which direction clinical chemistry will move in the future.
Collapse
Affiliation(s)
- Larry J Kricka
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA, USA.
| | | |
Collapse
|
25
|
Zhao N, Zhang Y, Liu X, Yu X, Ge M. Carbazole tricationic salt: A novel potential two-photon fluorescent DNA probe for nucleic imaging of cells. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-4176-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Sisti D, Guescini M, Rocchi MBL, Tibollo P, D'Atri M, Stocchi V. Shape based kinetic outlier detection in real-time PCR. BMC Bioinformatics 2010; 11:186. [PMID: 20385019 PMCID: PMC2873533 DOI: 10.1186/1471-2105-11-186] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 04/12/2010] [Indexed: 11/25/2022] Open
Abstract
Background Real-time PCR has recently become the technique of choice for absolute and relative nucleic acid quantification. The gold standard quantification method in real-time PCR assumes that the compared samples have similar PCR efficiency. However, many factors present in biological samples affect PCR kinetic, confounding quantification analysis. In this work we propose a new strategy to detect outlier samples, called SOD. Results Richards function was fitted on fluorescence readings to parameterize the amplification curves. There was not a significant correlation between calculated amplification parameters (plateau, slope and y-coordinate of the inflection point) and the Log of input DNA demonstrating that this approach can be used to achieve a "fingerprint" for each amplification curve. To identify the outlier runs, the calculated parameters of each unknown sample were compared to those of the standard samples. When a significant underestimation of starting DNA molecules was found, due to the presence of biological inhibitors such as tannic acid, IgG or quercitin, SOD efficiently marked these amplification profiles as outliers. SOD was subsequently compared with KOD, the current approach based on PCR efficiency estimation. The data obtained showed that SOD was more sensitive than KOD, whereas SOD and KOD were equally specific. Conclusion Our results demonstrated, for the first time, that outlier detection can be based on amplification shape instead of PCR efficiency. SOD represents an improvement in real-time PCR analysis because it decreases the variance of data thus increasing the reliability of quantification.
Collapse
Affiliation(s)
- Davide Sisti
- Dipartimento DiSUAN, Sezione di Biomatematica, Università degli Studi di Urbino Carlo Bo, Campus Scientifico Sogesta; Località Crocicchia - 61029 Urbino, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Pau CP, Wells SK, Rudolph DL, Owen SM, Granade TC. A rapid real-time PCR assay for the detection of HIV-1 proviral DNA using double-stranded primer. J Virol Methods 2009; 164:55-62. [PMID: 19948189 DOI: 10.1016/j.jviromet.2009.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/18/2009] [Accepted: 11/23/2009] [Indexed: 11/25/2022]
Abstract
In this study, a rapid real-time PCR assay to detect HIV-1 proviral DNA in whole blood was developed using a novel double-stranded primer that does not require a target-specific fluorescent probe or intercalating dye systems. Co-amplification of a human gene RNase P served as the internal control to monitor the efficiency of the DNA extraction and PCR amplification. The HIV-1 amplification efficiency was 100% and could amplify 1 copy of HIV-1 DNA 64% of the time and all attempts to amplify 4 copies were successful in less than 51 min. All 22 HIV-1 sero-positive and 20 sero-negative whole blood specimens tested were classified correctly by this assay. In addition, 22 cultured PBMC specimens infected with various HIV-1 subtypes or CRF (A=2, AC=1, B=4, C=3, D=3, AE=2, F=1, BF=2, G=4) were amplified equally well with a similar threshold cycle (C(t)) number (22.9+/-1.2). The high amplification efficiency and short PCR cycles were in part due to the short target sequence amplified by eliminating the probe-binding sequence between the primers. This assay may be useful as an alternative confirmation test in a variety of HIV testing venues.
Collapse
Affiliation(s)
- Chou-Pong Pau
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States.
| | | | | | | | | |
Collapse
|
28
|
St Laurent G, Savva YA, Reenan R. Enhancing non-coding RNA information content with ADAR editing. Neurosci Lett 2009; 466:89-98. [PMID: 19751800 DOI: 10.1016/j.neulet.2009.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/02/2009] [Accepted: 09/05/2009] [Indexed: 10/20/2022]
Abstract
The depth and complexity of the non-coding transcriptome in nervous system tissues provides a rich substrate for adenosine de-amination acting on RNA (ADAR). Non-coding RNAs (ncRNAs) serve diverse regulatory and computational functions, coupling signal flow from the environment to evolutionarily coded analog and digital information elements within the transcriptome. We present a perspective of ADARs interaction with the non-coding transcriptome as a computational matrix, enhancing the information processing power of the cell, adding flexibility, rapid response, and fine tuning to critical pathways. Dramatic increases in ADAR activity during stress response and inflammation result in powerful information processing events that change the functional state of the cell. This review examines the pathways and mechanisms of ADAR interaction with the non-coding transcriptome, and their functional consequences for information processing in nervous system tissues.
