1
|
Naigaonkar A, Dadachanji R, Kumari M, Mukherjee S. Insight into metabolic dysregulation of polycystic ovary syndrome utilizing metabolomic signatures: a narrative review. Crit Rev Clin Lab Sci 2025; 62:85-112. [PMID: 39697160 DOI: 10.1080/10408363.2024.2430775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex multifactorial endocrinopathy affecting reproductive aged women globally, whose presentation is strongly influenced by genetic makeup, ethnic, and geographic diversity leaving these affected women substantially predisposed to reproductive and metabolic perturbations. Sophisticated techniques spanning genomics, proteomics, epigenomics, and transcriptomics have been harnessed to comprehensively understand the enigmatic pathophysiology of PCOS, however, conclusive markers for PCOS are still lacking today. Metabolomics represents a paradigm shift in biotechnological advances enabling the simultaneous identification and quantification of metabolites and the use of this approach has added yet another dimension to help unravel the strong metabolic component of PCOS. Reports dissecting the metabolic signature of PCOS have revealed disparate levels of metabolites such as pyruvate, lactate, triglycerides, free fatty acids, carnitines, branched chain and essential amino acids, and steroid intermediates in major biological compartments. These metabolites have been shown to be altered in women with PCOS overall, after phenotypic subgrouping, in animal models of PCOS, and also following therapeutic intervention. This review seeks to supplement previous reviews by highlighting the aforementioned aspects and to provide easy, coherent and elementary access to significant findings and emerging trends. This will in turn help to delineate the metabolic plot in women with PCOS in various biological compartments including plasma, urine, follicular microenvironment, and gut. This may pave the way to design additional studies on the quest of unraveling the etiology of PCOS and delving into novel biomarkers for its diagnosis, prognosis and management.
Collapse
Affiliation(s)
- Aalaap Naigaonkar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Roshan Dadachanji
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Manisha Kumari
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| |
Collapse
|
2
|
Naqvi I, Bandyopadhyay A, Panda A, Hareramadas B. Polycystic Ovarian Syndrome: A Review of Multi-omics Analyses. Reprod Sci 2025; 32:618-646. [PMID: 39875694 DOI: 10.1007/s43032-025-01789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Polycystic Ovary Syndrome (PCOS) is among the most prevalent endocrinological abnormalities of young females, posing a grave public health challenge to the society. The objective of the present literature review is to analyze the enormous amount of information available by way of numerous multi-omic studies, and to explore a meaningful relationship between various factors such as genetic, proteomic, environmental etc. to understand the multifactorial metabolic disorder in a proper manner. Detailed literature search was done in various science article repositories and biomedical databases such as PubMed, Google Scholar, BioMed Central, Embase etc. by using several keywords in whole gamut of combinations. PCOS is a heritable disease. It manifests as a result of a combination of several intricately inter-linked symptoms such as anovulation, obesity, type II diabetes, hyperandrogenism, polycystic ovaries etc., the last one being the main manifestation of the disease, thus leading to infertility among several other complications. Such a multifactorial metabolic disorder with extreme symptomatic heterogeneity cannot be fully explained solely based on symptoms or genetic variations; thus, giving some space of thought to other factors such as epigenetic, microbiomic factors etc. playing a role in the causation of the disease. The present scientific survey of literature extensively reviews various aspects of PCOS by critically looking into the vast multi-omic data, and concluded with suggesting treatment options as well as lifestyle changes required to deal with the psychological/ emotional impacts of the condition on affected women.
Collapse
Affiliation(s)
- Ilmas Naqvi
- Department of Zoology, Zakir Husain Delhi College (University of Delhi), J.L.N. Marg, New Delhi, 110002, India
| | | | - Amisha Panda
- Lab. No. 115, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - B Hareramadas
- Department of Zoology, Zakir Husain Delhi College (University of Delhi), J.L.N. Marg, New Delhi, 110002, India.
| |
Collapse
|
3
|
Windhagauer M, Doblin MA, Signal B, Kuzhiumparambil U, Fabris M, Abbriano RM. Metabolic response to a heterologous poly-3-hydroxybutyrate (PHB) pathway in Phaeodactylum tricornutum. Appl Microbiol Biotechnol 2024; 108:104. [PMID: 38212969 DOI: 10.1007/s00253-023-12823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 01/13/2024]
Abstract
The marine diatom Phaeodactylum tricornutum is an emerging host for metabolic engineering, but little is known about how introduced pathways are integrated into the existing metabolic framework of the host or influence transgene expression. In this study, we expressed the heterologous poly-3-hydroxybutyrate (PHB) pathway using episomal expression, which draws on the precursor acetyl coenzyme-A (AcCoA). By experimentally perturbing cultivation conditions, we gained insight into the regulation of the endogenous metabolism in transgenic lines under various environmental scenarios, as well as on alterations in AcCoA flux within the host cell. Biosynthesis of PHB led to distinct shifts in the metabolome of the host, and further analysis revealed a condition-dependent relationship between endogenous and transgenic metabolic pathways. Under N limitation, which induced a significant increase in neutral lipid content, both metabolic and transcriptomic data suggest that AcCoA was preferably shunted into the endogenous pathway for lipid biosynthesis over the transgenic PHB pathway. In contrast, supply of organic carbon in the form of glycerol supported both fatty acid and PHB biosynthesis, suggesting cross-talk between cytosolic and plastidial AcCoA precursors. This is the first study to investigate the transcriptomic and metabolomic response of diatom cell lines expressing a heterologous multi-gene pathway under different environmental conditions, providing useful insights for future engineering attempts for pathways based on the precursor AcCoA. KEY POINTS: • PHB expression had minimal effects on transcription of adjacent pathways. • N limitation favoured native lipid rather than transgenic PHB synthesis. • Glycerol addition allowed simultaneous lipid and PHB accumulation.
Collapse
Affiliation(s)
- Matthias Windhagauer
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia.
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Brandon Signal
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | | | - Michele Fabris
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, 5230, Odense M, Denmark
| | - Raffaela M Abbriano
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
4
|
Beyoğlu D, Popov YV, Idle JR. Metabolomic Hallmarks of Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2024; 25:12809. [PMID: 39684520 DOI: 10.3390/ijms252312809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
From a detailed review of 90 experimental and clinical metabolomic investigations of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD), we have developed metabolomic hallmarks for both obesity and MASLD. Obesity studies were conducted in mice, rats, and humans, with consensus biomarker groups in plasma/serum being essential and nonessential amino acids, energy metabolites, gut microbiota metabolites, acylcarnitines and lysophosphatidylcholines (LPC), which formed the basis of the six metabolomic hallmarks of obesity. Additionally, mice and rats shared elevated cholesterol, humans and rats shared elevated fatty acids, and humans and mice shared elevated VLDL/LDL, bile acids and phosphatidylcholines (PC). MASLD metabolomic studies had been performed in mice, rats, hamsters, cows, geese, blunt snout breams, zebrafish, and humans, with the biomarker groups in agreement between experimental and clinical investigations being energy metabolites, essential and nonessential amino acids, fatty acids, and bile acids, which lay the foundation of the five metabolomic hallmarks of MASLD. Furthermore, the experimental group had higher LPC/PC and cholesteryl esters, and the clinical group had elevated acylcarnitines, lysophosphatidylethanolamines/phosphatidylethanolamines (LPE/PE), triglycerides/diglycerides, and gut microbiota metabolites. These metabolomic hallmarks aid in the understanding of the metabolic role played by obesity in MASLD development, inform mechanistic studies into underlying disease pathogenesis, and are critical for new metabolite-inspired therapies.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - Yury V Popov
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jeffrey R Idle
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|
5
|
Xuan Y, Hong X, Zhou X, Yan T, Qin P, Peng D, Wang B. The vaginal metabolomics profile with features of polycystic ovary syndrome: a pilot investigation in China. PeerJ 2024; 12:e18194. [PMID: 39399434 PMCID: PMC11468964 DOI: 10.7717/peerj.18194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is the most common metabolic disorder and reproductive endocrine disease, posing an elevated risk to women of reproductive age. Although metabolism differences in serum, amniotic fluid and urine have been documented in PCOS, there remains a paucity of evidence for vaginal fluid. This study aimed to identify the metabolic characteristics and potential biomarkers of PCOS in Chinese women of reproductive age. Methods We involved ten newly diagnosed PCOS women who attended gynecology at Zhongda Hospital and matched them with ten healthy controls who conducted health check-up programs at Gulou Maternal and Child Health Center in Nanjing, China from January 1st, 2019 to July 31st, 2020. Non-targeted metabolomics based on ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was applied to differentially screen vaginal metabolites between PCOS group and healthy controls. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA) and enrichment analysis were used to observe differences, search for potential biomarkers and enrich related pathways. Results Among the 20 participants, a total of 195 different metabolites were detected between PCOS group and healthy control group. PCOS and control groups were effectively separated by vaginal fluid. Lipids and lipid-like molecules constituted the majority of differential metabolites. Notably, dopamine exhibited an increased trend in PCOS group and emerged as the most significant differential metabolite, suggesting its potential as a biomarker for identifying PCOS. The application of UHPLC-MS/MS based vaginal metabolomics methods showed significant differences between PCOS and non-PCOS healthy control groups, especially linoleic acid metabolism disorder. Most differential metabolites were enriched in pathways associated with linoleic acid metabolism, phenylalanine metabolism, tyrosine metabolism, nicotinate and nicotinamide metabolism or arachidonic acid metabolism. Conclusions In this pilot investigation, significant metabolomics differences could be obtained between PCOS and healthy control groups. For PCOS women of reproductive age, vaginal metabolism is a more economical, convenient and harmless alternative to provide careful personalized health diagnosis and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yan Xuan
- Department of Epidemiology and Health Statistics, Southeast University, Nanjing, Jiangsu, China
| | - Xiang Hong
- Department of Epidemiology and Health Statistics, Southeast University, Nanjing, Jiangsu, China
| | - Xu Zhou
- Department of Epidemiology and Health Statistics, Southeast University, Nanjing, Jiangsu, China
| | - Tao Yan
- Department of Epidemiology and Health Statistics, Southeast University, Nanjing, Jiangsu, China
| | - Pengfei Qin
- Nanjing Women and Children’s Healthcare Hospital, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danhong Peng
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bei Wang
- Department of Epidemiology and Health Statistics, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Guan HR, Li B, Zhang ZH, Wu HS, Wang N, Chen XF, Zhou CL, Bian XR, Li L, Xu WF, He XL, Dong YJ, Jiang NH, Su J, Lv GY, Chen SH. Exploring the efficacy and mechanism of Bailing capsule to improve polycystic ovary syndrome in mice based on intestinal-derived LPS-TLR4 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118274. [PMID: 38697410 DOI: 10.1016/j.jep.2024.118274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with reproductive dysfunction and metabolic abnormalities, particularly characterized by insulin resistance and chronic low-grade inflammation. Multiple clinical studies have clearly demonstrated the significant efficacy and safety of the combination of Bailing capsules (BL) in the treatment of PCOS, but its pharmacological effects and mechanisms still require further study. AIM OF THE STUDY To evaluate the effect of BL on improving PCOS in mice and explore the mechanism. METHODS In this study, Dehydroepiandrosterone (DHEA) injection was administered alone and in combination with a high-fat and high-sugar diet to induce PCOS-like mouse. They were randomly divided into five groups: normal group (N), PCOS group (P), Bailing capsule low-dose group (BL-L), Bailing capsule high-dose group (BL-H) and Metformin + Daine-35 group (M + D). Firstly, the effects of BL on ovarian lesions, serum hormone levels, HOMA-IR, intestinal barrier function, inflammation levels, along with the expression of IRS1, PI3K, AKT, TLR4, Myd88, NF-κB p65, TNF-α, IL-6, and Occludin of the ovary, liver and colon were investigated. Finally, the composition of the gut microbiome of fecal was tested. RESULTS The administration of BL significantly reduced body weight, improved hormone levels, improved IR, and attenuated pathological damage to ovarian tissues, up-regulated the expression of IRS1, PI3K, and AKT in liver. It also decreased serum LPS, TNF-α, and IL-6 levels, while downregulating the expression of Myd88, TLR4, and NF-κB p65. Additionally, BL improved intestinal barrier damage and upregulated the expression of Occludin. Interestingly, the abundance of norank_f__Muribaculacea and Lactobacillus was down-regulated, while the abundance of Akkermansia was significantly up-regulated. CONCLUSION The results of the study showed that BL exerts a treatment PCOS effect, which may be related to the modulation of the gut microbiota, the improvement of insulin resistance and the intestinal-derived LPS-TLR4 inflammatory pathway. Our research will provide a theoretical basis for the clinical treatment of PCOS.
