1
|
Zhang Y, Ma K, Fang X, Zhang Y, Miao R, Guan H, Tian J. Targeting ion homeostasis in metabolic diseases: Molecular mechanisms and targeted therapies. Pharmacol Res 2025; 212:107579. [PMID: 39756557 DOI: 10.1016/j.phrs.2025.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/13/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
The incidence of metabolic diseases-hypertension, diabetes, obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), and atherosclerosis-is increasing annually, imposing a significant burden on both human health and the social economy. The occurrence and development of these diseases are closely related to the disruption of ion homeostasis, which is crucial for maintaining cellular functions and metabolic equilibrium. However, the specific mechanism of ion homeostasis in metabolic diseases is still unclear. This article reviews the role of ion homeostasis in the pathogenesis of metabolic diseases and assesses its potential as a therapeutic target. Furthermore, the article explores pharmacological strategies that target ion channels and transporters, including existing drugs and emerging drugs under development. Lastly, the article discusses the development direction of future therapeutic strategies, including the possibility of gene therapy targeting specific ion channels and personalized therapy using novel biomarkers. In summary, targeting ion homeostasis provides a new perspective and potential therapeutic approach for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
2
|
Li Q, Pan Z, Zeng Y, Wang X, Li D, Yin T, Chen Q, Ling W. Associations Between Hemoglobin and Serum Iron Levels and the Risk of Mortality Among Patients with Coronary Artery Disease. Nutrients 2024; 17:139. [PMID: 39796572 PMCID: PMC11722639 DOI: 10.3390/nu17010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND This study aimed to investigate the relationship between hemoglobin and serum iron levels and mortality risk in patients with coronary artery disease (CAD). METHODS We analyzed data from 3224 patients with CAD using Cox proportional hazards regression models to assess the association of hemoglobin and serum iron levels with cardiovascular and all-cause mortality from the Guangdong coronary artery disease cohort. RESULTS Over a median follow-up period of 8.9 years, 636 patients died, including 403 from cardiovascular causes. Higher hemoglobin and serum iron levels were linked to a reduced risk of cardiovascular and all-cause mortality. Patients in the highest quartiles of hemoglobin and serum iron levels had multivariable-adjusted hazard ratios (HRs) of 0.62 (95% CI, 0.46-0.85) and 0.51 (95% CI, 0.37-0.69) for cardiovascular mortality and 0.64 (95% CI, 0.50-0.83) and 0.67 (95% CI, 0.53-0.85) for all-cause mortality, compared with those in the lowest quartile. A one-standard-deviation increase in hemoglobin and serum iron levels corresponded to a 19% and 24% reduction in cardiovascular mortality risk and a 19% reduction in all-cause mortality risk for both factors. Restricted cubic spline analysis revealed L-shaped and U-shaped associations between hemoglobin and serum iron levels and cardiovascular and all-cause mortality, respectively. CONCLUSIONS Hemoglobin and serum iron levels were significantly associated with lower risks of cardiovascular and all-cause mortality in patients with CAD. Further research is needed to evaluate the effects of iron supplementation in these patients.
Collapse
Affiliation(s)
- Qing Li
- School of Public Health, Sun Yat-sen University, 74, Zhongshan Rd. 2, Guangzhou 510080, China; (Q.L.); (Z.P.); (Y.Z.); (D.L.)
| | - Zhijun Pan
- School of Public Health, Sun Yat-sen University, 74, Zhongshan Rd. 2, Guangzhou 510080, China; (Q.L.); (Z.P.); (Y.Z.); (D.L.)
| | - Yupeng Zeng
- School of Public Health, Sun Yat-sen University, 74, Zhongshan Rd. 2, Guangzhou 510080, China; (Q.L.); (Z.P.); (Y.Z.); (D.L.)
| | - Xu Wang
- Department of Clinical Nutrition, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106, Zhongshan Rd. 2, Guangzhou 510080, China;
| | - Dan Li
- School of Public Health, Sun Yat-sen University, 74, Zhongshan Rd. 2, Guangzhou 510080, China; (Q.L.); (Z.P.); (Y.Z.); (D.L.)
| | - Ting Yin
- School of Public Health, Ningxia Medical University, 1160 Shengli Rd., Yinchuan 750004, China;
| | - Qian Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Rd., Guangzhou 510120, China
| | - Wenhua Ling
- School of Public Health, Sun Yat-sen University, 74, Zhongshan Rd. 2, Guangzhou 510080, China; (Q.L.); (Z.P.); (Y.Z.); (D.L.)