Collapse
Affiliation(s)
- Georges St Laurent
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
29
|
Ueberfeld J, Ehrlich DJ. Scaling of nucleic acid assays on microelectrophoresis array devices: High-dynamic range multi-gene readout from less than ten transcripts. Electrophoresis 2009; 30:2090-9. [DOI: 10.1002/elps.200800774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Zhu YN, Lu SM, You JF, Zhu B, Yu MY. Novel real-time PCR assay for rapid prenatal diagnosis of Down syndrome: A prospective study of 563 amniocytes. Clin Biochem 2009; 42:672-5. [DOI: 10.1016/j.clinbiochem.2009.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 02/03/2009] [Accepted: 02/06/2009] [Indexed: 11/24/2022]
|
31
|
Guescini M, Sisti D, Rocchi MBL, Stocchi L, Stocchi V. A new real-time PCR method to overcome significant quantitative inaccuracy due to slight amplification inhibition. BMC Bioinformatics 2008; 9:326. [PMID: 18667053 PMCID: PMC2533027 DOI: 10.1186/1471-2105-9-326] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 07/30/2008] [Indexed: 11/20/2022] Open
Abstract
Background Real-time PCR analysis is a sensitive DNA quantification technique that has recently gained considerable attention in biotechnology, microbiology and molecular diagnostics. Although, the cycle-threshold (Ct) method is the present "gold standard", it is far from being a standard assay. Uniform reaction efficiency among samples is the most important assumption of this method. Nevertheless, some authors have reported that it may not be correct and a slight PCR efficiency decrease of about 4% could result in an error of up to 400% using the Ct method. This reaction efficiency decrease may be caused by inhibiting agents used during nucleic acid extraction or copurified from the biological sample. We propose a new method (Cy0) that does not require the assumption of equal reaction efficiency between unknowns and standard curve. Results The Cy0 method is based on the fit of Richards' equation to real-time PCR data by nonlinear regression in order to obtain the best fit estimators of reaction parameters. Subsequently, these parameters were used to calculate the Cy0 value that minimizes the dependence of its value on PCR kinetic. The Ct, second derivative (Cp), sigmoidal curve fitting method (SCF) and Cy0 methods were compared using two criteria: precision and accuracy. Our results demonstrated that, in optimal amplification conditions, these four methods are equally precise and accurate. However, when PCR efficiency was slightly decreased, diluting amplification mix quantity or adding a biological inhibitor such as IgG, the SCF, Ct and Cp methods were markedly impaired while the Cy0 method gave significantly more accurate and precise results. Conclusion Our results demonstrate that Cy0 represents a significant improvement over the standard methods for obtaining a reliable and precise nucleic acid quantification even in sub-optimal amplification conditions overcoming the underestimation caused by the presence of some PCR inhibitors.
Collapse
Affiliation(s)
- Michele Guescini
- Istituto di Ricerca sull'Attività Motoria, Università degli Studi di Urbino Carlo Bo, Via I Maggetti, 26/2 - 61029 Urbino, Italy.
| | | | | | | | | |
Collapse
|
32
|
Quantitative analysis of DNA hybridization in a flowthrough microarray for molecular testing. Anal Biochem 2008; 380:84-90. [PMID: 18555787 DOI: 10.1016/j.ab.2008.05.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 05/20/2008] [Accepted: 05/20/2008] [Indexed: 11/22/2022]
Abstract
Quantitative information about the nucleic acids hybridization reaction on microarrays is fundamental to designing optimized assays for molecular diagnostics. This study presents the kinetic, equilibrium, and thermodynamic analyses of DNA hybridization in a microarray system designed for fast molecular testing of pathogenic bacteria. Our microarray setup uses a porous, nylon membrane for probe immobilization and flowthrough incubation. The Langmuir model was used to determine the reaction rate constants of hybridization with antisense targets specific to Staphylococcus epidermidis and Staphylococcus aureus strains. The kinetic analysis revealed a sequence-dependent reaction rate, with association rate constants on the order of approximately 10(5)M(-1)s(-1) and dissociation rate constants of approximately 10(-4)s(-1). We found that by increasing the probe surface density from 10(11) to 10(12) molecules/cm(2), the hybridization rate and efficiency are suppressed while the melting temperature of the DNA duplex increases. The maximum fraction of hybridized capture probes at equilibrium did not exceed 50% for hybridization with antisense sequences and was below 6% for hybridization with long targets obtained from PCR. The van't Hoff analysis of the temperature denaturation data showed that the DNA hybridization in our porous, flowthrough microarray is thermodynamically less favorable than the hybridization of the same sequences in solution.