Collapse
Affiliation(s)
- Hao-Ru Guan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang Province, 313000, PR China
| | - Ze-Hua Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Han-Song Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Ning Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xian-Fang Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Cheng-Liang Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xue-Ren Bian
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Lu Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Wan-Feng Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xing-Lishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Ying-Jie Dong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Ning-Hua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, PR China.
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang Province, 313000, PR China.
| |
Collapse
|
7
|
Ling CW, Deng K, Yang Y, Lin HR, Liu CY, Li BY, Hu W, Liang X, Zhao H, Tang XY, Zheng JS, Chen YM. Mapping the gut microecological multi-omics signatures to serum metabolome and their impact on cardiometabolic health in elderly adults. EBioMedicine 2024; 105:105209. [PMID: 38908099 PMCID: PMC11253218 DOI: 10.1016/j.ebiom.2024.105209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Mapping gut microecological features to serum metabolites (SMs) will help identify functional links between gut microbiome and cardiometabolic health. METHODS This study encompassed 836-1021 adults over 9.7 year in a cohort, assessing metabolic syndrome (MS), carotid atherosclerotic plaque (CAP), and other metadata triennially. We analyzed mid-term microbial metagenomics, targeted fecal and serum metabolomics, host genetics, and serum proteomics. FINDINGS Gut microbiota and metabolites (GMM) accounted for 15.1% overall variance in 168 SMs, with individual GMM factors explaining 5.65%-10.1%, host genetics 3.23%, and sociodemographic factors 5.95%. Specifically, GMM elucidated 5.5%-49.6% variance in the top 32 GMM-explained SMs. Each 20% increase in the 32 metabolite score (derived from the 32 SMs) correlated with 73% (95% confidence interval [CI]: 53%-95%) and 19% (95% CI: 11%-27%) increases in MS and CAP incidences, respectively. Among the 32 GMM-explained SMs, sebacic acid, indoleacetic acid, and eicosapentaenoic acid were linked to MS or CAP incidence. Serum proteomics revealed certain proteins, particularly the apolipoprotein family, mediated the relationship between GMM-SMs and cardiometabolic risks. INTERPRETATION This study reveals the significant influence of GMM on SM profiles and illustrates the intricate connections between GMM-explained SMs, serum proteins, and the incidence of MS and CAP, providing insights into the roles of gut dysbiosis in cardiometabolic health via regulating blood metabolites. FUNDING This study was jointly supported by the National Natural Science Foundation of China, Key Research and Development Program of Guangzhou, 5010 Program for Clinical Research of Sun Yat-sen University, and the 'Pioneer' and 'Leading goose' R&D Program of Zhejiang.
Collapse
Affiliation(s)
- Chu-Wen Ling
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Department of Clinical Nutrition, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Kui Deng
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, 310030, China
| | - Yingdi Yang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong-Rou Lin
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chun-Ying Liu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bang-Yan Li
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wei Hu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinxiu Liang
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, 310030, China
| | - Hui Zhao
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, 310030, China
| | - Xin-Yi Tang
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Ju-Sheng Zheng
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, 310030, China.
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Qian Y, Tong Y, Zeng Y, Huang J, Liu K, Xie Y, Chen J, Gao M, Liu L, Zhao J, Hong Y, Nie X. Integrated lipid metabolomics and proteomics analysis reveal the pathogenesis of polycystic ovary syndrome. J Transl Med 2024; 22:364. [PMID: 38632610 PMCID: PMC11022415 DOI: 10.1186/s12967-024-05167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrinological and metabolic disorder that can lead to female infertility. Lipid metabolomics and proteomics are the new disciplines in systems biology aimed to discover metabolic pathway changes in diseases and diagnosis of biomarkers. This study aims to reveal the features of PCOS to explore its pathogenesis at the protein and metabolic level. METHODS We collected follicular fluid samples and granulosa cells of women with PCOS and normal women who underwent in vitro fertilization(IVF) and embryo transfer were recruited. The samples were for the lipidomic study and the proteomic study based on the latest metabolomics and proteomics research platform. RESULTS Lipid metabolomic analysis revealed abnormal metabolism of glycerides, glycerophospholipids, and sphingomyelin in the FF of PCOS. Differential lipids were strongly linked with the rate of high-quality embryos. In total, 144 differentially expressed proteins were screened in ovarian granulosa cells in women with PCOS compared to controls. Go functional enrichment analysis showed that differential proteins were associated with blood coagulation and lead to follicular development disorders. CONCLUSION The results showed that the differential lipid metabolites and proteins in PCOS were closely related to follicle quality,which can be potential biomarkers for oocyte maturation and ART outcomes.
Collapse
Affiliation(s)
- Yu Qian
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yun Tong
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yaqiong Zeng
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jingyu Huang
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Kailu Liu
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ying Xie
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Juan Chen
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Mengya Gao
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Li Liu
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Juan Zhao
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yanli Hong
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Xiaowei Nie
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
9
|
Meng XH, Chen BB, Liu XW, Zhang JX, Xie S, Liu LJ, Wen LF, Deng AM, Mao ZH. Inferring Causal Relationships Between Metabolites and Polycystic Ovary Syndrome Using Summary Statistics from Genome‑Wide Association Studies. Reprod Sci 2024; 31:832-839. [PMID: 37831368 DOI: 10.1007/s43032-023-01376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. Previous studies have suggested that metabolites may play a pivotal mediating role in the progression of phenotypic variations. Although several metabolites had been identified as potential markers for PCOS, the relationship between blood metabolites and PCOS was not comprehensively explored. Previously, Pickrell et al. designed a robust approach to infer evidence of a causal relationship between different phenotypes using independently putative causal SNPs. Our previous paper extended this approach to make it more suitable for cases where only a few independently putative causal SNPs were identified to be significantly associated with the phenotypes (i.e., metabolites). When the most significant SNPs in each independent locus (the independent lead SNPs) with p-values of < 1 × 10-5 were used, 3 metabolites (2-tetradecenoyl carnitine, threitol, 1-docosahexaenoylglycerophosphocholine) causally influencing PCOS and 2 metabolites (asparagine and phenyllactate) influenced by PCOS were identified, (relative likelihood r < 0.01). Under a less stringent threshold of r < 0.05, 7 metabolites (trans-4-hydroxyproline, glutaroyl carnitine, stachydrine, undecanoate, 7-Hoca, N-acetylalanine and 2-hydroxyisobutyrate) were identified. Taken together, this study can provide novel insights into the pathophysiological mechanisms underlying PCOS; whether these metabolites can serve as biomarkers to predict PCOS in clinical practice warrants further investigations.
Collapse
Affiliation(s)
- Xiang-He Meng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| | - Bin-Bin Chen
- Center of Genetics, Changsha Jiangwan Maternity Hospital, Changsha, Hunan, China
| | - Xiao-Wen Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Jing-Xi Zhang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Shun Xie
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Lv-Jun Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Li-Feng Wen
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Ai-Min Deng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| | - Zeng-Hui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| |
Collapse
|
10
|
Xu Y, Zhou Z, Zhang G, Yang Z, Shi Y, Jiang Z, Liu Y, Chen H, Huang H, Zhang Y, Pan J. Metabolome implies increased fatty acid utilization and histone methylation in the follicles from hyperandrogenic PCOS women. J Nutr Biochem 2024; 125:109548. [PMID: 38104867 DOI: 10.1016/j.jnutbio.2023.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Well-balanced metabolism is essential for the high-quality of oocytes, and metabolic fluctuations of follicular microenvironment potentially encourage functional changes in follicle cells, ultimately impacting the developmental potential of oocytes. Here, the global metabolomic profiles of follicular fluid from PCOS women with ovarian hyperandrogenism and nonhyperandrogenism were depicted by untargeted metabolome and transcriptome. In parallel, functional methods were employed to evaluate the possible impact of dysregulated metabolites on oocyte and embryo development. Our findings demonstrated that PCOS women exhibited distinct metabolic features in follicles, such as the increase in fatty acid utilization and the downregulation in amino acid metabolism. And intrafollicular androgen levels were positively correlated with contents of multiple fatty acids, suggesting androgen as one of the contributing factors to the metabolic abnormalities in PCOS follicles. Moreover, we further demonstrated that elevated levels of α-linolenic acid and H3K27me3 could hinder oocyte maturation, fertilization, and early embryo development. Hopefully, our data serve as a broad resource on the metabolic abnormalities of PCOS follicles, and advances in the relevant knowledge will allow the identification of biomarkers that predict the progression of PCOS and its poor pregnancy outcomes.
Collapse
Affiliation(s)
- Yue Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Zhiyang Zhou
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Gaochen Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Zuwei Yang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Shi
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Zhaoying Jiang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Liu
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huixi Chen
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Rajska A, Buszewska-Forajta M, Macioszek S, Wawrzyniak R, Wityk P, Berg A, Kowalewska A, Rachoń D, Markuszewski MJ. Searching for the primary metabolic alterations of polycystic ovary syndrome by application of the untargeted metabolomics approach. J Pharm Biomed Anal 2023; 235:115602. [PMID: 37536113 DOI: 10.1016/j.jpba.2023.115602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Despite a large number of studies, the pathogenesis of polycystic ovary syndrome (PCOS) still remains unexplained. In light of ambiguous observations reported in metabolomics, there is a need to carry out studies focusing on confirming the discriminating power of the proposed metabolomics biomarkers. Our research aimed to perform a validation study of metabolites detected in our previous study from serum samples, on the new set of samples obtained from PCOS women and healthy controls to confirm previously selected compounds. Additionally, the second biological matrix - urine - was used to get a more comprehensive insight into metabolic alterations. We applied two analytical techniques - gas chromatography and liquid chromatography coupled with mass spectrometry to analyze both serum and urine samples obtained from 35 PCOS patients and 35 healthy women. Thank to our approach, we identified and described a comprehensive set of metabolites altered in PCOS patients. Results of our study indicate increased steroid hormone synthesis, alteration in sphingo- and phospholipids metabolism, and disturbed fatty acids metabolism. Moreover, the citric acid cycle, γ-glutamyl cycle, vitamin B metabolism, and a few primary amino acids like tryptophan, phenylalanine, histidine, and alanine are altered.