- School of Public Health, Ningxia Medical University, 1160 Shengli Rd., Yinchuan 750004, China;
| |
Collapse
|
3
|
Othon-Martínez D, Fernandez-Betances OA, Málaga-Espinoza BX, Torres-Perez ME, Cobos E, Gutierrez-Martinez C. Iron and cardiovascular health: A review. J Investig Med 2024; 72:787-797. [PMID: 39075673 DOI: 10.1177/10815589241268462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Iron is an essential element for the biological processes of living organisms, including the production of crucial oxygen-carrying proteins, formation of heme enzymes, and playing roles in electron transfer and oxidation-reduction reactions. It plays a significant role in various cardiovascular functions, including bioenergetics, electrical activity, and programmed cell death. Minor deficiencies of iron have been found to have negative impact on cardiovascular function in patients with heart failure (HF). The contractility of human cardiomyocytes is impaired by iron deficiency (ID), which results in reduced mitochondrial function and lower energy production, ultimately leading to cardiac function impairment, contributing to significant morbidity and mortality in patients with HF. This review discusses iron homeostasis within the human body, as well as ID pathophysiology and its role in HF. Focusing on therapeutic approaches including iron supplementation and/or repletion in patients with ID and HF, comparing results from recent clinical trials. Intravenous (IV) iron therapy has shown promising results in treating ID in HF patients. Large, randomized trials and meta-analysis, like Ferinject Assessment in patients with ID and chronic HF, AFFIRM-AHF, IRONMAN, and HEART-FID have demonstrated the efficacy of IV iron supplementation with IV ferric carboxymaltose or IV ferric derisomaltose in reducing hospitalizations and improving quality of life in patients with Heart Failure with reduced ejection fraction (HFrEF), New York Heart Association (NYHA) II-III. However, survival and mortality have demonstrated no improvement during acute exacerbations of HF or in outpatient management. The potential benefits of IV iron across the entire HF spectrum and its interaction with other HF therapies remain areas of interest for further research.
Collapse
Affiliation(s)
- Diana Othon-Martínez
- Department of Internal Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | | | | | - Maria E Torres-Perez
- Department of Internal Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Everardo Cobos
- Department of Internal Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | | |
Collapse
|
4
|
Mantovani A, Busti F, Borella N, Scoccia E, Pecoraro B, Sani E, Morandin R, Csermely A, Piasentin D, Grespan E, Castagna A, Bilson J, Byrne CD, Valenti L, Girelli D, Targher G. Elevated plasma hepcidin concentrations are associated with an increased risk of mortality and nonfatal cardiovascular events in patients with type 2 diabetes: a prospective study. Cardiovasc Diabetol 2024; 23:305. [PMID: 39154180 PMCID: PMC11330614 DOI: 10.1186/s12933-024-02377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND The effect of plasma hepcidin concentrations on the long-term risk of developing adverse cardiovascular outcomes in people with type 2 diabetes mellitus (T2DM) is unclear. METHODS We followed for a median of 55.6 months 213 outpatients with established T2DM (45.5% women, mean age 69 ± 10 years; BMI 28.7 ± 4.7 kg/m2; median diabetes duration 11 years). Baseline plasma ferritin and hepcidin concentrations were measured with an electrochemiluminescence immunoassay and mass spectrometry-based assay, respectively. The primary study outcome was a composite of all-cause mortality or incident nonfatal cardiovascular events (inclusive of myocardial infarction, permanent atrial fibrillation, ischemic stroke, or new hospitalization for heart failure). RESULTS 42 patients developed the primary composite outcome over a median follow-up of 55.6 months. After stratifying patients by baseline hepcidin tertiles [1st tertile: median hepcidin 1.04 (IQR 0.50-1.95) nmol/L, 2nd tertile: 3.81 (IQR 3.01-4-42) nmol/L and 3rd tertile: 7.72 (IQR 6.37-10.4) nmol/L], the risk of developing the primary composite outcome in patients in the 3rd tertile was double that of patients in the 1st and 2nd tertile combined (unadjusted hazard ratio [HR] 2.32, 95%CI 1.27-4.26; p = 0.007). This risk was not attenuated after adjustment for age, sex, adiposity measures, smoking, hypertension, statin use, antiplatelet medication use, plasma hs-C-reactive protein and ferritin concentrations (adjusted HR 2.53, 95%CI 1.27-5.03; p = 0.008). CONCLUSIONS In outpatients with T2DM, higher baseline hepcidin concentrations were strongly associated with an increased long-term risk of overall mortality or nonfatal cardiovascular events, even after adjustment for established cardiovascular risk factors, plasma ferritin concentrations, medication use, and other potential confounders.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Nicolò Borella
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Enrico Scoccia
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Barbara Pecoraro
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Elena Sani
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Riccardo Morandin
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Alessandro Csermely
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Daniele Piasentin
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Elisabetta Grespan
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Annalisa Castagna
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, National Health Service Foundation Trust, Southampton, UK
| | - Christopher D Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, National Health Service Foundation Trust, Southampton, UK
| | - Luca Valenti
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy.
