1
|
Torella A, Budillon A, Zanobio M, Del Vecchio Blanco F, Picillo E, Politano L, Nigro V, Piluso G. Alu-Mediated Insertions in the DMD Gene: A Difficult Puzzle to Interpret Clinically. Int J Mol Sci 2023; 24:ijms24119241. [PMID: 37298193 DOI: 10.3390/ijms24119241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Disrupting variants in the DMD gene are associated with Duchenne or Becker muscular dystrophy (DMD/BMD) or with hyperCKemia, all of which present very different degrees of clinical severity. The clinical phenotypes of these disorders could not be distinguished in infancy or early childhood. Accurate phenotype prediction based on DNA variants may therefore be required in addition to invasive tests, such as muscle biopsy. Transposon insertion is one of the rarest mutation types. Depending on their position and characteristics, transposon insertions may affect the quality and/or quantity of dystrophin mRNA, leading to unpredictable alterations in gene products. Here, we report the case of a three-year-old boy showing initial skeletal muscle involvement in whom we characterized a transposon insertion (Alu sequence) in exon 15 of the DMD gene. In similar cases, the generation of a null allele is predicted, resulting in a DMD phenotype. However, mRNA analysis of muscle biopsy tissue revealed skipping of exon 15, which restored the reading frame, thus predicting a milder phenotype. This case is similar to very few others already described in the literature. This case further enriches our knowledge of the mechanisms perturbing splicing and causing exon skipping in DMD, helping to properly guide clinical diagnosis.
Collapse
Affiliation(s)
- Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Alberto Budillon
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Mariateresa Zanobio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Francesca Del Vecchio Blanco
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Esther Picillo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Luisa Politano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
2
|
Viggiano E, Picillo E, Passamano L, Onore ME, Piluso G, Scutifero M, Torella A, Nigro V, Politano L. Spectrum of Genetic Variants in the Dystrophin Gene: A Single Centre Retrospective Analysis of 750 Duchenne and Becker Patients from Southern Italy. Genes (Basel) 2023; 14:214. [PMID: 36672955 PMCID: PMC9859256 DOI: 10.3390/genes14010214] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Dystrophinopathies are X-linked recessive muscle disorders caused by mutations in the dystrophin (DMD) gene that include deletions, duplications, and point mutations. Correct diagnosis is important for providing adequate patient care and family planning, especially at this time when mutation-specific therapies are available. We report a large single-centre study on the spectrum of DMD gene variants observed in 750 patients analyzed for suspected Duchenne (DMD) or Becker (BMD) muscular dystrophy, over the past 30 years, at the Cardiomyology and Medical Genetics of the University of Campania. We found 534 (71.21%) large deletions, 73 (9.73%) large duplications, and 112 (14.93%) point mutations, of which 44 (5.9%) were small ins/del causing frame-shifts, 57 (7.6%) nonsense mutations, 8 (1.1%) splice site and 3 (0.4%) intronic mutations, and 31 (4.13%) non mutations. Moreover, we report the prevalence of the different types of mutations in patients with DMD and BMD according to their decade of birth, from 1930 to 2020, and correlate the data to the different techniques used over the years. In the most recent decades, we observed an apparent increase in the prevalence of point mutations, probably due to the use of Next-Generation Sequencing (NGS). In conclusion, in southern Italy, deletions are the most frequent variation observed in DMD and BMD patients followed by point mutations and duplications, as elsewhere in the world. NGS was useful to identify point mutations in cases of strong suspicion of DMD/BMD negative on deletions/duplications analyses. In the era of personalized medicine and availability of new causative therapies, a collective effort is necessary to enable DMD and BMD patients to have timely genetic diagnoses and avoid late implementation of standard of care and late initiation of appropriate treatment.
Collapse
Affiliation(s)
- Emanuela Viggiano
- Department of Prevention, Hygiene and Public Health Service, ASL Roma 2, 00157 Rome, Italy
| | - Esther Picillo
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Luigia Passamano
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Maria Elena Onore
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Giulio Piluso
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Marianna Scutifero
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Annalaura Torella
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Vincenzo Nigro
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| |
Collapse
|
3
|
Linked-Read Whole Genome Sequencing Solves a Double DMD Gene Rearrangement. Genes (Basel) 2021; 12:genes12020133. [PMID: 33494189 PMCID: PMC7909759 DOI: 10.3390/genes12020133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 01/25/2023] Open
Abstract
Next generation sequencing (NGS) has changed our approach to diagnosis of genetic disorders. Nowadays, the most comprehensive application of NGS is whole genome sequencing (WGS) that is able to detect virtually all DNA variations. However, even after accurate WGS, many genetic conditions remain unsolved. This may be due to the current NGS protocols, based on DNA fragmentation and short reads. To overcome these limitations, we applied a linked-read sequencing technology that combines single-molecule barcoding with short-read WGS. We were able to assemble haplotypes and distinguish between alleles along the genome. As an exemplary case, we studied the case of a female carrier of X-linked muscular dystrophy with an unsolved genetic status. A deletion of exons 16–29 in DMD gene was responsible for the disease in her family, but she showed a normal dosage of these exons by Multiplex Ligation-dependent Probe Amplification (MLPA) and array CGH. This situation is usually considered compatible with a “non-carrier” status. Unexpectedly, the girl also showed an increased dosage of flanking exons 1–15 and 30–34. Using linked-read WGS, we were able to distinguish between the two X chromosomes. In the first allele, we found the 16–29 deletion, while the second allele showed a 1–34 duplication: in both cases, linked-read WGS correctly mapped the borders at single-nucleotide resolution. This duplication in trans apparently restored the normal dosage of exons 16–29 seen by quantitative assays. This had a dramatic impact in genetic counselling, by converting a non-carrier into a double carrier status prediction. We conclude that linked-read WGS should be considered as a valuable option to improve our understanding of unsolved genetic conditions.