Collapse
Affiliation(s)
- Anna Rajska
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland.
| | - Magdalena Buszewska-Forajta
- Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; Department of Plant Physiology, Genetics, and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland
| | - Szymon Macioszek
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Renata Wawrzyniak
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Paweł Wityk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland; Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, Gdańsk, Poland
| | - Andrzej Berg
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | | | - Dominik Rachoń
- Department of Clinical and Experimental Endocrinology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | - Michał J Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
12
|
Li Y, Zhu Y, Li D, Liu W, Zhang Y, Liu W, Zhang C, Tao T. Depletion of gut microbiota influents glucose metabolism and hyperandrogenism traits of mice with PCOS induced by letrozole. Front Endocrinol (Lausanne) 2023; 14:1265152. [PMID: 37929036 PMCID: PMC10623308 DOI: 10.3389/fendo.2023.1265152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a multifaceted disorder that impacts metabolism, reproduction, as well as endocrine function, characterized by excessive levels of androgen and insulin resistance. The gut microbiota has been implicated in the pathogenesis of PCOS. However, the precise mechanisms through which the gut microbiota influences PCOS still require further elucidation. Methods The PCOS mouse model was established through the administration of letrozole to both conventional and antibiotics-treated mice. The evaluation of glucose metabolism, sex hormone levels, and ovarian morphology was conducted. Furthermore, the fecal samples from each group of mice were subjected to 16S rRNA gene sequencing, and functional prediction of gut microbiota was proceeded using PICRUSt2 to explore potential mechanisms. Results By using letrozole-induced PCOS mice model, we manifested that antibiotic intervention significantly reduced the serum total testosterone level and ameliorated glucose intolerance. Antibiotic treatment reduced the number of amplicon sequence variants (ASVs), as well as the Shannon and Simpson index. Meanwhile, letrozole induced a significant increase in the Shannon and Simpson index instead of ASVs. Through random forest model analysis, the results revealed significant alterations in three distinct groups of microbiota, namely Clostridia_vadinBB60_group, Enterorhabdus, and Muribaculaceae after letrozole treatment. Further correlation analysis revealed a positive association between alterations in these microbiota and both serum total testosterone levels and the area under the curve (AUC) of blood glucose in IPGTT. The administration of antibiotics led to a decrease in the absolute abundance of 5 ASVs belonging to unclassified Clostridia_vadinBB60_group, unclassified Enterorhabdus, and unclassified Muribaculaceae, which exhibited a positive correlation with the levels of total testosterone in mice serum, as well as the area under the curve of blood glucose in IPGTT. Moreover, 25 functional pathways of gut microbiome were significantly discrepant between the letrozole-treated mice with and without antibiotics. Conclusion These results suggest that disturbance of the gut microbiota may take participate in the progression of PCOS and manipulating the composition of the gut microbiota may be a therapeutic approach for managing PCOS.
Collapse
Affiliation(s)
- Yushan Li
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Zhu
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Liu
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zhang
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Tao
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Escobar-Morreale HF, Martínez-García MÁ, Insenser M, Cañellas N, Correig X, Luque-Ramírez M. Serum metabolomics profiling by proton nuclear magnetic resonance spectrometry of the response to single oral macronutrient challenges in women with polycystic ovary syndrome (PCOS) compared with male and female controls. Biol Sex Differ 2023; 14:62. [PMID: 37736753 PMCID: PMC10514968 DOI: 10.1186/s13293-023-00547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND The polycystic ovary syndrome (PCOS) is associated with insulin resistance, obesity and cardiometabolic comorbidities. We here challenged the hypothesis, using state-of-the-art proton nuclear magnetic resonance spectrometry (1H-NMRS) metabolomics profiling, that androgen excess in women induces a certain masculinization of postprandial metabolism that is modulated by obesity. MATERIALS AND METHODS Participants were 53 Caucasian young adults, including 17 women with classic PCOS consisting of hyperandrogenism and ovulatory dysfunction, 17 non-hyperandrogenic women presenting with regular menses, and 19 healthy men, selected to be similar in terms of age and body mass index (BMI). Half of the subjects had obesity. Patients were submitted to isocaloric separate glucose, lipid and protein oral challenges in alternate days and fasting and postprandial serum samples were submitted to 1H-NMRS metabolomics profiling for quantification of 36 low-molecular-weight polar metabolites. RESULTS The largest postprandial changes were observed after glucose and protein intake, with lipid ingestion inducing smaller differences. Changes after glucose intake consisted of a marked increase in carbohydrates and byproducts of glycolysis, and an overall decrease in byproducts of proteolysis, lipolysis and ketogenesis. After the protein load, most amino acids and derivatives increased markedly, in parallel to an increase in pyruvate and a decrease in 3-hydroxybutyric acid and glycerol. Obesity increased β- and D-glucose and pyruvate levels, with this effect being observed mostly after glucose ingestion in women with PCOS. Regardless of the type of macronutrient, men presented increased lysine and decreased 3-hydroxybutyric acid. In addition, non-obese men showed increased postprandial β-glucose and decreased pyroglutamic acid, compared with non-obese control women. We observed a common pattern of postprandial changes in branched-chain and aromatic amino acids, where men showed greater amino acids increases after protein intake than control women and patients with PCOS but only within the non-obese participants. Conversely, this increase was blunted in obese men but not in obese women, who even presented a larger increase in some amino acids compared with their non-obese counterparts. Interestingly, regardless of the type of macronutrient, only obese women with PCOS showed increased leucine, lysine, phenylalanine and tryptophan levels compared with non-obese patients. CONCLUSIONS Serum 1H-NMRS metabolomics profiling indicated sexual dimorphism in the responses to oral macronutrient challenges, which were apparently driven by the central role of postprandial insulin effects with obesity, and to a lesser extent PCOS, exerting modifying roles derived from insulin resistance. Hence, obesity impaired metabolic flexibility in young adults, yet sex and sex hormones also influenced the regulation of postprandial metabolism.
Collapse
Affiliation(s)
- Héctor F Escobar-Morreale
- Diabetes Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Carretera de Colmenar km 9.1, 28034, Madrid, Spain.
| | - María Ángeles Martínez-García
- Diabetes Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Carretera de Colmenar km 9.1, 28034, Madrid, Spain
| | - María Insenser
- Diabetes Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Carretera de Colmenar km 9.1, 28034, Madrid, Spain
| | - Nicolau Cañellas
- Department of Electronic Engineering, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Manuel Luque-Ramírez
- Diabetes Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Carretera de Colmenar km 9.1, 28034, Madrid, Spain
| |
Collapse
|
14
|
Gao J, Xiao Y. Metabolomics and its applications in assisted reproductive technology. IET Nanobiotechnol 2023. [PMID: 37248807 PMCID: PMC10374554 DOI: 10.1049/nbt2.12141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/19/2023] [Accepted: 04/01/2023] [Indexed: 05/31/2023] Open
Abstract
Metabolomics, an emerging omics technology developed in the post-gene age, is an important part of systems biology. It interprets the pathophysiological state of the subject by quantitatively describing the dynamic changes of metabolites through analytical methods, mainly mass spectrometry (MS) and nuclear magnetic resonance (NMR). Assisted reproductive technology (ART) is a method used to manipulate sperm, oocytes, and embryos to achieve conception. Recently, several studies have reported that metabolomics methods can be used to measure metabolites in ART samples; these metabolites can be used to evaluate the quality of gametes and embryos. This article reviews the progress of research on metabolomics and the application of this technology in the field of ART, thus providing a reference for research and development directions in the future.
Collapse
Affiliation(s)
- Jingying Gao
- Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Yan Xiao
- Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Escobar-Morreale HF, Martínez-García MÁ, Insenser M, Cañellas N, Correig X, Luque-Ramírez M. Serum metabolomics profiling by proton nuclear magnetic resonance spectroscopy reveals sexual dimorphism and masculinization of intermediate metabolism in women with polycystic ovary syndrome (PCOS). Biol Sex Differ 2023; 14:21. [PMID: 37076926 PMCID: PMC10114375 DOI: 10.1186/s13293-023-00507-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND The polycystic ovary syndrome (PCOS) is associated with insulin resistance, obesity and cardiometabolic comorbidities. We here challenged the hypothesis, using state-of-the art proton nuclear magnetic resonance spectroscopy metabolomics profiling, that androgen excess in women induces also a certain masculinization of intermediate metabolism that is modulated by obesity. METHODS Participants were 53 Caucasian young adults, including 17 women with classic PCOS consisting of hyperandrogenism and ovulatory dysfunction, 17 non-hyperandrogenic women presenting with regular menses, and 19 healthy men, selected in order to be similar in terms of age and body mass index (BMI). Half of the subjects had obesity defined by a body mass index ≥ 30 kg/m2. Subjects maintained the same diet unrestricted in carbohydrates for 3 days before sampling and maintained their lifestyle and exercise patterns prior and during the study. Plasma samples were submitted to proton nuclear magnetic resonance spectroscopy metabolomics profiling. RESULTS Obesity associated a metabolomics profile mainly characterized by increased branched chain and aromatic aminoacids. Regardless of obesity, this unfavorable profile also characterized men as compared with control women, and was shared by women with PCOS. Notably, the negative impact of obesity on metabolomics profile was restricted to women, with obese men showing no further deterioration when compared with their non-obese counterparts. CONCLUSIONS Serum metabolomics profiling by proton nuclear magnetic resonance spectroscopy reveals sexual dimorphism, and masculinization of intermediate metabolism in women with PCOS, further suggesting a role for sex and sex hormones in the regulation of intermediate metabolism.
Collapse
Affiliation(s)
- Héctor F Escobar-Morreale
- Diabetes Obesity and Human Reproduction Research Group, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar km 9.1, 28034, Madrid, Spain.
| | - M Ángeles Martínez-García
- Diabetes Obesity and Human Reproduction Research Group, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar km 9.1, 28034, Madrid, Spain
| | - María Insenser
- Diabetes Obesity and Human Reproduction Research Group, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar km 9.1, 28034, Madrid, Spain
| | - Nicolau Cañellas
- Department of Electronic Engineering, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Institut d'Investigació Sanitària Pere Virgili, University Rovira i Virgili, Tarragona, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Institut d'Investigació Sanitària Pere Virgili, University Rovira i Virgili, Tarragona, Spain
| | - Manuel Luque-Ramírez
- Diabetes Obesity and Human Reproduction Research Group, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar km 9.1, 28034, Madrid, Spain
| |
Collapse
|
16
|
Ikeda Y, Morikawa S, Nakashima M, Yoshikawa S, Taniguchi K, Sawamura H, Suga N, Tsuji A, Matsuda S. CircRNAs and RNA-Binding Proteins Involved in the Pathogenesis of Cancers or Central Nervous System Disorders. Noncoding RNA 2023; 9:23. [PMID: 37104005 PMCID: PMC10142617 DOI: 10.3390/ncrna9020023] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Circular RNAs (circRNAs), a newly recognized group of noncoding RNA transcripts, have established widespread attention due to their regulatory role in cell signaling. They are covalently closed noncoding RNAs that form a loop, and are typically generated during the splicing of precursor RNAs. CircRNAs are key post-transcriptional and post-translational regulators of gene expression programs that might influence cellular response and/or function. In particular, circRNAs have been considered to function as sponges of specific miRNA, regulating cellular processes at the post-transcription stage. Accumulating evidence has shown that the aberrant expression of circRNAs could play a key role in the pathogenesis of several diseases. Notably, circRNAs, microRNAs, and several RNA-binding proteins, including the antiproliferative (APRO) family proteins, could be indispensable gene modulators, which might be strongly linked to the occurrence of diseases. In addition, circRNAs have attracted general interest for their stability, abundance in the brain, and their capability to cross the blood-brain barrier. Here, we present the current findings and theragnostic potentials of circRNAs in several diseases. With this, we aim to provide new insights to support the development of novel diagnostic and/or therapeutic strategies for these diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
17
|
Rani S, Chandna P. Multiomics Analysis-Based Biomarkers in Diagnosis of Polycystic Ovary Syndrome. Reprod Sci 2023; 30:1-27. [PMID: 35084716 PMCID: PMC10010205 DOI: 10.1007/s43032-022-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
Polycystic ovarian syndrome is an utmost communal endocrine, psychological, reproductive, and metabolic disorder that occurs in women of reproductive age with extensive range of clinical manifestations. This may even lead to long-term multiple morbidities including obesity, diabetes mellitus, insulin resistance, cardiovascular disease, infertility, cerebrovascular diseases, and ovarian and endometrial cancer. Women affliction from PCOS in midst assemblage of manifestations allied with menstrual dysfunction and androgen exorbitance, which considerably affects eminence of life. PCOS is recognized as a multifactorial disorder and systemic syndrome in first-degree family members; therefore, the etiology of PCOS syndrome has not been copiously interpreted. The disorder of PCOS comprehends numerous allied health conditions and has influenced various metabolic processes. Due to multifaceted pathophysiology engaging several pathways and proteins, single genetic diagnostic tests cannot be supportive to determine in straight way. Clarification of cellular and biochemical pathways and various genetic players underlying PCOS could upsurge our consideration of pathophysiology of this syndrome. It is requisite to know pathophysiological relationship between biomarker and their reflection towards PCOS disease. Biomarkers deliver vibrantly and potent ways to apprehend the spectrum of PCOS with applications in screening, diagnosis, characterization, and monitoring. This paper relies on the endeavor to point out many candidates as potential biomarkers based on omics technologies, thus highlighting correlation between PCOS disease with innovative technologies. Therefore, the objective of existing review is to encapsulate more findings towards cutting-edge advances in prospective use of biomarkers for PCOS disease. Discussed biomarkers may be fruitful in guiding therapies, addressing disease risk, and predicting clinical outcomes in future.