Collapse
|
33
|
Reed GH, Kent JO, Wittwer CT. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 2008; 8:597-608. [PMID: 17559349 DOI: 10.2217/14622416.8.6.597] [Citation(s) in RCA: 449] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
High-resolution melting of DNA is a simple solution for genotyping, mutation scanning and sequence matching. The melting profile of a PCR product depends on its GC content, length, sequence and heterozygosity and is best monitored with saturating dyes that fluoresce in the presence of double-stranded DNA. Genotyping of most variants is possible by the melting temperature of the PCR products, while all variants can be genotyped with unlabeled probes. Mutation scanning and sequence matching depend on sequence differences that result in heteroduplexes that change the shape of the melting curve. High-resolution DNA melting has several advantages over other genotyping and scanning methods, including an inexpensive closed tube format that is homogenous, accurate and rapid. Owing to its simplicity and speed, the method is a good fit for personalized medicine as a rapid, inexpensive method to predict therapeutic response.
Collapse
Affiliation(s)
- Gudrun H Reed
- Department of Pathology, University of Utah Medical Center, 5B418, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
34
|
|
35
|
Dames S, Pattison DC, Bromley LK, Wittwer CT, Voelkerding KV. Unlabeled probes for the detection and typing of herpes simplex virus. Clin Chem 2007; 53:1847-54. [PMID: 17720894 DOI: 10.1373/clinchem.2007.090761] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Unlabeled probe detection with a double-stranded DNA (dsDNA) binding dye is one method to detect and confirm target amplification after PCR. Unlabeled probes and amplicon melting have been used to detect small deletions and single-nucleotide polymorphisms in assays where template is in abundance. Unlabeled probes have not been applied to low-level target detection, however. METHODS Herpes simplex virus (HSV) was chosen as a model to compare the unlabeled probe method to an in-house reference assay using dual-labeled, minor groove binding probes. A saturating dsDNA dye (LCGreen Plus) was used for real-time PCR. HSV-1, HSV-2, and an internal control were differentiated by PCR amplicon and unlabeled probe melting analysis after PCR. RESULTS The unlabeled probe technique displayed 98% concordance with the reference assay for the detection of HSV from a variety of archived clinical samples (n = 182). HSV typing using unlabeled probes was 99% concordant (n = 104) to sequenced clinical samples and allowed for the detection of sequence polymorphisms in the amplicon and under the probe. CONCLUSIONS Unlabeled probes and amplicon melting can be used to detect and genotype as few as 10 copies of target per reaction, restricted only by stochastic limitations. The use of unlabeled probes provides an attractive alternative to conventional fluorescence-labeled, probe-based assays for genotyping and detection of HSV and might be useful for other low-copy targets where typing is informative.
Collapse
Affiliation(s)
- Shale Dames
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA.
| | | | | | | | | |
Collapse
|
36
|
Chao SY, Ho YP, Bailey VJ, Wang TH. Quantification of low concentrations of DNA using single molecule detection and velocity measurement in a microchannel. J Fluoresc 2007; 17:767-74. [PMID: 17653837 DOI: 10.1007/s10895-007-0194-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
We present a novel method for quantifying low concentrations of DNA based on single molecule detection (SMD) for molecular counting and flow measurements inside a microchannel. A custom confocal fluorescence spectroscopic system is implemented to detect fluorescent bursts emitted from stained DNA molecules. Measurements are made one molecule at a time as they flow through a femtoliter-sized laser focal probe. Durations of single molecule fluorescent bursts, which are found to be strongly related to the molecular transit times through the detection region, are statistically analyzed to determine the in situ flow speed and subsequently the sample volume flowing through the focal probe. Therefore, the absolute concentration of a DNA sample can be quantified based on the single molecule fluorescent counts from the DNA molecules and the associated probe volume for a measured time course. To validate this method for quantifying low concentrations of biomolecules, we tested samples of pBR322 DNA ranging from 1 pM to 10 fM ( approximately 3 ng/ml to 30 pg/ml). Besides molecular quantification, we also demonstrate this method to be a precise and non-invasive way for flow profiling within a microchannel.