Collapse
|
4
|
Torella A, Zanobio M, Zeuli R, del Vecchio Blanco F, Savarese M, Giugliano T, Garofalo A, Piluso G, Politano L, Nigro V. The position of nonsense mutations can predict the phenotype severity: A survey on the DMD gene. PLoS One 2020; 15:e0237803. [PMID: 32813700 PMCID: PMC7437896 DOI: 10.1371/journal.pone.0237803] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
A nonsense mutation adds a premature stop signal that hinders any further translation of a protein-coding gene, usually resulting in a null allele. To investigate the possible exceptions, we used the DMD gene as an ideal model. First, because dystrophin absence causes Duchenne muscular dystrophy (DMD), while its reduction causes Becker muscular dystrophy (BMD). Second, the DMD gene is X-linked and there is no second allele that can interfere in males. Third, databases are accumulating reports on many mutations and phenotypic data. Finally, because DMD mutations may have important therapeutic implications. For our study, we analyzed large databases (LOVD, HGMD and ClinVar) and literature and revised critically all data, together with data from our internal patients. We totally collected 2593 patients. Positioning these mutations along the dystrophin transcript, we observed a nonrandom distribution of BMD-associated mutations within selected exons and concluded that the position can be predictive of the phenotype. Nonsense mutations always cause DMD when occurring at any point in fifty-one exons. In the remaining exons, we found milder BMD cases due to early 5’ nonsense mutations, if reinitiation can occur, or due to late 3’ nonsense when the shortened product retains functionality. In the central part of the gene, all mutations in some in-frame exons, such as in exons 25, 31, 37 and 38 cause BMD, while mutations in exons 30, 32, 34 and 36 cause DMD. This may have important implication in predicting the natural history and the efficacy of therapeutic use of drug-stimulated translational readthrough of premature termination codons, also considering the action of internal natural rescuers. More in general, our survey confirm that a nonsense mutation should be not necessarily classified as a null allele and this should be considered in genetic counselling.
Collapse
Affiliation(s)
- Annalaura Torella
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Mariateresa Zanobio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Roberta Zeuli
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | | | - Marco Savarese
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
- Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Teresa Giugliano
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Arcomaria Garofalo
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Giulio Piluso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Luisa Politano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Vincenzo Nigro
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- * E-mail:
| |
Collapse
|
5
|
Neri M, Rossi R, Trabanelli C, Mauro A, Selvatici R, Falzarano MS, Spedicato N, Margutti A, Rimessi P, Fortunato F, Fabris M, Gualandi F, Comi G, Tedeschi S, Seia M, Fiorillo C, Traverso M, Bruno C, Giardina E, Piemontese MR, Merla G, Cau M, Marica M, Scuderi C, Borgione E, Tessa A, Astrea G, Santorelli FM, Merlini L, Mora M, Bernasconi P, Gibertini S, Sansone V, Mongini T, Berardinelli A, Pini A, Liguori R, Filosto M, Messina S, Vita G, Toscano A, Vita G, Pane M, Servidei S, Pegoraro E, Bello L, Travaglini L, Bertini E, D'Amico A, Ergoli M, Politano L, Torella A, Nigro V, Mercuri E, Ferlini A. The Genetic Landscape of Dystrophin Mutations in Italy: A Nationwide Study. Front Genet 2020; 11:131. [PMID: 32194622 PMCID: PMC7063120 DOI: 10.3389/fgene.2020.00131] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
Dystrophinopathies are inherited diseases caused by mutations in the dystrophin (DMD) gene for which testing is mandatory for genetic diagnosis, reproductive choices and eligibility for personalized trials. We genotyped the DMD gene in our Italian cohort of 1902 patients (BMD n = 740, 39%; DMD n =1162, 61%) within a nationwide study involving 11 diagnostic centers in a 10-year window (2008–2017). In DMD patients, we found deletions in 57%, duplications in 11% and small mutations in 32%. In BMD, we found deletions in 78%, duplications in 9% and small mutations in 13%. In BMD, there are a higher number of deletions, and small mutations are more frequent than duplications. Among small mutations that are generally frequent in both phenotypes, 44% of DMD and 36% of BMD are nonsense, thus, eligible for stop codon read-through therapy; 63% of all out-of-frame deletions are eligible for single exon skipping. Patients were also assigned to Italian regions and showed interesting regional differences in mutation distribution. The full genetic characterization in this large, nationwide cohort has allowed us to draw several correlations between DMD/BMD genotype landscapes and mutation frequency, mutation types, mutation locations along the gene, exon/intron architecture, and relevant protein domain, with effects on population genetic characteristics and new personalized therapies.