Collapse
Affiliation(s)
- Shikha Rani
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi , 110021, India.
| | - Piyush Chandna
- Natdynamics Biosciences Confederation, Gurgaon, Haryana, 122001, India
| |
Collapse
|
18
|
Tian Y, Zhang J, Li M, Shang J, Bai X, Zhang H, Wang Y, Chen H, Song X. Serum fatty acid profiles associated with metabolic risk in women with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1077590. [PMID: 37065734 PMCID: PMC10102484 DOI: 10.3389/fendo.2023.1077590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
PURPOSE Dyslipidemia is a feature of polycystic ovary syndrome (PCOS) that may augment metabolic disturbances. Serum fatty acids are important biomedical indicators of dyslipidemia. The aim of this study was to determine the distinct serum fatty acids in various PCOS subtypes and their association with metabolic risk in women with PCOS. METHODS Fatty acids in the serum of 202 women with PCOS were measured using gas chromatography-mass spectrometry. Fatty acids were compared between PCOS subtypes and correlated with glycemic parameters, adipokines, homocysteine, sex hormones, and sex hormone-binding globulin (SHBG). RESULTS The levels of total monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) in the reproductive subtype of PCOS were lower than those in the metabolic subtype. Docosahexaenoic acid, a PUFA, was associated with higher SHBG after correction for multiple comparisons. Eighteen species of fatty acids emerged as potential biomarkers associated with the metabolic risk factors measured, independent of body mass index (BMI). Among them, myristic acid (C14:0), palmitoleic acid (C16:1), oleic acid (C18:1n-9C), cis-vaccenic acid (C18:1n-7), and homo-gamma-linolenic acid (C20:3n-6) were the strongest lipid species that were consistently associated with metabolic risk factors, particularly insulin-related parameters in women with PCOS. As for adipokines, 16 fatty acids were positively associated with serum leptin. Among them, C16:1 and C20:3n-6were significantly associated with leptin levels. CONCLUSION Our data demonstrated that a distinct fatty acid profile comprising high C14:0, C16:1, C18:1n-9C, C18:1n-7, and C20:3n-6levels is associated with metabolic risk in women with PCOS, independent of BMI.
Collapse
Affiliation(s)
- Ye Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingjing Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Mingyue Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Shang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huijuan Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanxia Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xueru Song
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
Kuzhiumparambil U, Labeeuw L, Commault A, Vu HP, Nguyen LN, Ralph PJ, Nghiem LD. Effects of harvesting on morphological and biochemical characteristics of microalgal biomass harvested by polyacrylamide addition, pH-induced flocculation, and centrifugation. BIORESOURCE TECHNOLOGY 2022; 359:127433. [PMID: 35680089 DOI: 10.1016/j.biortech.2022.127433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The effects of microalgae harvesting methods on microalgal biomass quality were evaluated using three species namely the freshwater green alga Chlorella vulgaris, marine red alga Porphyridium purpureum and marine diatom Phaeodactylum tricornutum. Harvesting efficiencies of polyacrylamide addition, alkaline addition, and centrifugation ranged from 85 to 95, 59-92 and 100%, respectively, across these species. Morphology of the harvested cells (i.e. compromised cell walls) was significantly impacted by alkaline pH-induced flocculation for all three species. Over 50% of C. vulgaris cells were compromised with alkaline pH compared to < 10% with polyacrylamide and centrifugation. The metabolic profiles varied depending on harvesting methods. Species-specific decrease of certain metabolites was observed. These results suggest that the method of harvest can alter the metabolic profile of the biomass amongst the three harvesting methods, polyacrylamide addition showed higher harvesting efficiency with less compromised cells and higher retention of industry important biochemicals.
Collapse
Affiliation(s)
| | - Leen Labeeuw
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Audrey Commault
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hang P Vu
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
20
|
Eskandari V, Sahbafar H, Zeinalizad L, Hadi A. A review of applications of surface-enhanced raman spectroscopy laser for detection of biomaterials and a quick glance into its advances for COVID-19 investigations. ISSS JOURNAL OF MICRO AND SMART SYSTEMS 2022; 11:363-382. [PMID: 35540110 PMCID: PMC9070975 DOI: 10.1007/s41683-022-00103-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is one of the most sensitive analytical tools. In some cases, it is possible to record a high-quality SERS spectrum in which even a single molecule is involved. Therefore, SERS is considered a significantly promising option as an alternative to routine analytical techniques used in food, environmental, biochemical, and medical analyzes. In this review, the definitive applications of SERS developed to identify biochemically important species (especially medical and biological) from the simplest to the most complex are briefly discussed. Moreover, the potential capability of SERS for being used as an alternative to routine methods in diagnostic and clinical cases is demonstrated. In addition, this article describes how SERS-based sensors work, addresses its advancements in the last 20 years, discusses its applications for detecting Coronavirus Disease 2019 (COVID-19), and finally describes future works. The authors hope that this article will be useful for researchers who want to enter this amazing field of research.
Collapse
Affiliation(s)
- Vahid Eskandari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hossein Sahbafar
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Leila Zeinalizad
- Faculty of Biomedical Engineering, Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
21
|
Escobar-Morreale HF, Bayona A, Nattero-Chávez L, Luque-Ramírez M. Type 1 diabetes mellitus and polycystic ovary syndrome. Nat Rev Endocrinol 2021; 17:701-702. [PMID: 34561669 DOI: 10.1038/s41574-021-00576-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Héctor F Escobar-Morreale
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Madrid, Spain.
- University of Alcalá, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain.
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| | - Ane Bayona
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Lía Nattero-Chávez
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Manuel Luque-Ramírez
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Madrid, Spain
- University of Alcalá, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| |
Collapse
|
22
|
Ye Z, Zhang C, Wang S, Zhang Y, Li R, Zhao Y, Qiao J. Amino acid signatures in relation to polycystic ovary syndrome and increased risk of different metabolic disturbances. Reprod Biomed Online 2021; 44:737-746. [DOI: 10.1016/j.rbmo.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022]
|
23
|
Zhang D, Yi S, Cai B, Wang Z, Chen M, Zheng Z, Zhou C. Involvement of ferroptosis in the granulosa cells proliferation of PCOS through the circRHBG/miR-515/SLC7A11 axis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1348. [PMID: 34532485 PMCID: PMC8422124 DOI: 10.21037/atm-21-4174] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrine disease among women, but its etiology remains unknown. In recent years, many circular RNAs (circRNAs) have been confirmed to be related to the development of PCOS. The role and mechanism of circRNA in the development of PCOS need to be further explored. METHODS In the present study, we used the circRNA chip to detect the difference in the expression of circRNA in the granulosa cells of PCOS patients and controls. Five upregulated circRNAs were then selected for quantitative reverse transcription polymerase chain reaction (qRT-PCR) verification, and circRHBG was found to be upregulated in PCOS. Subsequently, Cell Counting Kit-8 assay and EdU assay were used to observe the effect of circRHBG on the proliferation of KGN and SVOG cells. Furthermore, the pairwise binding relationship between circRHBG/miR515-5 and miR515-5p/SLC7A11 was verified by luciferase reporter assay. The interaction between circRHBG and SLC7A11 was detected with qRT-PCR and Western blot. RESULTS CircRNA high-throughput chips and qRT-PCR verified that circRHBG was significantly upregulated in granular cells of PCOS patients. Knockdown of circRHBG inhibits KGN and SVOG cell proliferation. Luciferase reporter assays and Ago2-RIP detection showed that circRHBG competes with SLC7A11 to bind to miR-515-5p. Subsequent experiments verified knockdown of circRHBG promotes ferroptosis in PCOS. CONCLUSIONS circRHBG inhibits ferroptosis in PCOS cells through the circRHBG/miR-515-5p/SLC7A11 axis in PCOS, which may provide new diagnostic molecular markers and therapeutic targets for PCOS.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Shuijing Yi
- Department of Gynecology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Bing Cai
- Department of Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Zengyan Wang
- Department of Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Minghui Chen
- Department of Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Zetong Zheng
- Department of Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Canquan Zhou
- Department of Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| |
Collapse
|
24
|
Ożegowska K, Plewa S, Mantaj U, Pawelczyk L, Matysiak J. Serum Metabolomics in PCOS Women with Different Body Mass Index. J Clin Med 2021; 10:jcm10132811. [PMID: 34202365 PMCID: PMC8268990 DOI: 10.3390/jcm10132811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 01/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine and metabolic disorder, affecting 5–10% of women of reproductive age. It results from complex environmental factors, genetic predisposition, hyperinsulinemia, hormonal imbalance, neuroendocrine abnormalities, chronic inflammation, and autoimmune disorders. PCOS impacts menstrual regularities, fertility, and dermatological complications, and may induce metabolic disturbances, diabetes, and coronary heart disease. Comprehensive metabolic profiling of patients with PCOS may be a big step in understanding and treating the disease. The study aimed to search for potential differences in metabolites concentrations among women with PCOS according to different body mass index (BMI) in comparison to healthy controls. We used broad-spectrum targeted metabolomics to evaluate metabolites’ serum concentrations in PCOS patients and compared them with healthy controls. The measurements were performed using high-performance liquid chromatography coupled with the triple quadrupole tandem mass spectrometry technique, which has highly selective multiple reaction monitoring modes. The main differences were found in glycerophospholipid concentrations, with no specific tendency to up-or down-regulation. Insulin resistance and elevated body weight influence acylcarnitine C2 levels more than PCOS itself. Sphingomyelin (SM) C18:1 should be more intensively observed and examined in future studies and maybe serve as one of the PCOS biomarkers. No significant correlations were observed between anthropometric and hormonal parameters and metabolome results.
Collapse
Affiliation(s)
- Katarzyna Ożegowska
- Department of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
- Correspondence:
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (S.P.); (J.M.)
| | - Urszula Mantaj
- Division of Reproduction, Medical Faculty I, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Leszek Pawelczyk
- Department of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (S.P.); (J.M.)
| |
Collapse
|
25
|
Alesi S, Ghelani D, Mousa A. Metabolomic Biomarkers in Polycystic Ovary Syndrome: A Review of the Evidence. Semin Reprod Med 2021; 39:102-110. [PMID: 33946122 DOI: 10.1055/s-0041-1729841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrinologic condition affecting one in five women of reproductive age. PCOS is often characterized by disruptions to the menstrual cycle, development of male-pattern hair growth (hirsutism), and polycystic ovary morphology. Recently, PCOS has been linked to metabolic dysfunction, with 40 to 80% of women characterized as overweight or obese. Despite these well-known negative health effects of PCOS, 75% of sufferers remain undiagnosed. This is most likely due to the variability in symptom presentation and the lack of a definitive test for the condition. Metabolomics, which is a platform used to analyze and characterize a large number of metabolites, has recently been proposed as a potential tool for investigating the metabolic pathways that could be involved in the pathophysiology of PCOS. In doing so, novel biomarkers could be identified to improve diagnosis and treatment of PCOS. This review aims to summarize the findings of recent metabolomic studies that highlight metabolic-specific molecules which are deranged in PCOS, to identify potential biomarkers for the condition. Current limitations for metabolomic studies are discussed, as well as future directions to progress the field toward further validation and integration into clinical practice.