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Viale L. Rizzardi, 4, 37024, Negrar di Valpolicella, Italy.
| |
Collapse
|
5
|
Zhang Y, Li B, Cai H, Fu Y, Zheng Y. Associations of iron metabolism and inflammation with all-cause and cardiovascular mortality in a large NHANES community sample: Moderating and mediating effects. Nutr Metab Cardiovasc Dis 2024; 34:1854-1863. [PMID: 38658228 DOI: 10.1016/j.numecd.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND AND AIMS This study aimed to assess the associations between serum iron concentration, C-reactive protein (CRP) concentration and the risk of all-cause mortality and cardiovascular mortality in the general population and to explore potential mediating and moderating effects. METHODS AND RESULTS This study analyzed data from the National Health and Nutrition Examination Survey spanning the years 1999-2010, encompassing 23,634 participants. Cox proportional hazards regression models were employed to investigate the independent associations of serum iron and CRP with all-cause and cardiovascular mortality. Moderation and mediation analyses explored the moderating effect of CRP on the association between the serum iron concentration and all-cause and cardiovascular mortality, and the mediating role of the serum iron concentration in the association between the CRP concentration and all-cause and cardiovascular mortality. After multivariate adjustments in the Cox model, serum iron and CRP levels were independently correlated with both all-cause and cardiovascular mortality risk. Moderation analyses revealed a more pronounced correlation between the serum iron concentration and both all-cause and cardiovascular mortality in participants with higher CRP levels. Mediation analysis indicated that the serum iron concentration partly mediated the impact of CRP on the risk of all-cause mortality (13.79%) and cardiovascular mortality (24.12%). CONCLUSION Serum iron and CRP are independently associated with all-cause and cardiovascular mortality. Moreover, the associations between serum iron concentrations and both all-cause and cardiovascular mortality are more pronounced in individuals with elevated CRP. Serum iron partially mediates the effect of CRP on all-cause and cardiovascular mortality.
Collapse
Affiliation(s)
- Yaoting Zhang
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Bing Li
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, 130021, China.
| | - He Cai
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yu Fu
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yang Zheng
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Sun Y, Peng W, Lin S, Cui J, Lu J. Iron Metabolic Biomarkers and the Mortality Risk in the General Population: A Nationwide Population-Based Cohort Study. J Endocr Soc 2024; 8:bvae063. [PMID: 38623382 PMCID: PMC11017327 DOI: 10.1210/jendso/bvae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 04/17/2024] Open
Abstract
Context Iron is an essential element in the human body and plays a critical role in many physiological and cellular processes. However, the association between iron status and the risk of all-cause or cause-specific mortality has not been well-investigated. And it is unclear whether the association between iron metabolic biomarkers and the risk of mortality differs between people with and without diabetes mellitus (DM). Objective This work aimed to investigate associations between iron metabolic biomarkers and all-cause and cause-specific mortality risk in the general population, and heterogeneities in the associations among population with and without DM.. Methods A total of 29 166 adults from the National Health and Nutrition Examination Survey (NHANES) III and NHANES 1999 to 2010 were included, with linkage to the National Death Index to December 31, 2019. Cox proportional-hazard models and Fine-Gray subdistribution hazard models were used to estimate associations between iron metabolic biomarkers and outcomes. Results During a median follow-up of 18.83 years, 9378 deaths were observed, including 3420 cardiovascular disease (CVD) deaths and 1969 cancer deaths. A significant linear association between serum ferritin (SF) and all-cause mortality was observed among the overall population and those without DM. J-shaped associations between transferrin saturation (TSAT) and all-cause and CVD mortality were observed among all populations. In the overall population, compared to the first quartile (Q1) group, the adjusted hazard ratio (HR) (95% CI) for all-cause mortality was 1.07 (1.00-1.15), 1.05 (0.98-1.12), 1.13 (1.05-1.21) in Q2, Q3, and Q4 groups for SF, while the HR was 0.94 (0.88-0.99), 0.92 (0.86-0.97), and 0.93 (0.88-0.99) for TSAT. In individuals without DM, the adjusted HR of the Q4 of SF were 1.19 (1.03-1.37) for CVD mortality and 1.25 (1.05-1.48) for cancer mortality. In individuals with DM, the adjusted HRs of the Q4 of TSAT were 0.76 (0.62-0.93) for CVD mortality and 1.47 (1.07-2.03) for cancer mortality. Conclusion Iron metabolism abnormalities increase mortality risk in the general population. The associations of iron status with mortality were significantly different between individuals with and without DM, which indicated tailored strategies for iron homeostasis are needed.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China
| | - Wenyao Peng
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Siqi Lin
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Jingjing Cui
- Department of Geriatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China
| | - Jiapeng Lu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| |
Collapse
|
7
|
Liao F, Yang W, Long L, Yu R, Qu H, Peng Y, Lu J, Ren C, Wang Y, Fu C. Elucidating Iron Metabolism through Molecular Imaging. Curr Issues Mol Biol 2024; 46:2798-2818. [PMID: 38666905 PMCID: PMC11049567 DOI: 10.3390/cimb46040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Iron is essential for many physiological processes, and the dysregulation of its metabolism is implicated in the pathogenesis of various diseases. Recent advances in iron metabolism research have revealed multiple complex pathways critical for maintaining iron homeostasis. Molecular imaging, an interdisciplinary imaging technique, has shown considerable promise in advancing research on iron metabolism. Here, we comprehensively review the multifaceted roles of iron at the cellular and systemic levels (along with the complex regulatory mechanisms of iron metabolism), elucidate appropriate imaging methods, and summarize their utility and fundamental principles in diagnosing and treating diseases related to iron metabolism. Utilizing molecular imaging technology to deeply understand the complexities of iron metabolism and its critical role in physiological and pathological processes offers new possibilities for early disease diagnosis, treatment monitoring, and the development of novel therapies. Despite technological limitations and the need to ensure the biological relevance and clinical applicability of imaging results, molecular imaging technology's potential to reveal the iron metabolic process is unparalleled, providing new insights into the link between iron metabolism abnormalities and various diseases.