Collapse
Affiliation(s)
- Marcella Neri
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Rachele Rossi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Cecilia Trabanelli
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonio Mauro
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Rita Selvatici
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Sofia Falzarano
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Noemi Spedicato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alice Margutti
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paola Rimessi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Fortunato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marina Fabris
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Gualandi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giacomo Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Silvana Tedeschi
- Laboratory of Medical Genetics, IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Seia
- Laboratory of Medical Genetics, IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fiorillo
- Paediatric Neurology and Muscular Diseases Unit, University of Genoa and G. Gaslini Institute, Genoa, Italy
| | - Monica Traverso
- Paediatric Neurology and Muscular Diseases Unit, University of Genoa and G. Gaslini Institute, Genoa, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Gaslini, Genova, Italy
| | - Emiliano Giardina
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | | | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Milena Cau
- Laboratory of Genetics and Genomics, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Monica Marica
- Clinica Pediatrica e Malattie Rare, Brotzu, Cagliari, Italy
| | - Carmela Scuderi
- Unit of Neuromuscular Diseases, Oasi Research Institute-IRCCS, Troina, Italy
| | - Eugenia Borgione
- Unit of Neuromuscular Diseases, Oasi Research Institute-IRCCS, Troina, Italy
| | - Alessandra Tessa
- Department of Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Guia Astrea
- Department of Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | | | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pia Bernasconi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Gibertini
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Sansone
- Neurorehabilitation Unit, Department Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Tiziana Mongini
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Angela Berardinelli
- Child Neurology and Psychiatry Unit, "Casimiro Mondino" Foundation, Pavia, Italy
| | - Antonella Pini
- Child Neurology Unit, IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuro Motor Sciences, University of Bologna, Bologna, Italy
| | - Massimiliano Filosto
- Laboratory of Medical Genetics, IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, University of Messina and Nemo Sud Clinical Center, Messina, Italy
| | - Gianluca Vita
- Department of Clinical and Experimental Medicine, University of Messina and Nemo Sud Clinical Center, Messina, Italy
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of Messina and Nemo Sud Clinical Center, Messina, Italy
| | - Giuseppe Vita
- Department of Clinical and Experimental Medicine, University of Messina and Nemo Sud Clinical Center, Messina, Italy
| | - Marika Pane
- Centro Clinico Nemo, Policlinico A. Gemelli, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Serenella Servidei
- UOC Neurofisiopatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Lorena Travaglini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesu Children's Research Hospital IRCCS, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesu Children's Research Hospital IRCCS, Rome, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesu Children's Research Hospital IRCCS, Rome, Italy
| | - Manuela Ergoli
- Cardiomiology and Medical Genetics, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Luisa Politano
- Cardiomiology and Medical Genetics, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Eugenio Mercuri
- Centro Clinico Nemo, Policlinico A. Gemelli, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Pediatric Neurology, Catholic University, Rome, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Dubowitz Neuromuscular Unit, Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
6
|
Gibbs EM, Barthélémy F, Douine ED, Hardiman NC, Shieh PB, Khanlou N, Crosbie RH, Nelson SF, Miceli MC. Large in-frame 5' deletions in DMD associated with mild Duchenne muscular dystrophy: Two case reports and a review of the literature. Neuromuscul Disord 2019; 29:863-873. [PMID: 31672265 PMCID: PMC7092699 DOI: 10.1016/j.nmd.2019.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/28/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
Duchenne muscular dystrophy is caused by mutations in the dystrophin-encoding DMD gene. While Duchenne is most commonly caused by large intragenic deletions that cause frameshift and complete loss of dystrophin expression, in-frame deletions in DMD can result in the expression of internally truncated dystrophin proteins and may be associated with a milder phenotype. In this study, we describe two individuals with large in-frame 5' deletions (exon 3-23 and exon 3-28) that remove the majority of the N-terminal region, including part of the actin binding and central rod domains. Both patients had progressive muscle weakness during childhood but are observed to have a relatively mild disease course compared to typical Duchenne. We show that in muscle biopsies from both patients, truncated dystrophin is expressed at the sarcolemma. We have additionally developed a patient-specific fibroblast-derived cell model, which can be inducibly reprogrammed to form myotubes that largely recapitulate biopsy findings for the patient with the exon 3-23 deletion, providing a culture model for future investigation of this unusual case. We discuss these mutations in the context of previously reported 5' in-frame DMD deletions and relevant animal models, and review the spectrum of phenotypes associated with these deletions.