Collapse
Affiliation(s)
- Simon Alesi
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Drishti Ghelani
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Agrawal K, Mathur R, Purwar N, Mathur SK, Mathur DK. Hyperandrogenism, Insulin Resistance, and Acanthosis Nigricans (HAIR-AN) Syndrome Reflects Adipose Tissue Dysfunction ("Adiposopathy" or "Sick Fat") in Asian Indian Girls. Dermatology 2021; 237:797-805. [PMID: 33445175 DOI: 10.1159/000512918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Whether HAIR-AN syndrome and polycystic ovarian syndrome (PCOS) are distinct entities or represent a phenotypic spectrum of the same syndrome is still unclear. HAIR-AN syndrome is characterized by high insulin resistance, obesity, and hyperinsulinemia as compared to PCOS and could represent adipose tissue dysfunction as the primary pathophysiologic trigger. This study was undertaken to study the role of adipose tissue dysfunction in HAIR-AN syndrome and PCOS using adipocytokines as surrogate markers of "adiposopathy." MATERIALS AND METHODS A cross-sectional observational study was conducted at a tertiary care hospital over a period of 1 year. Serum adiponectin, leptin, IL-6, and TNF-α levels were measured in 30 women with HAIR-AN syndrome and in 30 women with PCOS. Correlations between adipocytokines, inflammatory markers, serum testosterone, and serum insulin were determined. Data analysis was performed using the SPSS version 23.0 (IBM SPSS Statistics Inc., Chicago, IL, USA) software program. RESULTS Women with HAIR-AN syndrome had significantly higher hyperandrogenemia, hyperinsulinemia, and insulin resistance as compared to PCOS women. They also had high leptin levels and lower adiponectin levels (p < 0.001). However, the levels of inflammatory markers (TNF-α and IL-6) were similar in both the groups (p > 0.05). Serum adiponectin showed a negative correlation with HOMA-IR and testosterone levels, while leptin showed a positive correlation with both in HAIR-AN patients while no such correlation was found in the PCOS group. CONCLUSION The significantly raised adipocytokines in HAIR-AN syndrome patients as compared to PCOS patients indicates the primary role of adipose tissue dysfunction ("adiposopathy") in the pathogenesis of HAIR-AN syndrome while only a minor role, if any, in PCOS. Both these syndromes stand as distinct entities pathogenically with an overlapping phenotype.
Collapse
Affiliation(s)
- Kritika Agrawal
- Department of Skin and VD, SMS Medical College and Hospital, Jaipur, India
| | - Rachita Mathur
- Department of Skin and VD, SMS Medical College and Hospital, Jaipur, India
| | - Naincy Purwar
- Department of Endocrinology, SMS Medical College and Hospital, Jaipur, India
| | | | | |
Collapse
|
27
|
Shi W, Zhao Q, Zhao X, Xing C, He B. Analysis of Endocrine and Metabolic Indexes in Non-Obese Patients with Polycystic Ovary Syndrome and Its Compare with Obese Patients. Diabetes Metab Syndr Obes 2021; 14:4275-4281. [PMID: 34703260 PMCID: PMC8526511 DOI: 10.2147/dmso.s329108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To compare the endocrine and metabolic indexes of obese and normal body mass index (BMI) polycystic ovary syndrome (PCOS) patients, and explore factors affecting the pathogenesis and progression of PCOS. METHODS This study included obese (n=79) and normal BMI (n=40) PCOS patients, and obese (n=30) and normal BMI (n=30) non-PCOS controls. Blood glucose, insulin (INS), blood lipids, sex hormones, and other metabolic and endocrine indicators were measured, and the correlations between the indicators were analyzed. RESULTS HOMA-IR, 0min INS, 60min INS, 120min INS, 180min INS, FAI, TG, TC, LDL-C and sd-LDL in obese PCOS group were higher, while SHBG, LH, LH/FSH and HDL-C were lower than those in normal weight PCOS group (P <0.05). 120min PBG, HOMA-IR, FAI, T, LH, LH/FSH, AMH, TC and LDL-C in obese PCOS group were higher than those in obese control group (P <0.05). 0min PBG, 60min PBG, 120min PBG, 180min PBG, 0min INS, 60min INS, 120min INS, 180min INS, HOMA-IR, LH, LH/FSH and T in normal weight PCOS group were higher than those in normal weight control group (P <0.05). In both normal weight group and obesity group, HOMA-IR entered the regression equation with FAI as dependent variable, and the absolute value of HOMA-IR standardized partial regression coefficient was higher than that of hs-CRP and AMH. In PCOS patients, FAI in the obese and non-obese PCOS groups was positively correlated with HOMA-IR. CONCLUSION Endocrine metabolic disorders in women with PCOS were more obvious than that in women with non-PCOS with matched BMI. The abnormality of glucose and lipid metabolism in obese PCOS patients is more serious than that in PCOS patients with normal BMI. Both obese and normal BMI PCOS patients were affected by hyperinsulinemia, and IR may play a key role in the pathogenesis and development of PCOS.
Collapse
Affiliation(s)
- Wenjing Shi
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Qi Zhao
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xue Zhao
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Chuan Xing
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Correspondence: Bing He Email
| |
Collapse
|
28
|
Zhang Z, Liu Y, Lv J, Zhang D, Hu K, Li J, Ma J, Cui L, Zhao H. Differential Lipidomic Characteristics of Children Born to Women with Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2021; 12:698734. [PMID: 34434168 PMCID: PMC8380809 DOI: 10.3389/fendo.2021.698734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To describe the lipidomic characteristics of offspring born to polycystic ovary syndrome (PCOS) women (PCOS-off) and assess the associations between differential lipids and clinical phenotypes. METHODS Ultra performance liquid chromatography and mass spectrometry were performed on plasma samples from 70 PCOS-off and 71 healthy controls. The associations of differential metabolites with clinical phenotypes were examined by multiple linear regression. RESULTS Forty-four metabolites were significantly altered in PCOS-off, including 8 increased and 36 decreased. After stratification according to sex, 44 metabolites (13 increased and 31 decreased) were expressed differently in girls born to PCOS women (PCOS-g), most of which were glycerolipids. Furthermore, 46 metabolites (9 increased and 35 decreased) were expressed differently in boys born to PCOS women (PCOS-b), most of which were glycerophospholipids. Significant associations of metabolites with weight Z-score and high density lipoprotein cholesterol were found in PCOS-off. Triglycerides, low density lipoprotein cholesterol, and thyroid-stimulating hormone were separately correlated with some lipids in PCOS-g and PCOS-b. CONCLUSIONS PCOS-off showed specific lipid profile alterations. The abnormal level of glycerophospholipids and sphingomyelin indicated the risk of glucose metabolism and cardiovascular diseases in PCOS-off. Some lipids, such as phosphatidylcholines, lysophosphatidylcholine and sphingomyelin, may be the potential markers. The results broadened our understanding of PCOS-offs' cardiometabolic status and emphasized more specific and detailed monitoring and management in this population.
Collapse
Affiliation(s)
- Zhirong Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yue Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jiali Lv
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Di Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Kuona Hu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jingyu Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Linlin Cui
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- *Correspondence: Linlin Cui,
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| |
Collapse
|
29
|
Hou E, Zhao Y, Hang J, Qiao J. Metabolomics and correlation network analysis of follicular fluid reveals associations between l-tryptophan, l-tyrosine and polycystic ovary syndrome. Biomed Chromatogr 2020; 35:e4993. [PMID: 32986877 DOI: 10.1002/bmc.4993] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder in women of reproductive age. Some studies have investigated metabolic alterations in plasma and follicular fluid from PCOS patients, but they did not control for obesity or insulin resistance (IR); additionally, correlation analysis of metabolites is sparse. Accordingly, in this study, we aimed to examine metabolic differences owing to the pathogenesis of PCOS, identify the hub metabolites and investigate its associations with androgens. We applied GC-MS platform coupled with a correlation network approach to analyze follicular fluid samples from 32 PCOS patients without obesity and IR and 31 healthy women. Thirty significantly altered metabolites in PCOS patients were enriched in amino acid metabolism. l-Phenylalanine, l-tryptophan, pyroglutamic acid, l-tyrosine, l-leucine and l-valine were screened as hub metabolites in metabolic correlation network. Among them, increased l-tryptophan and l-tyrosine were altered hub metabolites, and they had a more significant impact on the metabolic change of PCOS. In addition, l-tryptophan and l-tyrosine were significantly positively associated with serum androgens levels in the PCOS. Our results suggest that disorders of amino acid metabolism, especially tryptophan and tyrosine metabolism, might play an important role in the development of PCOS in predisposed women without obesity and IR.
Collapse
Affiliation(s)
- Entai Hou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction (Peking University Third Hospital), Beijing, China
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction (Peking University Third Hospital), Beijing, China
| | - Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction (Peking University Third Hospital), Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction (Peking University Third Hospital), Beijing, China
| |
Collapse
|
30
|
Metabolomic biomarkers of polycystic ovary syndrome related-obesity: a review of the literature. REV ROMANA MED LAB 2020. [DOI: 10.2478/rrlm-2020-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background and objectives: Polycystic ovary syndrome (PCOS) displays a phenotype-dependent cardio-metabolic risk. By performing a systematic search of the literature, we aimed to summarize metabolomic signatures associated with obesity in PCOS women.
Data sources and study eligibility criteria: We conducted a comprehensive search including: Embase, PubMed, and Web of Science until 31st of May 2019. We used the terms: metabolomics and polycystic ovary syndrome. We excluded the following papers: animal studies, studies that included only lean PCOS women, reviews, meta-analyses, results of interventional studies, those that did not apply metabolomic techniques.
Results: The lipid signature in obese women with PCOS showed increased levels of free fatty acids (carnitine, adipic acid, linoleic acid, oleic acid) and lower levels of lysophosphatidylcholines and glycerolphosphocholine compared with non-obese PCOS women. Regarding carbohydrate metabolism, a decrease in citric and lactic acid levels characterized obese PCOS women. Decreased lactic acid in obese PCOS women suggests augmented insulin stimulated glucose muscle use in lean, but not in obese women. Considering amino acid metabolomic markers, valine, glycine, serine, threonine, isoleucine and lysine were higher in obese PCOS women. Patients with visceral obesity presented a diminished uptake of essential amino acids, BCAA, leucine and serine in the skeletal muscle. α-ketoglutarate was significantly higher in obese women with PCOS in comparison with lean women with PCOS, distinguishing these 2 subgroups of PCOS with high ‘predictive accuracy’.
Limitations: Overall, a small number of studies have focused on the impact of obesity on the metabolic fingerprints of PCOS women. There is need for properly controlled, high-quality studies.
Conclusions: There is compelling evidence of significant alterations in carbohydrate, lipid, and amino acid metabolism in women with PCOS and obesity. Metabolomics may identify new metabolic pathways involved in PCOS and improve our understanding of the complex relation between PCOS and obesity in order to personalize PCOS therapy.
Collapse
|
31
|
Rajska A, Buszewska-Forajta M, Rachoń D, Markuszewski MJ. Metabolomic Insight into Polycystic Ovary Syndrome-An Overview. Int J Mol Sci 2020; 21:ijms21144853. [PMID: 32659951 PMCID: PMC7402307 DOI: 10.3390/ijms21144853] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Searching for the mechanisms of the polycystic ovary syndrome (PCOS) pathophysiology has become a crucial aspect of research performed in the last decades. However, the pathogenesis of this complex and heterogeneous endocrinopathy remains unknown. Thus, there is a need to investigate the metabolic pathways, which could be involved in the pathophysiology of PCOS and to find the metabolic markers of this disorder. The application of metabolomics gives a promising insight into the research on PCOS. It is a valuable and rapidly expanding tool, enabling the discovery of novel metabolites, which may be the potential biomarkers of several metabolic and endocrine disorders. The utilization of this approach could also improve the process of diagnosis and therefore, make treatment more effective. This review article aims to summarize actual and meaningful metabolomic studies in PCOS and point to the potential biomarkers detected in serum, urine, and follicular fluid of the affected women.