Collapse
Affiliation(s)
- Shu-Yi Chao
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
37
|
Allain C, Schmidt F, Lartia R, Bordeau G, Fiorini-Debuisschert C, Charra F, Tauc P, Teulade-Fichou MP. Vinyl-Pyridinium Triphenylamines: Novel Far-Red Emitters with High Photostability and Two-Photon Absorption Properties for Staining DNA. Chembiochem 2007; 8:424-33. [PMID: 17279593 DOI: 10.1002/cbic.200600483] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A series of mono-, bis- and trisvinyl-pyridinium triphenylamines (TP-py) has been synthesised and evaluated for its one- and two-photon absorption (2PA) induced-fluorescence properties under biological conditions. Interestingly, these compounds are only weakly fluorescent in water, whereas their fluorescence emissions are strongly restored (exaltation factors of 20-100) upon binding to double-stranded DNA. Additional measurements in glycerol indicate that the fluorescence increases are the result of immobilisation of the dyes in the DNA matrix, which inhibits rotational de-excitation modes. This particular feature is especially remarkable in the case of the bis and tris derivatives (TP-2 py, TP-3 py), which each display a high affinity (K(d) ~ microM) for dsDNA. TPIF measurements have shown that TP-2 py and TP-3 py each have a large 2PA cross section (delta up to 700 GM) both in glycerol and in the presence of DNA, which ranks them amongst the best 2PA biological fluorophores. Finally, one- and two-photon confocal imaging in cells revealed that these compounds perform red staining (lambda(em)=660-680 nm) of nuclear DNA with excellent contrast. The remarkable optical properties of the TP-py series, combined with their high photostability and their easy synthetic access, make these compounds extremely attractive for use in confocal and 2PA microscopy.
Collapse
Affiliation(s)
- Clémence Allain
- Institut Curie UMR 176, Centre Universitaire, Bâtiment 110, 91405 Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Csako G. Present and future of rapid and/or high-throughput methods for nucleic acid testing. Clin Chim Acta 2005; 363:6-31. [PMID: 16102738 DOI: 10.1016/j.cccn.2005.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 07/03/2005] [Accepted: 07/03/2005] [Indexed: 12/21/2022]
Abstract
BACKGROUND Behind the success of 'completing' the human genome project was a more than 30-year history of technical innovations for nucleic acid testing. METHODS Discovery of specific restriction endonucleases and reverse transcriptase was followed shortly by the development of the first diagnostic nucleic acid tests in the early 1970s. Introduction of Southern, Northern and dot blotting and DNA sequencing later in the 1970s considerably advanced the diagnostic capabilities. Nevertheless, it was the discovery of the polymerase chain reaction (PCR) in 1985 that led to an exponential growth in molecular biology and the introduction of practicable nucleic acid tests in the routine laboratory. The past two decades witnessed a continuing explosion of technological innovations in molecular diagnostics. In addition to classic PCR and reverse transcriptase PCR, numerous variations of PCR and alternative amplification techniques along with an ever-increasing variety of detection chemistries, closed tube (homogeneous) assays, and automated systems were developed. Discovery of real-time quantitative PCR and the development of oligonucleotide microarrays, the 'DNA chip', in the 1990s heralded the beginning of another revolution in molecular biology and diagnostics that is still in progress.
Collapse
Affiliation(s)
- Gyorgy Csako
- Department of Laboratory Medicine, W.G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892-1508, USA.
| |
Collapse
|
39
|
Mo Z, Wang H, Liang Y, Liu F, Xue Y. Highly reproducible hybridization assay of zeptomole DNA based on adsorption of nanoparticle-bioconjugate. Analyst 2005; 130:1589-94. [PMID: 16284656 DOI: 10.1039/b500949a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nanoparticle-bioconjugate was formed by homogeneous hybridization of one polynucleotide target with two oligonucleotide probes labelled by thiol and a nanoparticle, respectively. Deposition of the nanoparticle-bioconjugate on a gold surface by thiol-gold reaction was monitored in situ by quartz crystal microbalance (QCM) and applied for flow analysis of zeptomole amounts of polynucleotide. The formation in solution and adsorption of thiolated conjugates on gold could be fast, uniform and effective, and has been successfully exploited to construct a highly reproducible and sensitive platform for detection of target sequences. Being more rapid, reproducible, sensitive and amenable to automation than previously reported microgravimetric hybridization assays, this technology has great promise for practical applications in molecular diagnostics.
Collapse
Affiliation(s)
- Zhihong Mo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China.
| | | | | | | | | |
Collapse
|