Collapse
Affiliation(s)
- Elizabeth M Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA
| | - Florian Barthélémy
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Emilie D Douine
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Natalie C Hardiman
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Perry B Shieh
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | - Negar Khanlou
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | - M Carrie Miceli
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Liu C, Deng H, Yang C, Li X, Zhu Y, Chen X, Li H, Li S, Cui H, Zhang X, Tan X, Li D, Zhang Z. A resolved discrepancy between multiplex PCR and multiplex ligation-dependent probe amplification by targeted next-generation sequencing discloses a novel partial exonic deletion in the Duchenne muscular dystrophy gene. J Clin Lab Anal 2018; 32:e22575. [PMID: 29802662 DOI: 10.1002/jcla.22575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/25/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The genetic diagnosis of Duchenne muscular dystrophy (DMD) has been complicated by the large size of the gene and its heterogeneous mutational spectrum. Multiplex PCR and multiplex ligation-dependent probe amplification (MLPA) are two well-established mutation screening methods. Here, we applied targeted next-generation sequencing (NGS) to clarify discrepant results between multiplex PCR and MLPA in a Chinese patient with DMD. METHODS MLPA was performed to confirm multiplex PCR results obtained previously. Targeted NGS was then used to analyze the full-length DMD gene including introns. RESULTS Multiplex PCR had previously identified an apparent deletion of exon 43 in the patient with DMD, but current MLPA indicated that exon 43 was present. Targeted NGS to clarify the genetic diagnosis identified a novel mutation, c.6241_c.6290 + 1109del1159insAC, which caused partial deletion of exon 43. This mutation removed the annealing sequence of the exon 43 reverse primer in multiplex PCR but had no influence on the hybridization site of the MLPA probe. Therefore, the discrepancy between the two methods was caused by partial exonic deletion that escaped MLPA detection. CONCLUSION Targeted NGS disclosed a novel partial exonic deletion in the DMD gene as the cause of discrepancy between multiplex PCR and MLPA. Targeted NGS could be used to provide a more accurate genetic diagnosis of DMD, particularly in cases of partial exonic deletions, which will be of benefit in patient management and the identification of disease carriers.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Huiting Deng
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Cheng Yang
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Xixi Li
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Yanrong Zhu
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Xiangfa Chen
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Hui Li
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Shuo Li
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Hao Cui
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Xiaoyan Zhang
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Xiaoyue Tan
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Dong Li
- Department of Neurology, Tianjin Children's Hospital, Tianjin, China
| | - Zhujun Zhang
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Nigro V, Piluso G. Spectrum of muscular dystrophies associated with sarcolemmal-protein genetic defects. Biochim Biophys Acta Mol Basis Dis 2014; 1852:585-93. [PMID: 25086336 DOI: 10.1016/j.bbadis.2014.07.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 01/31/2023]
Abstract
Muscular dystrophies are heterogeneous genetic disorders that share progressive muscle wasting. This may generate partial impairment of motility as well as a dramatic and fatal course. Less than 30 years ago, the identification of the genetic basis of Duchenne muscular dystrophy opened a new era. An explosion of new information on the mechanisms of disease was witnessed, with many thousands of publications and the characterization of dozens of other genetic forms. Genes mutated in muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, several of which are part of the dystrophin-associated complex. Other gene products localize at the sarcomere and Z band, or are nuclear membrane components. In the present review, we focus on muscular dystrophies caused by defects that affect the sarcolemmal and sub-sarcolemmal proteins. We summarize the nature of each disease, the genetic cause, and the pathogenic pathways that may suggest future treatment options. We examine X-linked Duchenne and Becker muscular dystrophies and the autosomal recessive limb-girdle muscular dystrophies caused by mutations in genes encoding sarcolemmal proteins. The mechanism of muscle damage is reviewed starting from disarray of the shock-absorbing dystrophin-associated complex at the sarcolemma and activation of inflammatory response up to the final stages of fibrosis. We trace only a part of the biochemical, physiopathological and clinical aspects of muscular dystrophy to avoid a lengthy list of different and conflicting observations. We attempt to provide a critical synthesis of what we consider important aspects to better understand the disease. In our opinion, it is becoming ever more important to go back to the bedside to validate and then translate each proposed mechanism. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Vincenzo Nigro