Collapse
Affiliation(s)
- Anna Rajska
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.R.); (M.B.-F.)
| | - Magdalena Buszewska-Forajta
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.R.); (M.B.-F.)
| | - Dominik Rachoń
- Department of Clinical and Experimental Endocrinology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Michał Jan Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.R.); (M.B.-F.)
- Correspondence:
| |
Collapse
|
32
|
|
33
|
Zheng Y, Yu J, Liang C, Li S, Wen X, Li Y. Characterization on gut microbiome of PCOS rats and its further design by shifts in high-fat diet and dihydrotestosterone induction in PCOS rats. Bioprocess Biosyst Eng 2020; 44:953-964. [PMID: 32157446 DOI: 10.1007/s00449-020-02320-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Polycystic ovary syndrome (PCOS) is associated with gut microbiota disturbance. Emerging evidence has shown that gut microbiota plays a major role in the development of PCOS. To better understand how the gut microbiota contributes to the development of PCOS, we investigated the influences of high-fat diet and hyperandrogenism, independently or synergistically, have on the gut microbiota in rats. Furthermore, we explored the associations between gut microbiota and hyperandrogenism or other hallmarks of PCOS. Twenty female SD rats were randomized at aged 3 weeks into 4 groups (n = 5, each); HA: PCOS rats fed with ordinary diet; HF: rats with high-fat diet (HFD); HA-HF: PCOS rats fed with HFD; and C: control rats with ordinary diet. PCOS rat model was induced by 5α-dihydrotestosterone (DHT) injection for 6 weeks. The fasting blood glucose (FBG), plasma insulin, testosterone, free testosterone, TNF-α, MDA, SOD, LPS, TLR4, TG, TC, HDL-C, and LDL-C levels were measured. The molecular ecology of the fecal gut microbiota was analyzed by 16S rDNA high-throughput sequencing. The results showed that rats in the HA and HA-HF group displayed abnormal estrous cycles with increasing androgen level and exhibited multiple large cysts with diminished granulosa layers in ovarian tissues. Compare with the C group, relative abundance of the Bacteroidetes phylum decreased significantly in the other groups (P < 0.05). The Chao1 was the highest in the group C and significantly higher than the HA-HF group (P < 0.05). T, FT, insulin, MDA, LPS, and TNF-α levels had the negative correlation with the richness of community (Chao1 index) in the gut. The rats in the HF and HA-HF groups tended to have lower Shannon and Simpson indices than the C group (P < 0.01, respectively). However, there were no significant differences between C group and the HA group in the Shannon and Simpson values. Beta diversity analysis was then performed based on a weighted UniFrac analysis. The PCoA plots showed a clear separation of the C group from the other groups. ANOSIM analysis of variance confirmed that there were statistically significant separations between the C group and the HA, HA-HF, and HF groups (P < 0.01, respectively). These results showed that DHT with HFD could lower diversity of the gut microbial community. Both HFD and DHT could shift the overall gut microbial composition and change the composition of the microbial community in gut. Furthermore, our analyses demonstrated that the levels of TG, MDA, TNF-α, LPS, TLR4, T, FT, FINS, and HDL-C were correlated with the changes of in the gut microbiome. HFD and DHT were associated with the development and pathology of PCOS by shaping gut microbial communities.
Collapse
Affiliation(s)
- Yanhua Zheng
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingwei Yu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chengjie Liang
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuna Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Wen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanmei Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
34
|
Zhang Z, Hong Y, Chen M, Tan N, Liu S, Nie X, Zhou W. Serum metabolomics reveals metabolic profiling for women with hyperandrogenism and insulin resistance in polycystic ovary syndrome. Metabolomics 2020; 16:20. [PMID: 31980950 DOI: 10.1007/s11306-020-1642-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/18/2020] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder. Hyperandrogenism (HA) and insulin resistance (IR) are two important pathogenic factors. OBJECTIVE We aimed to investigate the inherent disturbed metabolic profiles for women with HA or IR in PCOS as well as discover diagnostic biomarkers. METHODS A total of 286 subjects were recruited for the study. They constituted the following groups: healthy women (C), those with HA (B1), those with IR but not obese (B2) and obese women with IR (B3) in PCOS. Nine cross-comparisons with PCOS were performed to characterize metabolic disturbances. Serum metabolomic profiles were determined by gas chromatography-mass spectrometry. RESULTS AND CONCLUSION We found a total of 59 differential metabolites. 28 metabolites for B1 vs C, 32 for B2 vs C and 25 for B3 vs C were discovered. Among them, palmitic acid, cholesterol, myo-inositol, D-allose, 1,5-anhydro-D-sorbitol, 1-monopalmitin, 1-monostearin, glycerol 1-phosphate, malic acid and citric acid, were the common differential metabolites among B1 vs C, B2 vs C and B3 vs C, which related to biosynthesis of unsaturated fatty acids, citrate cycle etc. Besides, 9-biomarker panel can diagnose well between HA and IR in PCOS. They provided areas under the receiver operating characteristic curve of 0.8511 to 1.000 in the discovery phase, and predictive values of 90% to 92% in the validation set. The result indicated that the differential metabolites can reflect the underlying mechanism of PCOS and serve as biomarkers for complementary diagnosis of HA and IR in PCOS.
Collapse
Affiliation(s)
- Zhihao Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yanli Hong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Minmin Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, #155 Hanzhong Road, Qinhuai District, Nanjing, 210029, China.
| | - Xiaowei Nie
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
- Department of Reproductive Center, Affiliated Hospital of Nanjing University of Chinese Medicine, #155 Hanzhong Road, Qinhuai District, Nanjing, 210029, China.
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, #639 Longmian Avenue, Jiangning District, Nanjing, 211198, China.
| |
Collapse
|
35
|
Tang L, Yuan L, Yang G, Wang F, Fu M, Chen M, Liu D. Changes in whole metabolites after exenatide treatment in overweight/obese polycystic ovary syndrome patients. Clin Endocrinol (Oxf) 2019; 91:508-516. [PMID: 31271659 DOI: 10.1111/cen.14056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/05/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Exenatide is a new agent for diabetes therapy, and its use in polycystic ovary syndrome (PCOS) has gradually increased; however, the clinical benefit and metabolic improvement need further evidence. This research aimed to study the changes in whole metabolites before and after exenatide treatment in overweight/obese PCOS patients to gain a better understanding of exenatide for the treatment of PCOS. METHODS Sixty-seven women, including 32 with PCOS and 35 age-matched controls, were recruited. The metabolite changes were detected with nontargeted gas chromatography-tandem mass spectrometry (NTGC-MS) before and after exenatide treatment, and changes in clinical biochemical characteristics were also observed. RESULTS A total of 62 metabolites were differentially expressed between the healthy and PCOS groups, and 31 differentially expressed metabolites were detected before and after exenatide treatment. Abnormal lipid metabolism and amino acid metabolism were the main metabolic disorders. Exenatide improved lipid and amino acid metabolism, especially amino acid metabolites. Three types of branched-chain amino acids (valine, leucine and isoleucine), two types of aromatic amino acids (phenylalanine and tyrosine) and lysine are important potential metabolites for the therapeutic efficacy of exenatide. Many abnormal metabolic disorders are related to insulin resistance, oxidative stress and even ovulatory dysfunction. Moreover, in this small sample clinical study, we also found that exenatide improved insulin sensitivity, reduced body weight and improved glycolipid metabolism in PCOS. CONCLUSIONS NTGC-MS-based metabolic pathway analysis revealed that exenatide has a beneficial effect on overweight/obese PCOS patients by regulating metabolic disorders, especially amino acid disorders.
Collapse
Affiliation(s)
- Liang Tang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Endocrinology, Fuling Central Hospital of Chongqing city, Chongqing, China
| | - Lei Yuan
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Feng Wang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mao Fu
- Division of Endocrinology, Diabetes & Nutrition, University of Maryland, Baltimore, MD, USA
| | - Min Chen
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Cree-Green M, Carreau AM, Rahat H, Garcia-Reyes Y, Bergman BC, Pyle L, Nadeau KJ. Amino acid and fatty acid metabolomic profile during fasting and hyperinsulinemia in girls with polycystic ovarian syndrome. Am J Physiol Endocrinol Metab 2019; 316:E707-E718. [PMID: 30753112 PMCID: PMC6580169 DOI: 10.1152/ajpendo.00532.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is associated with insulin resistance (IR) and altered muscle mitochondrial oxidative phosphorylation. IR in adults with obesity and diabetes is associated with changes in amino acid, free fatty acid (FFA), and mitochondrial acylcarnitine (AC) metabolism. We sought to determine whether these metabolites are associated with IR and/or androgens in youth-onset PCOS. We enrolled obese girls with PCOS [ n = 15, 14.5 yr (SD 1.6), %BMI 98.5 (SD 1.0)] and without PCOS [ n = 6, 13.2 yr (SD 1.2), %BMI 98.0 (SD 1.1)]. Insulin sensitivity was assessed by hyperinsulinemic euglycemic clamp. Untargeted metabolomics of plasma was performed while fasting and during hyperinsulinemia. Fasting arginine, glutamine, histidine, lysine, phenylalanine, and tyrosine were higher ( P < 0.04 for all but P < 0.001 for valine), as were glutamine and histidine during hyperinsulinemia ( P < 0.03). Higher valine during hyperinsulinemia was associated with IR ( r = 0.59, P = 0.006). Surprisingly, end-clamp AC C4 was lower in PCOS, and lower C4 was associated with IR ( r = -0.44, P = 0.04). End-clamp FFAs of C14:0, C16:1, and C18:1 were higher in PCOS girls, and C16:1 and C18:1 strongly associated with IR ( r = 0.73 and 0.53, P < 0.01). Free androgen index related negatively to short-, medium-, and long-chain AC ( r = -0.41 to -0.71, P < 0.01) but not FFA or amino acids. Obese girls with PCOS have a distinct metabolic signature during fasting and hyperinsulinemia. As in diabetes, IR related to valine and FFAs, with an unexpected relationship with AC C4, suggesting unique metabolism in obese girls with PCOS.