Collapse
Affiliation(s)
- Feifei Liao
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Wenwen Yang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Linzi Long
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Ruotong Yu
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Hua Qu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Yuxuan Peng
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Jieming Lu
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Chenghuan Ren
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Yueqi Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Changgeng Fu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| |
Collapse
|
8
|
Liu Y, Clarke R, Bennett DA, Zong G, Gan W. Iron Status and Risk of Heart Disease, Stroke, and Diabetes: A Mendelian Randomization Study in European Adults. J Am Heart Assoc 2024; 13:e031732. [PMID: 38497484 PMCID: PMC11010009 DOI: 10.1161/jaha.123.031732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The relevance of iron status biomarkers for coronary artery disease (CAD), heart failure (HF), ischemic stroke (IS), and type 2 diabetes (T2D) is uncertain. We compared the observational and Mendelian randomization (MR) analyses of iron status biomarkers and hemoglobin with these diseases. METHODS AND RESULTS Observational analyses of hemoglobin were compared with genetically predicted hemoglobin with cardiovascular diseases and diabetes in the UK Biobank. Iron biomarkers included transferrin saturation, serum iron, ferritin, and total iron binding capacity. MR analyses assessed associations with CAD (CARDIOGRAMplusC4D [Coronary Artery Disease Genome Wide Replication and Meta-Analysis Plus The Coronary Artery Disease Genetics], n=181 522 cases), HF (HERMES [Heart Failure Molecular Epidemiology for Therapeutic Targets), n=115 150 cases), IS (GIGASTROKE, n=62 100 cases), and T2D (DIAMANTE [Diabetes Meta-Analysis of Trans-Ethnic Association Studies], n=80 154 cases) genome-wide consortia. Observational analyses demonstrated J-shaped associations of hemoglobin with CAD, HF, IS, and T2D. In contrast, MR analyses demonstrated linear positive associations of higher genetically predicted hemoglobin levels with 8% higher risk per 1 SD higher hemoglobin for CAD, 10% to 13% for diabetes, but not with IS or HF in UK Biobank. Bidirectional MR analyses confirmed the causal relevance of iron biomarkers for hemoglobin. Further MR analyses in global consortia demonstrated modest protective effects of iron biomarkers for CAD (7%-14% lower risk for 1 SD higher levels of iron biomarkers), adverse effects for T2D, but no associations with IS or HF. CONCLUSIONS Higher levels of iron biomarkers were protective for CAD, had adverse effects on T2D, but had no effects on IS or HF. Randomized trials are now required to assess effects of iron supplements on risk of CAD in high-risk older people.
Collapse
Affiliation(s)
- Yunan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Robert Clarke
- Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
| | - Derrick A. Bennett
- Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
- Medical Research Council Population Health Research Unit at the University of OxfordOxfordUnited Kingdom
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Wei Gan
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Innovation Building, Old Road CampusOxfordUnited Kingdom
| |
Collapse
|
9
|
Yu Y, Lu D, Zhang Z, Tao L. Association of soluble transferrin receptor/log ferritin index with all-cause and cause-specific mortality: National Health and Nutrition Examination Survey. Front Nutr 2024; 11:1275522. [PMID: 38476599 PMCID: PMC10927731 DOI: 10.3389/fnut.2024.1275522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Background Soluble transferrin receptor (sTfR)/log ferritin index (sTfR Index) can be used to assess the entire spectrum of iron status, and is valuable in evaluating iron status in population studies. There is still a lack of evidence on the association between sTfR index and all-cause mortality. Object To explore the association between sTfR index and all-cause mortality, as well as mortality due to cardiovascular disease (CVD) and cancer. Method Data were from the National Health and Nutrition Examination Survey (NHANES) between 2003 to 2020. Participants aged 16 years and older who had complete data of serum ferritin and sTfR were included. Pregnant individuals or those with ineligible data on death or follow-up were excluded from the analysis. Baseline sTfR index was calculated by baseline sTfR/log (ferritin) and classified as three tertile. We performed the Cox proportional hazard regression to assess the association of sTfR index (both continuous and categorical scale) with all-cause and cause-specific mortality and further assess the non-linear relationship between sTfR index and the outcomes with restricted cubic spline. Result In this study, 11,525 participants, a total of 231 (2.0%) all-cause deaths occurred during a median follow-up of 51 months. The risk of all-cause mortality, CVD-related mortality, and cancer-related mortality was higher in participants with highest tertile of sTfR index. After confounding factors adjustment, participants with highest tertile of sTfR index were associated with an increased risk of all-cause mortality (HR: 1.71, 95% CI: 1.14-2.57) as compared with lowest tertile. Additionally, sTfR index per SD increment was associated with a 25% increasing risk of all-cause mortality (HR: 1.25, 95% CI: 1.08-1.45, p = 0.003) and a 38% cancer-related mortality (HR: 1.38, 95% CI: 1.07-1.77, p = 0.018). These associations remained robust after adjusting for the serum ferritin as well as in various subgroups stratified by age, sex, smoking statue, hypertension, diabetes, and CVD. Spline analysis showed that there is approximately linear relationship between sTfR index with all-cause mortality (p for non-linear = 0.481). Moreover, ferritin was not a predictor of all-cause death after adjustment for confounding factors. Significance This cohort study demonstrated a significant association between sTfR index increment and an increased risk of all-cause and cancer-related mortality, independent of ferritin levels.