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, via Luigi De Crecchio 7, 80138 Napoli, Italy; Telethon Institute of Genetics and Medicine (TIGEM), via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Giulio Piluso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, via Luigi De Crecchio 7, 80138 Napoli, Italy; Telethon Institute of Genetics and Medicine (TIGEM), via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
9
|
Wang Y, Yang Y, Liu J, Chen XC, Liu X, Wang CZ, He XY. Whole dystrophin gene analysis by next-generation sequencing: a comprehensive genetic diagnosis of Duchenne and Becker muscular dystrophy. Mol Genet Genomics 2014; 289:1013-21. [DOI: 10.1007/s00438-014-0847-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/23/2014] [Indexed: 12/23/2022]
|
10
|
Nonneman DJ, Brown-Brandl T, Jones SA, Wiedmann RT, Rohrer GA. A defect in dystrophin causes a novel porcine stress syndrome. BMC Genomics 2012; 13:233. [PMID: 22691118 PMCID: PMC3463461 DOI: 10.1186/1471-2164-13-233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 05/25/2012] [Indexed: 11/25/2022] Open
Abstract
Background Losses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however, DNA testing has effectively eliminated this mutation from commercial herds. We identified two sibling barrows in the USMARC swine herd that died from apparent symptoms of a stress syndrome after transport at 12 weeks of age. The symptoms included open-mouth breathing, skin discoloration, vocalization and loss of mobility. Results We repeated the original mating along with sire-daughter matings to produce additional offspring. At 8 weeks of age, heart rate and electrocardiographs (ECG) were monitored during isoflurane anesthesia challenge (3% for 3 min). Four males from the original sire-dam mating and two males from a sire-daughter mating died after one minute of anesthesia. Animals from additional litters were identified as having a stress response, sometimes resulting in death, during regular processing and weighing. Affected animals had elevated plasma creatine phosphokinase (CPK) levels before and immediately after isoflurane challenge and cardiac arrhythmias. A pedigree containing 250 pigs, including 49 affected animals, was genotyped with the Illumina PorcineSNP60 Beadchip and only one chromosomal region, SSCX at 25.1-27.7 Mb over the dystrophin gene (DMD), was significantly associated with the syndrome. An arginine to tryptophan (R1958W) polymorphism in exon 41 of DMD was the most significant marker associated with stress susceptibility. Immunoblots of affected heart and skeletal muscle showed a dramatic reduction of dystrophin protein and histopathology of affected hearts indicated muscle fiber degeneration. Conclusions A novel stress syndrome was characterized in pigs and the causative genetic factor most likely resides within DMD that results in less dystrophin protein and cardiac abnormalities that can lead to death under stressful conditions. The identification of predictive markers will allow us to determine the prevalence of this disease in commercial swine populations. This defect also provides a unique biomedical model for human cardiomyopathy associated with muscular dystrophy that may be superior to those available because of the similarities in anatomy and physiology and allow advances in gene therapies for human disease.
Collapse
Affiliation(s)
- Dan J Nonneman
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, USA.
| | | | | | | | | |
Collapse
|
11
|
Rousseau J, Chapdelaine P, Boisvert S, Almeida LP, Corbeil J, Montpetit A, Tremblay JP. Endonucleases: tools to correct the dystrophin gene. J Gene Med 2012; 13:522-37. [PMID: 21954090 DOI: 10.1002/jgm.1611] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Various endonucleases can be engineered to induce double-strand breaks (DSBs) in chosen DNA sequences. These DSBs are spontaneously repaired by nonhomologous-end-joining, resulting in micro-insertions or micro-deletions (INDELs). We detected, characterized and quantified the frequency of INDELs produced by one meganuclease (MGN) targeting the RAG1 gene, six MGNs targeting three introns of the human dystrophin gene and one pair of zinc finger nucleases (ZFNs) targeting exon 50 of the human dystrophin gene. The experiments were performed in human cells (i.e. 293 T cells, myoblasts and myotubes). METHODS To analyse the INDELs produced by the endonucleases the targeted region was polymerase chain reaction amplified and the amplicons were digested with the Surveyor enzyme, cloned in bacteria or deep sequenced. RESULTS Endonucleases targeting the dystrophin gene produced INDELs of different sizes but there were clear peaks in the size distributions. The positions of these peaks were similar for MGNs but not for ZFNs in 293 T cells and in myoblasts. The size of the INDELs produced by these endonucleases in the dystrophin gene would have permitted a change in the reading frame. In a subsequent experiment, we observed that the frequency of INDELs was increased by re-exposition of the cells to the same endonuclease. CONCLUSIONS Endonucleases are able to: (i) restore the normal reading of a gene with a frame shift mutation; (ii) delete a nonsense codon; and (iii) knockout a gene. Endonucleases could thus be used to treat Duchenne muscular dystrophy and other hereditary diseases that are the result of a nonsense codon or a frame shift mutation.