Collapse
Affiliation(s)
- Melanie Cree-Green
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus , Aurora, Colorado
- Center for Women's Health Research , Aurora, Colorado
| | - Anne-Marie Carreau
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Haseeb Rahat
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Yesenia Garcia-Reyes
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Bryan C Bergman
- Department of Medicine, Division of Endocrinology and Metabolism, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Laura Pyle
- Department of Biostatistics and Informatics, Colorado School of Public Health , Aurora, Colorado
- Department of Pediatrics, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Kristen J Nadeau
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus , Aurora, Colorado
- Center for Women's Health Research , Aurora, Colorado
| |
Collapse
|
37
|
Mika A, Sledzinski T, Stepnowski P. Current Progress of Lipid Analysis in Metabolic Diseases by Mass Spectrometry Methods. Curr Med Chem 2019; 26:60-103. [PMID: 28971757 DOI: 10.2174/0929867324666171003121127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/14/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Obesity, insulin resistance, diabetes, and metabolic syndrome are associated with lipid alterations, and they affect the risk of long-term cardiovascular disease. A reliable analytical instrument to detect changes in the composition or structures of lipids and the tools allowing to connect changes in a specific group of lipids with a specific disease and its progress, is constantly lacking. Lipidomics is a new field of medicine based on the research and identification of lipids and lipid metabolites present in human organism. The primary aim of lipidomics is to search for new biomarkers of different diseases, mainly civilization diseases. OBJECTIVE We aimed to review studies reporting the application of mass spectrometry for lipid analysis in metabolic diseases. METHOD Following an extensive search of peer-reviewed articles on the mass spectrometry analysis of lipids the literature has been discussed in this review article. RESULTS The lipid group contains around 1.7 million species; they are totally different, in terms of the length of aliphatic chain, amount of rings, additional functional groups. Some of them are so complex that their complex analyses are a challenge for analysts. Their qualitative and quantitative analysis of is based mainly on mass spectrometry. CONCLUSION Mass spectrometry techniques are excellent tools for lipid profiling in complex biological samples and the combination with multivariate statistical analysis enables the identification of potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland.,Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland
| |
Collapse
|
38
|
Troisi J, Cinque C, Giugliano L, Symes S, Richards S, Adair D, Cavallo P, Sarno L, Scala G, Caiazza M, Guida M. Metabolomic change due to combined treatment with myo-inositol, D-chiro-inositol and glucomannan in polycystic ovarian syndrome patients: a pilot study. J Ovarian Res 2019; 12:25. [PMID: 30904021 PMCID: PMC6431025 DOI: 10.1186/s13048-019-0500-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/07/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is a highly variable syndrome and one of the most common female endocrine disorders. Although the association inositols-glucomannan may represent a good therapeutic strategy in the treatment of PCOS women with insulin resistance, the effect of inositols on the metabolomic profile of these women has not been described yet. RESULTS Fifteen PCOS-patients and 15 controls were enrolled. Patients were treated with myo-inositol (1.75 g/day), D-chiro-inositol (0.25 g/day) and glucomannan (4 g/day) for 3 months. Blood concentrations of glucose, insulin, triglycerides and cholesterol, and ovary volumes and antral follicles count, as well as metabolomic profiles, were evaluated for control subjects and for cases before and after treatment. PCOS-patients had higher BMI compared with Controls, BMI decreased significantly after 3 months of treatment although it remained significantly higher compared to controls. 3-methyl-1-hydroxybutyl-thiamine-diphosphate, valine, phenylalanine, ketoisocapric, linoleic, lactic, glyceric, citric and palmitic acid, glucose, glutamine, creatinine, arginine, choline and tocopherol emerged as the most relevant metabolites for distinguishing cases from controls. CONCLUSION Our pilot study has identified a complex network of serum molecules that appear to be correlated with PCOS, and with a combined treatment with inositols and glucomannan. TRIAL REGISTRATION ClinicalTial.gov, NCT03608813 . Registered 1st August 2018 - Retrospectively registered, .
Collapse
Affiliation(s)
- Jacopo Troisi
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA Italy
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, SA Italy
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 3, 84125 Salerno, SA Italy
| | - Claudia Cinque
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA Italy
| | - Luigi Giugliano
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA Italy
| | - Steven Symes
- Department of Chemistry and Physics, University of Tennessee at Chattanooga, 615 McCallie Ave., Chattanooga, TN 37403 USA
- Department of Obstetrics and Gynecology, University of Tennessee College of Medicine, Chattanooga, TN USA
| | - Sean Richards
- Department of Obstetrics and Gynecology, University of Tennessee College of Medicine, Chattanooga, TN USA
- Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, 615 McCallie Ave., Chattanooga, TN 37403 USA
| | - David Adair
- Department of Obstetrics and Gynecology, University of Tennessee College of Medicine, Chattanooga, TN USA
| | - Pierpaolo Cavallo
- Department of Physics, University of Salerno, Fisciano, SA Italy
- Istituto Sistemi Complessi – Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Laura Sarno
- Department of Neurosciences and Reproductive and Dentistry Sciences, University of Naples Federico II, Naples, Italy
| | - Giovanni Scala
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, SA Italy
- Hosmotic srl, Via Raffale Bosco 78, 80069 Vico Equense, NA Italy
| | - Maria Caiazza
- Azienda Sanitaria Locale, distretto sanitario 66, via Vernieri, 14, 84124 Salerno, SA Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA Italy
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, SA Italy
| |
Collapse
|
39
|
Buszewska-Forajta M, Rachoń D, Stefaniak A, Wawrzyniak R, Konieczna A, Kowalewska A, Markuszewski MJ. Identification of the metabolic fingerprints in women with polycystic ovary syndrome using the multiplatform metabolomics technique. J Steroid Biochem Mol Biol 2019; 186:176-184. [PMID: 30670174 DOI: 10.1016/j.jsbmb.2018.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
In addition to chronic anovulation and clinical signs of hyperandrogenism women with polycystic ovary syndrome (PCOS) are insulin resistant and therefore, develop central obesity with its long term consequences such as dyslipidaemia, hypertension, atherosclerosis and type 2 diabetes mellitus (T2DM), which all lead to the development of cardiovascular disease (CVD). Due to the polysymptomatic nature of this syndrome and lack of consensus on its diagnostic criteria there is a strong need of finding a reliable biochemical or molecular marker, which would facilitate making the accurate diagnosis of PCOS. Therefore, the aim of our study was to perform a metabolomics analysis with the use of two complementary techniques: gas chromatography and liquid chromatography coupled with mass spectrometry, of the serum samples from women with PCOS (n = 30) and to compare them with healthy age and BMI matched controls (n = 30). Obtained results were subjected to one-dimensional statistical analysis (student's t-test or its non-parametric equivalent U Mann-Whitney test) and multivariate statistical analysis (the principal component analysis [PCA], variable importance into projection [VIP] and selectivity ratio [SR]). The results of our study showed that women with PCOS are characterised by metabolic disorders of the amino acids, carbohydrates, steroid hormones, lipids and purines. Compared to control subjects, women with PCOS had increased serum levels of phospholipids, aromatic amino acids, organic acids, hormones and sphinganine and decreased total cholesterol. Among the identified compounds, total cholesterol, phenylalanine and dehydroepiandrosterone sulfate, uric and lactic acid were the compounds with the strongest discriminating power.
Collapse
Affiliation(s)
- Magdalena Buszewska-Forajta
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Dominik Rachoń
- Department of Clinical and Experimental Endocrinology, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Anna Stefaniak
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Renata Wawrzyniak
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Aleksandra Konieczna
- Department of Clinical and Experimental Endocrinology, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | | | - Michał Jan Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
40
|
Lohr KE, Camp EF, Kuzhiumparambil U, Lutz A, Leggat W, Patterson JT, Suggett DJ. Resolving coral photoacclimation dynamics through coupled photophysiological and metabolomic profiling. J Exp Biol 2019; 222:jeb.195982. [DOI: 10.1242/jeb.195982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
Corals continuously adjust to short term variation in light availability on shallow reefs. Long-term light alterations can also occur due to natural and anthropogenic stressors, as well as management interventions such as coral transplantation. Although short term photophysiological responses are relatively well-understood in corals, little information is available regarding photoacclimation dynamics over weeks of altered light availability. We coupled photophysiology and metabolomic profiling to explore changes that accompany longer-term photoacclimation in a key Great Barrier Reef coral species (Acropora muricata). High (HL) and low light (LL) acclimated corals were collected from the reef and reciprocally exposed to high and low light ex situ. Rapid light curves using Pulse Amplitude Modulation (PAM) fluorometry revealed photophysiological acclimation of LL to HL and HL to LL shifted corals within 21 days. A subset of colonies sampled at 7 and 21 days for untargeted LC-MS and GC-MS metabolomic profiling revealed metabolic reorganization before acclimation was detected using PAM fluorometry. Metabolomic shifts were more pronounced for LL to HL treated corals than their HL to LL counterparts. Compounds driving metabolomic separation between HL-exposed and LL control colonies included amino acids, organic acids, fatty acids and sterols. Reduced glycerol and campesterol suggest decreased translocation of photosynthetic products from symbiont to host in LL to HL shifted corals, with concurrent increases in fatty acid abundance indicating reliance on stored lipids for energy. We discuss how these data provide novel insight into environmental regulation of metabolism and implications for management strategies that drive rapid changes in light availability.
Collapse
Affiliation(s)
- Kathryn E. Lohr
- Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Emma F. Camp
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Adrian Lutz
- Metabolomics Australia, University of Melbourne, Parkville, VIC, Australia
| | - William Leggat
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW, Australia
| | - Joshua T. Patterson
- Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
- Center for Conservation, The Florida Aquarium, Apollo Beach, FL, USA
| | - David J. Suggett
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
41
|
Halama A, Aye MM, Dargham SR, Kulinski M, Suhre K, Atkin SL. Metabolomics of Dynamic Changes in Insulin Resistance Before and After Exercise in PCOS. Front Endocrinol (Lausanne) 2019; 10:116. [PMID: 30873121 PMCID: PMC6400834 DOI: 10.3389/fendo.2019.00116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/07/2019] [Indexed: 01/17/2023] Open
Abstract
Background: Plasma elevated levels of branched chain amino acids (BCAA) and aromatic amino acids (AAA) have been associated with obesity and insulin resistance, but their relationship to stimulated insulin resistance (IR) in PCOS and in response to exercise is unknown. Indeed, it is unknown whether the mechanism of IR in PCOS is mediated through changes in the metabolome. Methods: Twelve women with polycystic ovary syndrome (PCOS) and ten age and body mass index matched controls completed an 8 week supervised exercise program at 60% maximal oxygen consumption. Before and after the exercise program, all participants underwent maximal IR stimulation with intralipid infusions followed by insulin sensitivity (IS) measurement by hyperinsulinaemic euglycaemic clamps. Amino acid profiles and metabolites were taken at baseline and at maximal insulin resistance stimulation before and after the exercise program. Results: At baseline, PCOS subjects showed increased leucine/isoleucine, glutamate, methionine, ornithine, phenylalanine, tyrosine and proline (p < 0.05) that, following exercise, did not differ from controls. While compering within the groups, no significant changes in the amino acid levels before and after exercise were observed. Exercise improved VO2 max (p < 0.01) but did not alter weight. Amino acid profiles were unaffected by an acute increase in IR induced by the lipid infusion. IS was lower in PCOS (p < 0.001) and was further decreased by the lipid infusion in both PCOS and controls. Although, exercise improved IS in both PCOS and in controls, the IS remained compromised in PCOS. Conclusion: The baseline amino acid profile in PCOS reflected that seen in obese subjects and differed to controls. After exercise, and despite no change in weight in either group, there were no differences in the amino acid profile between PCOS and controls. This shows that exercise may normalize the amino acid metabolome, irrespective of weight. ISRCTN number: ISRCTN42448814.
Collapse
Affiliation(s)
- Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Myint Myint Aye
- Department of Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
| | - Soha R. Dargham
- Infectious Disease Epidemiology Group, Weill Cornell Medicine, Doha, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Stephen L. Atkin
- Weill Cornell Medicine-Qatar, Doha, Qatar
- *Correspondence: Stephen L. Atkin
| |
Collapse
|
42
|
Ortiz-Flores AE, Luque-Ramírez M, Escobar-Morreale HF. Pharmacotherapeutic management of comorbid polycystic ovary syndrome and diabetes. Expert Opin Pharmacother 2018; 19:1915-1926. [PMID: 30289728 DOI: 10.1080/14656566.2018.1528231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is a common endocrine disorder in premenopausal women. Insulin resistance and glucose intolerance are very prevalent metabolic complications in women with PCOS, especially in those presenting with weight excess. Therapeutic strategies targeting insulin resistance in PCOS are of interest because of their overall safety and their beneficial effects on metabolic and reproductive features. AREAS COVERED The authors review systematically all of the available therapeutic interventions targeting insulin resistance and/or disturbances of glucose metabolism in women with PCOS. EXPERT OPINION The diagnosis of glucose tolerance disorders in women with PCOS requires an oral glucose tolerance test. Strategies addressing weight excess and abdominal adiposity, from lifestyle modification to insulin sensitizers, may improve insulin resistance and glucose tolerance in women with PCOS. However, amelioration of signs and symptoms of PCOS usually requires the loss of large amounts of weight for it to be noticeable. Bariatric surgery has emerged as the most successful approach for obese patients with PCOS, because glucose intolerance, diabetes, and PCOS resolve in most cases through follow-ups. At present, the role of novel drugs targeting insulin resistance and/or diabetes such as inositols, berberine, resveratrol, and incretin-based therapies are yet to be properly established.