Collapse
Affiliation(s)
- Yan Yu
- Guangzhou Baiyunshan Hospital, Guangzhou, China
| | - Dongying Lu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhui Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lili Tao
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Liu F, Liu Y, Xu S, Wang Q, Xu F, Liu Y. Mendelian randomization study reveals a causal relationship between serum iron status and coronary heart disease and related cardiovascular diseases. Front Cardiovasc Med 2023; 10:1152201. [PMID: 37383700 PMCID: PMC10294586 DOI: 10.3389/fcvm.2023.1152201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/29/2023] [Indexed: 06/30/2023] Open
Abstract
Background Growing observational studies have shown that abnormal systemic iron status is associated with Coronary heart disease (CHD). However, these results from observational studies was not entirely consistent.It remains unclear whether this relationship represents causality.It is necessary to explore the causal relationship between iron status and CHD and related cardiovascular diseases (CVD). Objective We aimed to investigate the potential casual relationship between serum iron status and CHD and related CVD using a two-sample Mendelian randomization (MR) approach. Methods Genetic statistics for single nucleotide polymorphisms (SNPs) between four iron status parameters were identified in a large-scale genome-wide association study (GWAS) conducted by the Iron Status Genetics organization. Three independent single nucleotide polymorphisms (SNPs) (rs1800562, rs1799945, and rs855791) aligned with four iron status biomarkers were used as instrumental variables. CHD and related CVD genetic statistics We used publicly available summary-level GWAS data. Five different MR methods random effects inverse variance weighting (IVW), MR Egger, weighted median, weighted mode, and Wald ratio were used to explore the causal relationship between serum iron status and CHD and related CVD. Results In the MR analysis, we found that the causal effect of serum iron (OR = 0.995, 95% CI = 0.992-0.998, p = 0.002) was negatively associated with the odds of coronary atherosclerosis (AS). Transferrin saturation (TS) (OR = 0.885, 95% CI = 0.797-0.982, p = 0.02) was negatively associated with the odds of Myocardial infarction (MI). Conclusion This MR analysis provides evidence for a causal relationship between whole-body iron status and CHD development. Our study suggests that a high iron status may be associated with a reduced risk of developing CHD.
Collapse
Affiliation(s)
- Fenglan Liu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanfei Liu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shihan Xu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Wang
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Lim SY, Dayal H, Seah SJ, Tan RPW, Low ZE, Laserna AKC, Tan SH, Chan MY, Li SFY. Plasma metallomics reveals potential biomarkers and insights into the ambivalent associations of elements with acute myocardial infarction. J Trace Elem Med Biol 2023; 77:127148. [PMID: 36905853 DOI: 10.1016/j.jtemb.2023.127148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide. Using a validated and efficient ICP-MS/MS-based workflow, a total of 30 metallomic features were profiled in a study comprising 101 AMI patients and 66 age-matched healthy controls. The metallomic features include 12 essential elements (Ca, Co, Cu, Fe, K, Mg, Mn, Na, P, S, Se, Zn), 8 non-essential/toxic elements (Al, As, Ba, Cd, Cr, Ni, Rb, Sr, U, V), and 10 clinically relevant element-pair product/ratios (Ca/Mg, Ca×P, Cu/Se, Cu/Zn, Fe/Cu, P/Mg, Na/K, Zn/Se). Preliminary linear regression with feature selection confirmed smoking status as a predominant determinant for the non-essential/toxic elements, and revealed potential routes of action. Univariate assessments with adjustments for covariates revealed insights into the ambivalent relationships of Cu, Fe, and P with AMI, while also confirming cardioprotective associations of Se. Also, beyond their roles as risk factors, Cu and Se may be involved in the response mechanism in AMI onset/intervention, as demonstrated via longitudinal data analysis with 2 additional time-points (1-/6-month follow-up). Finally, based on both univariate tests and multivariate classification modelling, potentially more sensitive markers measured as element-pair ratios were identified (e.g., Cu/Se, Fe/Cu). Overall, metallomics-based biomarkers may have utility for AMI prediction.