Collapse
Affiliation(s)
- Joel Rousseau
- Unité de Recherche de Recherche en Génétique Humaine, Centre de Recherche de CHUL, CHUQ, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Piluso G, Dionisi M, Del Vecchio Blanco F, Torella A, Aurino S, Savarese M, Giugliano T, Bertini E, Terracciano A, Vainzof M, Criscuolo C, Politano L, Casali C, Santorelli FM, Nigro V. Motor Chip: A Comparative Genomic Hybridization Microarray for Copy-Number Mutations in 245 Neuromuscular Disorders. Clin Chem 2011; 57:1584-96. [DOI: 10.1373/clinchem.2011.168898] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND
Array-based comparative genomic hybridization (aCGH) is a reference high-throughput technology for detecting large pathogenic or polymorphic copy-number variations in the human genome; however, a number of quantitative monogenic mutations, such as smaller heterozygous deletions or duplications, are usually missed in most disease genes when proper multiplex ligation-dependent probe assays are not performed.
METHODS
We developed the Motor Chip, a customized CGH array with exonic coverage of 245 genes involved in neuromuscular disorders (NMDs), as well as 180 candidate disease genes. We analyzed DNA samples from 26 patients with known deletions or duplications in NMDs, 11 patients with partial molecular diagnoses, and 19 patients with a clinical diagnosis alone.
RESULTS
The Motor Chip efficiently confirmed and refined the copy-number mutations in all of the characterized patients, even when only a single exon was involved. In noncharacterized or partially characterized patients, we found deletions in the SETX (senataxin), SGCG [sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein)], and LAMA2 (laminin, alpha 2) genes, as well as duplications involving LAMA2 and the DYSF [dysferlin, limb girdle muscular dystrophy 2B (autosomal recessive)] locus.
CONCLUSIONS
The combination of exon-specific gene coverage and optimized platform and probe selection makes the Motor Chip a complementary tool for molecular diagnosis and gene investigation in neuromuscular diseases.
Collapse
Affiliation(s)
- Giulio Piluso
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Manuela Dionisi
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | | | - Annalaura Torella
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Stefania Aurino
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Marco Savarese
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Teresa Giugliano
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Enrico Bertini
- Dipartimento di Neuroscienze, Unità di Medicina Molecolare, Ospedale Pediatrico “Bambino Gesù,” Rome, Italy
| | - Alessandra Terracciano
- Dipartimento di Neuroscienze, Unità di Medicina Molecolare, Ospedale Pediatrico “Bambino Gesù,” Rome, Italy
| | - Mariz Vainzof
- The Human Genome Research Center (HGRC), University of São Paulo, São Paulo, Brazil
| | - Chiara Criscuolo
- Dipartimento di Scienze Neurologiche, Università degli Studi “Federico II,” Naples, Italy
| | - Luisa Politano
- Servizio di Cardiomiologia e Genetica Medica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Carlo Casali
- Dipartimento di Neurologia e ORL, Università di Roma “La Sapienza” – Polo Pontino, Latina, Italy
| | | | - Vincenzo Nigro
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| |
Collapse
|
13
|
Basak AN, Tuzmen S. Genetic predisposition to β-thalassemia and sickle cell anemia in Turkey: a molecular diagnostic approach. Methods Mol Biol 2011; 700:291-307. [PMID: 21204041 DOI: 10.1007/978-1-61737-954-3_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The thalassemia syndromes are a diverse group of inherited disorders that can be characterized according to their insufficient synthesis or absent production of one or more of the globin chains. They are classified in to α, β, γ, δβ, δ, and εγδβ thalassemias depending on the globin chain(s) affected. The β-thalassemias refer to that group of inherited hemoglobin disorders, which are characterized by a reduced synthesis (β(+)-thalassemia) or absence (β(0)-thalassemia) of beta globin (β-globin) chain production (1). Though known as single-gene disorders, hemoglobinopathies such as β-thalassemia and sickle cell anemia are far from being fully resolved in terms of cure, considering the less complex nature of the beta globin (β-globin) gene family compared to more complex multifactorial genetic disorders such as cancer. Currently, there are no definitive therapeutic options for patients with β-thalassemia and sickle cell anemia, and new insights into the pathogenesis of these devastating diseases are urgently needed. Here we address in detail the overall picture utilizing molecular diagnostic approaches that contribute to unraveling the population-specific mutational analysis of β-globin gene. We also present approaches for molecular diagnostic strategies that are applicable to β-thalassemia, sickle cell anemia, and other genetic disorders.