Collapse
Affiliation(s)
- Andrés E Ortiz-Flores
- a Diabetes, Obesity and Human Reproduction Research Group , Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Madrid , Spain
| | - Manuel Luque-Ramírez
- a Diabetes, Obesity and Human Reproduction Research Group , Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Madrid , Spain
| | - Héctor F Escobar-Morreale
- a Diabetes, Obesity and Human Reproduction Research Group , Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Madrid , Spain
| |
Collapse
|
43
|
Murri M, Insenser M, Fernández-Durán E, San-Millán JL, Luque-Ramírez M, Escobar-Morreale HF. Non-targeted profiling of circulating microRNAs in women with polycystic ovary syndrome (PCOS): effects of obesity and sex hormones. Metabolism 2018; 86:49-60. [PMID: 29410349 DOI: 10.1016/j.metabol.2018.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Circulating micro-ribonucleic acids (miRNAs) are small noncoding RNA molecules that influence gene transcription. We conducted the present profiling study to characterize the expression of circulating miRNAs in lean and obese patients with polycystic ovary syndrome (PCOS), the most common endocrine and metabolic disorder in premenopausal women. BASIC PROCEDURES We selected 11 control women, 12 patients with PCOS and 12 men so that they were similar in terms of body mass index. Five control women, 6 men and 6 patients with PCOS had normal weight whereas 6 subjects per group were obese. We used miRCURY LNA™ Universal RT microRNA PCR for miRNA profiling. MAIN FINDINGS The expression of 38 miRNAs and was different between subjects with PCOS and male and female controls. The differences in 15 miRNAs followed a pattern suggestive of androgenization characterized by expression levels that were similar in patients with PCOS and men but were different compared with those of control women. The expression of 13 miRNAs in women with PCOS was similar to that of control women and different compared with the expression observed in men, suggesting sexual dimorphism and, lastly, we observed 5 miRNAs that were expressed differently in women with PCOS compared with both men and control women, suggesting a specific abnormality in expression associated with the syndrome. Obesity interacted with the differences in several of these miRNAs, and the expression levels of many of them correlated with the hirsutism score, sex hormones and/or indexes of obesity, adiposity and metabolic dysfunction. PRINCIPAL CONCLUSIONS The present results suggest that several serum miRNAs are influenced by PCOS, sex hormones and obesity. Our findings may guide the targeted search of miRNAs as clinically relevant markers for PCOS and its association with obesity and metabolic dysfunction in future studies.
Collapse
Affiliation(s)
- Mora Murri
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - María Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Elena Fernández-Durán
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - José L San-Millán
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Manuel Luque-Ramírez
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Héctor F Escobar-Morreale
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
44
|
Insenser M, Murri M, Del Campo R, Martínez-García MÁ, Fernández-Durán E, Escobar-Morreale HF. Gut Microbiota and the Polycystic Ovary Syndrome: Influence of Sex, Sex Hormones, and Obesity. J Clin Endocrinol Metab 2018; 103:2552-2562. [PMID: 29897462 DOI: 10.1210/jc.2017-02799] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
CONTEXT Gut microbiota play a major role in health and disease by influencing physiology, metabolism, nutrition, and immune function. OBJECTIVE To evaluate the composition of gut microbiota in women with polycystic ovary syndrome (PCOS), focusing on the influence of sex, sex hormones and obesity on the associations found. DESIGN Cross-sectional study. SETTING Academic hospital. PARTICIPANTS We recruited 15 women with PCOS, 16 nonhyperandrogenic control women, and 15 control men. Participants were classified as nonobese (<30 kg/m2) or obese (≥30 kg/m2) according to their body mass index. INTERVENTIONS Standardization of diet for 3 consecutive days (at least 300 g of carbohydrates per day) followed by fecal sampling and a standard 75-g oral glucose tolerance test. MAIN OUTCOME MEASURES Analysis of bacterial abundance and composition of gut microbiota by massive sequencing of 16S ribosomal DNA amplicons in a MiSeq platform (Illumina). RESULTS α Bacterial diversity was reduced in women compared with men, and β diversity was reduced particularly in obese patients with PCOS. Women with PCOS presented with specific abnormalities in gut microbiota consisting of an increased abundance of the Catenibacterium and Kandleria genera. When all participants as a whole were considered, indexes of bacterial diversity and the abundance of several bacterial genera correlated positively with serum androgen concentrations and negatively with estradiol levels. CONCLUSIONS The diversity and composition of the gut microbiota of young adults are influenced by the combined effects of sex, sex hormone concentrations, and obesity, presenting with specific abnormalities in women with PCOS.
Collapse
Affiliation(s)
- María Insenser
- Diabetes Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mora Murri
- Diabetes Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rosa Del Campo
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - M Ángeles Martínez-García
- Diabetes Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Elena Fernández-Durán
- Diabetes Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Héctor F Escobar-Morreale
- Diabetes Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
45
|
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders in premenopausal women. Heterogeneous by nature, PCOS is defined by a combination of signs and symptoms of androgen excess and ovarian dysfunction in the absence of other specific diagnoses. The aetiology of this syndrome remains largely unknown, but mounting evidence suggests that PCOS might be a complex multigenic disorder with strong epigenetic and environmental influences, including diet and lifestyle factors. PCOS is frequently associated with abdominal adiposity, insulin resistance, obesity, metabolic disorders and cardiovascular risk factors. The diagnosis and treatment of PCOS are not complicated, requiring only the judicious application of a few well-standardized diagnostic methods and appropriate therapeutic approaches addressing hyperandrogenism, the consequences of ovarian dysfunction and the associated metabolic disorders. This article aims to provide a balanced review of the latest advances and current limitations in our knowledge about PCOS while also providing a few clear and simple principles, based on current evidence-based clinical guidelines, for the proper diagnosis and long-term clinical management of women with PCOS.
Collapse
Affiliation(s)
- Héctor F Escobar-Morreale
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Universidad de Alcalá, Alcalá de Henares, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Santiaria (IRYCIS), Madrid, Spain
| |
Collapse
|
46
|
Escobar-Morreale HF. The Role of Androgen Excess in Metabolic Dysfunction in Women. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:597-608. [DOI: 10.1007/978-3-319-70178-3_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Zhang Y, Liu L, Yin TL, Yang J, Xiong CL. Follicular metabolic changes and effects on oocyte quality in polycystic ovary syndrome patients. Oncotarget 2017; 8:80472-80480. [PMID: 29113318 PMCID: PMC5655213 DOI: 10.18632/oncotarget.19058] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common complex and heterogeneous disorder, affecting up to 10% women at reproductive age. It causes three fourth of the ovulatory infertility and PCOS patients often give poor IVF quality. Although some metabolic profiles have been investigated in PCOS patient sera and urine, the follicular fluid, providing fruitful biochemical information about oocyte environment during development has been ignored. In this work, based on NMR metabolomics approach, metabolic profile of follicular fluid of PCOS patients has been explored and compared with healthy controls. Significant increases of glycoprotein, acetate, cholesterol, significant decreases of lactic acid, glutamine, pyruvate, and alanine, have been discovered in PCOS follicular fluids. Furthermore, the Pearson correlations analysis indicated significant relationship existed between ART results and NMR detected follicular metabolites. All these results indicated that PCOS may induce dyslipidemia, low-grade inflammation, and disorder of glycolysis, pyruvate and amino acid metabolism in follicular fluids.
Collapse
Affiliation(s)
- Yan Zhang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lingyan Liu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Cheng-Liang Xiong
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Wuhan Tongji Reproductive Medicine Hospital, Wuhan, Hubei Province, China
| |
Collapse
|
48
|
Li S, Zhu D, Duan H, Ren A, Glintborg D, Andersen M, Skov V, Thomassen M, Kruse T, Tan Q. Differential DNA methylation patterns of polycystic ovarian syndrome in whole blood of Chinese women. Oncotarget 2017; 8:20656-20666. [PMID: 27192117 PMCID: PMC5400534 DOI: 10.18632/oncotarget.9327] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
As a universally common endocrinopathy in women of reproductive age, the polycystic ovarian syndrome is characterized by composite clinical phenotypes reflecting the contributions of reproductive impact of ovarian dysfunction and metabolic abnormalities with widely varying symptoms resulting from interference of the genome with the environment through integrative biological mechanisms including epigenetics. We have performed a genome-wide DNA methylation analysis on polycystic ovarian syndrome and identified a substantial number of genomic sites differentially methylated in the whole blood of PCOS patients and healthy controls (52 sites, false discovery rate < 0.05 and corresponding p value < 5.68e–06), highly consistently replicating biological pathways extensively implicated in immunity and immunity-related inflammatory disorders (false discovery rate < 0.05) that were reportedly regulated in the DNA methylome from ovarian tissue under PCOS condition. Most importantly, our genome-wide profiling focusing on PCOS patients revealed a large number of DNA methylation sites and their enriched functional pathways significantly associated with diverse clinical features (levels of prolactin, estradiol, progesterone and menstrual cycle) that could serve as novel molecular basis of the clinical heterogeneity observed in PCOS women.
Collapse
Affiliation(s)
- Shuxia Li
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Dongyi Zhu
- Center of Reproductive Medicine, Linyi People's Hospital, Linyi, China.,Department of Obstetrics and Gynecology, Shandong Medical College, Linyi, China
| | - Hongmei Duan
- Department of Medicine, Kolding Hospital, Kolding, Denmark
| | - Anran Ren
- Center of Reproductive Medicine, Linyi People's Hospital, Linyi, China.,Department of Obstetrics and Gynecology, Shandong Medical College, Linyi, China
| | - Dorte Glintborg
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Marianne Andersen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Vibe Skov
- Department of Hematology, Roskilde Hospital, Roskilde, Denmark
| | - Mads Thomassen
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Torben Kruse
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Qihua Tan
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Epidemiology, Biostatistics, and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
49
|
|
50
|
RoyChoudhury S, Mishra BP, Khan T, Chattopadhayay R, Lodh I, Datta Ray C, Bose G, Sarkar HS, Srivastava S, Joshi MV, Chakravarty B, Chaudhury K. Serum metabolomics of Indian women with polycystic ovary syndrome using 1H NMR coupled with a pattern recognition approach. MOLECULAR BIOSYSTEMS 2017; 12:3407-3416. [PMID: 27714060 DOI: 10.1039/c6mb00420b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most commonly occurring metabolic and endocrinological disorders affecting women of reproductive age. Metabolomics is an emerging field that holds promise in understanding disease pathophysiology. Recently, a few metabolomics based studies have been attempted in PCOS patients; however, none of them have included patients from the Indian population. The main objective of this study was to investigate the serum metabolomic profile of Indian women with PCOS and compare them with controls. Proton nuclear magnetic resonance (1H NMR) was used to first identify the differentially expressed metabolites among women with PCOS from the Eastern region of India during the discovery phase and further validated in a separate cohort of PCOS and control subjects. Multivariate analysis of the binned spectra indicated 16 dysregulated bins in the sera of these women with PCOS. Out of these 16 bins, 13 identified bins corresponded to 12 metabolites including 8 amino acids and 4 energy metabolites. Amongst the amino acids, alanine, valine, leucine and threonine and amongst the energy metabolites, lactate and acetate were observed to be significantly up-regulated in women with PCOS when compared with controls. The remaining 4 amino acids, l-glutamine, proline, glutamate and histidine were down-regulated along with 2 energy metabolites: glucose and 3-hydroxybutyric acid. Our findings showed dysregulations in the expression of different metabolites in the serum of women with PCOS suggesting the involvement of multiple pathways including amino acid metabolism, carbohydrate/lipid metabolism, purine and pyrimidine metabolism and protein synthesis.
Collapse
Affiliation(s)
- Sourav RoyChoudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India.
| | - Biswa Prasanna Mishra
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India.
| | - Tila Khan
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India.
| | | | - Indrani Lodh
- Institute of Reproductive Medicine, Kolkata, India
| | - Chaitali Datta Ray
- Department of Obstetrics and Gynecology, Institute of Postgraduate Medicine and Research, Kolkata, India
| | - Gunja Bose
- Institute of Reproductive Medicine, Kolkata, India
| | | | - Sudha Srivastava
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | - Mamata V Joshi
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India.
| |
Collapse
|