Collapse
Affiliation(s)
- Si Ying Lim
- NUS Graduate School's Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, 119077, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hiranya Dayal
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Song Jie Seah
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Regina Pei Woon Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhi En Low
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Anna Karen Carrasco Laserna
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; Central Instrument Facility, Office of the Vice Chancellor for Research and Innovation, De La Salle University, 2401 Taft Avenue, Malate, Manila 1004, Philippines
| | - Sock Hwee Tan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Mark Y Chan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Sam Fong Yau Li
- NUS Graduate School's Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, 119077, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
12
|
Rohr M, Brandenburg V, Brunner-La Rocca HP. How to diagnose iron deficiency in chronic disease: A review of current methods and potential marker for the outcome. Eur J Med Res 2023; 28:15. [PMID: 36617559 PMCID: PMC9827648 DOI: 10.1186/s40001-022-00922-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/30/2022] [Indexed: 01/10/2023] Open
Abstract
Iron deficiency (ID) is the most common nutritional disorder worldwide. It is often observed in patients with chronic diseases, such as heart failure (HF), chronic kidney disease (CKD), inflammatory bowel disease (IBD) and cancer. ID is associated with poor clinical outcome, including poor performance, reduced quality of life, as well as increased hospitalization and mortality. The aim of this review is to provide an overview about the role of ID in chronic diseases (HF, CKD, IBD, cancer) regarding their current definitions and clinical relevance; diagnostic accuracy of iron parameters in chronic inflammatory conditions and its potential as prognostic markers. Due to different definitions and guideline recommendations of ID, various laboratory parameters for ID diagnostic exist and there is no general consensus about the definition of ID and its treatment. Still, a general trend can be observed across all investigated indications of this review (HF, CKD, IBD, cancer) that serum ferritin and transferrin saturation (TSAT) are the two parameters mentioned most often and emphasized in all guidelines to define ID and guide treatment. The most commonly used threshold values for the diagnosis of ID are TSAT of < 20% and serum ferritin of < 100-300 µg/L. Noteworthy, both TSAT and particularly ferritin are frequently applied, but both may vary due to inflammatory conditions. Studies showed that TSAT is less affected by inflammatory processes and may therefore be more accurate and reliable than serum ferritin, particularly in conditions with elevated inflammatory state. A low iron status and particularly a low TSAT value was associated with a poor outcome in all investigated indications, with the strongest evidence in HF patients. Routine surveillance of iron status in these groups of patients with chronic conditions is advisable to detect ID early. Depending on the inflammatory state, TSAT < 20% may be the more accurate diagnostic marker of ID than ferritin. Moreover, TSAT may also be the more reliable estimate for the prognosis, particularly in HF.
Collapse
Affiliation(s)
- Martina Rohr
- grid.476593.a0000 0004 0422 3420Vifor Pharma Deutschland GmbH, Baierbrunner Straße 29, 81379 Munich, Germany
| | - Vincent Brandenburg
- Dept of Cardiology and Nephrology, Rhein-Maas Klinikum Würselen, Mauerfeldchen 25, 52146 Würselen, Germany
| | - Hans-Peter Brunner-La Rocca
- grid.5012.60000 0001 0481 6099Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands ,grid.412966.e0000 0004 0480 1382Department of Cardiology, MUMC+, Maastricht University Medical Centre, P. Debyelaan 25, Main Building, 3rd Floor, room 3.B2.022, 6229 HX Maastricht, The Netherlands ,PO Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
13
|
Wang L, Cai J, Qiao T, Li K. Ironing out macrophages in atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1-10. [PMID: 36647723 PMCID: PMC10157607 DOI: 10.3724/abbs.2022196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
<p indent="0mm">The most common cause of death worldwide is atherosclerosis and related cardiovascular disorders. Macrophages are important players in the pathogenesis of atherosclerosis and perform critical functions in iron homeostasis due to recycling iron by phagocytosis of senescent red blood cells and regulating iron availability in the tissue microenvironment. With the growth of research on the "iron hypothesis" of atherosclerosis, macrophage iron has gradually become a hotspot in the refined iron hypothesis. Macrophages with the M1, M2, M(Hb), Mox, and other phenotypes have been defined with different iron-handling capabilities related to the immune function and immunometabolism of macrophages, which influence the progression of atherosclerosis. In this review, we focus on macrophage iron and its effects on the development of atherosclerosis. We also cover the contradictory discoveries and propose a possible explanation. Finally, pharmaceutical modulation of macrophage iron is discussed as a promising target for atherosclerosis therapy.</p>.