Collapse
Affiliation(s)
- A Nazli Basak
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | |
Collapse
|
14
|
Bonnal RJP, Severgnini M, Castaldi A, Bordoni R, Iacono M, Trimarco A, Torella A, Piluso G, Aurino S, Condorelli G, De Bellis G, Nigro V. Reliable resequencing of the human dystrophin locus by universal long polymerase chain reaction and massive pyrosequencing. Anal Biochem 2010; 406:176-84. [PMID: 20670611 DOI: 10.1016/j.ab.2010.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 01/07/2023]
Abstract
The X-linked dystrophin gene is well known for its involvement in Duchenne/Becker muscular dystrophies and for its exceptional megabase size. This locus at Xp21 is prone to frequent random molecular changes, including large deletions and duplications, but also smaller variations. To cope with such huge sequence analysis requirements in forthcoming diagnostic applications, we employed the power of the parallel 454 GS-FLX pyrosequencer to the dystrophin locus. We enriched the genomic region of interest by the robust amplification of 62 fragments under universal conditions by the long-PCR protocol yielding 244,707 bp of sequence. Pooled PCR products were fragmented and used for library preparation and DNA sequencing. To evaluate the entire procedure we analyzed four male DNA samples for sequence coverage and accuracy in DNA sequence variation and for any potential bias. We identified 562 known variations and 55 additional variants not yet reported, among which we detected a causative Arg1844Stop mutation in one sample. Sanger sequencing confirmed all changes. Unexpectedly, only 3 x coverage was sufficient for 99.9993% accuracy. Our results show that long PCR combined to massive pyrosequencing is very reliable for the analysis of the biggest gene of the human genome and open the doors to other demanding applications in molecular diagnostics.
Collapse
Affiliation(s)
- Raoul Jean Pierre Bonnal
- Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Biomediche (CNR-ITB), I-20090 Segrate, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Takeshima Y, Yagi M, Okizuka Y, Awano H, Zhang Z, Yamauchi Y, Nishio H, Matsuo M. Mutation spectrum of the dystrophin gene in 442 Duchenne/Becker muscular dystrophy cases from one Japanese referral center. J Hum Genet 2010; 55:379-88. [PMID: 20485447 DOI: 10.1038/jhg.2010.49] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent developments in molecular therapies for Duchenne muscular dystrophy (DMD) demand accurate genetic diagnosis, because therapies are mutation specific. The KUCG (Kobe University Clinical Genetics) database for DMD and Becker muscular dystrophy is a hospital-based database comprising 442 cases. Using a combination of complementary DNA (cDNA) and chromosome analysis in addition to conventional genomic DNA-based method, mutation detection was successfully accomplished in all cases, and the largest mutation database of Japanese dystrophinopathy was established. Among 442 cases, deletions and duplications encompassing one or more exons were identified in 270 (61%) and 38 (9%) cases, respectively. Nucleotide changes leading to nonsense mutations or disrupting a splice site were identified in 69 (16%) or 24 (5%) cases, respectively. Small deletion/insertion mutations were identified in 34 (8%) cases. Remarkably, two retrotransposon insertion events were also identified. Dystrophin cDNA analysis successfully revealed novel transcripts with a pseudoexon created by a single-nucleotide change deep within an intron in four cases. X-chromosome abnormalities were identified in two cases. The reading frame rule was upheld for 93% of deletion and 66% of duplication mutation cases. For the application of molecular therapies, induction of exon skipping was deemed the first priority for dystrophinopathy treatment. At one Japanese referral center, the hospital-based mutation database of the dystrophin gene was for the first time established with the highest levels of quality and patient's number.
Collapse
Affiliation(s)
- Yasuhiro Takeshima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chapdelaine P, Pichavant C, Rousseau J, Pâques F, Tremblay JP. Meganucleases can restore the reading frame of a mutated dystrophin. Gene Ther 2010; 17:846-58. [PMID: 20393509 DOI: 10.1038/gt.2010.26] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in Duchenne muscular dystrophy (DMD) are either inducing a nonsense codon or a frameshift. Meganucleases (MGNs) can be engineered to induce double-strand breaks (DSBs) at specific DNA sequences. These breaks are repaired by homologous recombination or by non-homologous end joining (NHEJ), which results in insertions or deletions (indels) of a few base pairs. To verify whether MGNs could be used to restore the normal reading frame of a dystrophin gene with a frameshift mutation, we inserted in a plasmid coding for the dog micro-dystrophin sequences containing a MGN target. The number of base pairs in these inserted sequences changed the reading frame. One of these modified target micro-dystrophin plasmids and an appropriate MGN were then transfected in 293FT cells. The MGN induced micro-deletion or micro-insertion in the micro-dystrophin that restored dystrophin expression. MGNs also restored micro-dystrophin expression in myoblasts in vitro and in muscle fibers in vivo. The mutation of the targeted micro-dystrophin was confirmed by PCR amplification followed by digestion with the Surveyor enzyme and by cloning and sequencing of the amplicons. These experiments are thus a proof of principle that MGNs that are adequately engineered to target appropriate sequences in the human dystrophin gene should be able to restore the normal reading frame of that gene in DMD patients with an out-of-frame deletion. New MGNs engineered to target a sequence including or near nonsense mutation could also be used to delete it.
Collapse
|
17
|
Torella A, Trimarco A, Del Vecchio Blanco F, Cuomo A, Aurino S, Piluso G, Minetti C, Politano L, Nigro V. One hundred twenty-one dystrophin point mutations detected from stored DNA samples by combinatorial denaturing high-performance liquid chromatography. J Mol Diagn 2010; 12:65-73. [PMID: 19959795 PMCID: PMC2797720 DOI: 10.2353/jmoldx.2010.090074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2009] [Indexed: 11/20/2022] Open
Abstract
Duchenne and Becker muscular dystrophies are caused by a large number of different mutations in the dystrophin gene. Outside of the deletion/duplication "hot spots," small mutations occur at unpredictable positions. These account for about 15 to 20% of cases, with the major group being premature stop codons. When the affected male is deceased, carrier testing for family members and prenatal diagnosis become difficult and expensive. We tailored a cost-effective and reliable strategy to discover point mutations from stored DNA samples in the absence of a muscle biopsy. Samples were amplified in combinatorial pools and tested by denaturing high-performance liquid chromatography analysis. An anomalous elution profile belonging to two different pools univocally addressed the allelic variation to an unambiguous sample. Mutations were then detected by sequencing. We identified 121 mutations of 99 different types. Fifty-six patients show stop codons that represent the 46.3% of all cases. Three non-obvious single amino acid mutations were considered as causative. Our data support combinatorial denaturing high-performance liquid chromatography analysis as a clear-cut strategy for time and cost-effective identification of small mutations when only DNA is available.
Collapse
Affiliation(s)
- Annalaura Torella
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Amelia Trimarco
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | | | - Anna Cuomo
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Stefania Aurino
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Giulio Piluso
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Carlo Minetti
- Università degli Studi di Genova, Istituto Giannina Gaslini, Genua, Italy
| | - Luisa Politano
- Dipartimento di Medicina Sperimentale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Vincenzo Nigro
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
- Telethon Institute of Genetics and Medicine, Naples, Italy
| |
Collapse
|
18
|
Bovolenta M, Neri M, Fini S, Fabris M, Trabanelli C, Venturoli A, Martoni E, Bassi E, Spitali P, Brioschi S, Falzarano MS, Rimessi P, Ciccone R, Ashton E, McCauley J, Yau S, Abbs S, Muntoni F, Merlini L, Gualandi F, Ferlini A. A novel custom high density-comparative genomic hybridization array detects common rearrangements as well as deep intronic mutations in dystrophinopathies. BMC Genomics 2008; 9:572. [PMID: 19040728 PMCID: PMC2612025 DOI: 10.1186/1471-2164-9-572] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 11/28/2008] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The commonest pathogenic DMD changes are intragenic deletions/duplications which make up to 78% of all cases and point mutations (roughly 20%) detectable through direct sequencing. The remaining mutations (about 2%) are thought to be pure intronic rearrangements/mutations or 5'-3' UTR changes. In order to screen the huge DMD gene for all types of copy number variation mutations we designed a novel custom high density comparative genomic hybridisation array which contains the full genomic region of the DMD gene and spans from 100 kb upstream to 100 kb downstream of the 2.2 Mb DMD gene. RESULTS We studied 12 DMD/BMD patients who either had no detectable mutations or carried previously identified quantitative pathogenic changes in the DMD gene. We validated the array on patients with previously known mutations as well as unaffected controls, we identified three novel pure intronic rearrangements and we defined all the mutation breakpoints both in the introns and in the 3' UTR region. We also detected a novel polymorphic intron 2 deletion/duplication variation. Despite the high resolution of this approach, RNA studies were required to confirm the functional significance of the intronic mutations identified by CGH. In addition, RNA analysis identified three intronic pathogenic variations affecting splicing which had not been detected by the CGH analysis. CONCLUSION This novel technology represents an effective high throughput tool to identify both common and rarer DMD rearrangements. RNA studies are required in order to validate the significance of the CGH array findings. The combination of these tools will fully cover the identification of causative DMD rearrangements in both coding and non-coding regions, particularly in patients in whom standard although extensive techniques are unable to detect a mutation.
Collapse
Affiliation(s)
- Matteo Bovolenta
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Marcella Neri
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Sergio Fini
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Marina Fabris
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Cecilia Trabanelli
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Anna Venturoli
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Elena Martoni
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Elena Bassi
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Pietro Spitali
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Simona Brioschi
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Maria S Falzarano
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Paola Rimessi
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Roberto Ciccone
- Sezione di Biologia generale e Genetica Medica, University of Pavia, Italy
| | - Emma Ashton
- DNA Laboratory, Genetics Centre, Guy's & St. Thomas NHS Foundation Trust, London, UK
| | - Joanne McCauley
- DNA Laboratory, Genetics Centre, Guy's & St. Thomas NHS Foundation Trust, London, UK
| | - Shu Yau
- DNA Laboratory, Genetics Centre, Guy's & St. Thomas NHS Foundation Trust, London, UK
| | - Stephen Abbs
- DNA Laboratory, Genetics Centre, Guy's & St. Thomas NHS Foundation Trust, London, UK
| | - Francesco Muntoni
- UCL Institute of Child Health, Dubowitz Neuromuscular Centre, London, UK
| | - Luciano Merlini
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Francesca Gualandi
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Alessandra Ferlini
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| |
Collapse
|