Collapse
Affiliation(s)
- Lei Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jing Cai
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Kuanyu Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
14
|
Zhou J, Zhao R, Wang D, Gao Q, Zhao D, Ouyang B, Hao L, Peng X. Sex-Specific Association Between Iron Status and the Predicted 10-Year Risk for Atherosclerotic Cardiovascular Disease in Hypertensive Patients. Biol Trace Elem Res 2022; 200:4594-4607. [PMID: 35067842 PMCID: PMC9492579 DOI: 10.1007/s12011-021-03060-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/10/2021] [Indexed: 12/20/2022]
Abstract
Serum ferritin (SF) and haemoglobin (Hb) are widely used in clinical practice to assess iron status. Studies exploring the relationship of SF and Hb with atherosclerotic cardiovascular disease (ASCVD) risk have yielded conflicting results, and some indicated sex specificity. Hypertensive patients have abnormal iron status. However, research on patients with hypertension is limited. We aim to investigate the sex-specific links of SF and Hb with the predicted 10-year ASCVD risk in hypertensive patients. This cross-sectional study included 718 hypertensive men and 708 hypertensive women. The predicted 10-year ASCVD risk was calculated based on the China-PAR equation. The dose-response curves were illustrated by fitting linear and quadratic models. In hypertensive men, the iron status fits for a quadratic model for ASCVD risk, showing a U-shape. After adjusting for potential confounding factors, the regression coefficients and 95% confidence intervals (95% CI) across tertile of SF were 0.0 (reference), - 0.99 (- 1.65, - 0.33) and - 0.22 (- 0.88, 0.44), and of Hb were 0.0 (reference), - 0.74 (- 1.41, - 0.08) and - 0.77 (- 1.46, - 0.08). In hypertensive women, iron status was linearly and positively associated with ASCVD risk. Per one unit increment of log-transformed SF as well as Hb was associated with a 1.22 (95% CI: 0.97, 1.48) and 0.04 (95% CI: 0.02, 0.07) increased in ASCVD risk score, respectively. A significant interaction between iron status and inflammation on ASCVD risk was observed in hypertensive women. SF and Hb showed a U-shape with ASCVD risk in hypertensive men; however, a positive linear relationship was observed in hypertensive women.
Collapse
Affiliation(s)
- Juan Zhou
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, 518051, China
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongxia Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Gao
- Department of Public Health, Jining Medical University, Jining, 272067, China
| | - Dan Zhao
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, 518051, China
| | - Binfa Ouyang
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, 518051, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaolin Peng
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, 518051, China.
- Department of Oncology, Injury Prevention and Nutrition, Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Shenzhen, 518051, China.
| |
Collapse
|
15
|
Barrows IR, Devalaraja M, Kakkar R, Chen J, Gupta J, Rosas SE, Saraf S, He J, Go A, Raj DS, Amdur RL. Race, Interleukin-6, TMPRSS6 Genotype, and Cardiovascular Disease in Patients With Chronic Kidney Disease. J Am Heart Assoc 2022; 11:e025627. [PMID: 36102277 PMCID: PMC9683639 DOI: 10.1161/jaha.122.025627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/26/2022] [Indexed: 12/26/2022]
Abstract
Background Differences in death rate and cardiovascular disease (CVD) between Black and White patients with chronic kidney disease is attributed to sociocultural factors, comorbidities, genetics, and inflammation. Methods and Results We examined the interaction of race, plasma IL-6 (interleukin-6), and TMPRSS6 genotype as determinants of CVD and mortality in 3031 Chronic Renal Insufficiency Cohort study participants. The primary outcomes were all-cause mortality and a composite of incident myocardial infarction, peripheral artery disease, stroke, and heart failure. During the median follow-up of 10 years, Black patients with chronic kidney disease experienced a significantly higher mortality (34% versus 26%) and CVD composite (41% versus 28%) compared with White patients. After adjustment, TMPRSS6 genotype did not associate with the outcomes. The adjusted hazard ratio for mortality (4.11 [2.48-6.80], P<0.001) and CVD composite (2.52 [1.96-3.24], P<0.001) were higher for the highest versus lowest IL-6 quintile. The adjusted hazards for death per 1-quintile increase in IL-6 in White and Black individuals were 1.53 (1.42-1.64) versus 1.29 (1.20-1.38) (P<0.001), respectively. For CVD composite they were 1.61 (1.50-1.74) versus 1.30 (1.22-1.39) (P<0.001), respectively. In Cox proportional hazard models that included IL-6, there was no longer a racial disparity for death (1.01 [0.87-1.16], P=0.92), but significant unexplained mediation remained for CVD (1.24 [1.07-1.43]; P=0.004). Path models that included IL-6, diabetes, and urine albumin to creatinine ratio were able to identify variables responsible for racial disparity in mortality and CVD. Conclusions Racial differences in mortality and CVD among patients with chronic kidney disease could be explained by good-fitting path models that include selected mediator variables including diabetes and plasma IL-6.
Collapse
Affiliation(s)
- Ian R. Barrows
- Division of CardiologyGeorge Washington University School of MedicineWashingtonDC
| | | | - Rahul Kakkar
- Research & DevelopmentCorvidia TherapeuticsWalthamMA
| | - Jing Chen
- Section of Nephrology and Hypertension, Department of MedicineTulane University School of MedicineNew OrleansLA
| | - Jayanta Gupta
- Department of Health Sciences, Marieb College of Health & Human ServicesFlorida Gulf Coast UniversityFort MyersFL
| | - Sylvia E. Rosas
- Department of MedicineJoslin Diabetes Center, Harvard Medical SchoolBostonMA
| | - Santosh Saraf
- Division of Hematology/Oncology, Department of MedicineUniversity of Illinois at ChicagoIL
| | - Jiang He
- Department of EpidemiologyTulane University School of Public Health and Tropical MedicineNew OrleansLA
| | - Alan Go
- Division of ResearchKaiser Permanente Northern CaliforniaOaklandCA
| | - Dominic S. Raj
- Division of Kidney Diseases and Hypertension, Department of MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDC
| | - Richard L. Amdur
- Department of SurgeryThe George Washington University School of Medicine and Health SciencesWashingtonDC
| |
Collapse
|
16
|
Soluble transferrin receptor can predict all-cause mortality regardless of anaemia and iron storage status. Sci Rep 2022; 12:11911. [PMID: 35831434 PMCID: PMC9279452 DOI: 10.1038/s41598-022-15674-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Despite interest in the clinical implications of soluble transferrin receptor (sTfR), previous studies on the association of sTfR with mortality in the general population are lacking. Therefore, we analysed the association between sTfR and all-cause mortality in the general United States adult population. We conducted a prospective cohort study using National Health and Nutrition Examination Survey data from 2003 to 2010. A total of 5403 premenopausal nonpregnant females were analysed in this study. The mean age was 34.2 years (range 20.0–49.9 years). Participants were divided into log(sTfR) tertiles. The primary outcome was all-cause mortality. The secondary outcome was chronic kidney disease (CKD) development (composite of estimated glomerular filtration rate < 60 ml/min/1.73 m2 and/or random urine albumin-to-creatinine ratio ≥ 30 mg/g). During a median 8.7 years of follow-up, 103 (1.9%) participants died. Compared with the reference group (log(sTfR) 0.45–0.57), the highest tertile of log(sTfR) was associated with all-cause mortality (log(sTfR) > 0.57, hazard ratio [HR] 1.77 [95% CI 1.05–2.98]) in a multivariable hazards model including covariates such as haemoglobin and ferritin. Patients in the highest tertile of log(sTfR) also had an increased risk of CKD relative to those in the reference tertile. High sTfR was associated with all-cause mortality and CKD regardless of anaemia and iron storage status.
Collapse
|
17
|
Oppen K, Ueland T, Michelsen AE, Aukrust P, Steinsvik T, Skadberg Ø, Brede C, Siljan WW, Husebye E, Holter JC, Heggelund L. Hepcidin predicts 5-year mortality after community-acquired pneumonia. Infect Dis (Lond) 2022; 54:403-409. [DOI: 10.1080/23744235.2021.2022194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kjersti Oppen
- Department of Laboratory Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| | - Annika E. Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Trude Steinsvik
- Department of Laboratory Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Øyvind Skadberg
- Department of Medical Biochemistry, Stavanger University Hospital, Stavanger, Norway
| | - Cato Brede
- Department of Medical Biochemistry, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - William Ward Siljan
- Department of Pulmonary Medicine, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Einar Husebye
- Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Jan Cato Holter
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lars Heggelund
- Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Vinchi F. Non-Transferrin-Bound Iron in the Spotlight: Novel Mechanistic Insights into the Vasculotoxic and Atherosclerotic Effect of Iron. Antioxid Redox Signal 2021; 35:387-414. [PMID: 33554718 PMCID: PMC8328045 DOI: 10.1089/ars.2020.8167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Significance: While atherosclerosis is an almost inevitable consequence of aging, food preferences, lack of exercise, and other aspects of the lifestyle in many countries, the identification of new risk factors is of increasing importance to tackle a disease, which has become a major health burden for billions of people. Iron has long been suspected to promote the development of atherosclerosis, but data have been conflicting, and the contribution of iron is still debated controversially. Recent Advances: Several experimental and clinical studies have been recently published about this longstanding controversial problem, highlighting the critical need to unravel the complexity behind this topic. Critical Issues: The aim of the current review is to provide an overview of the current knowledge about the proatherosclerotic impact of iron, and discuss the emerging role of non-transferrin-bound iron (NTBI) as driver of vasculotoxicity and atherosclerosis. Finally, I will provide detailed mechanistic insights on the cellular processes and molecular pathways underlying iron-exacerbated atherosclerosis. Overall, this review highlights a complex framework where NTBI acts at multiple levels in atherosclerosis by altering the serum and vascular microenvironment in a proatherogenic and proinflammatory manner, affecting the functionality and survival of vascular cells, promoting foam cell formation and inducing angiogenesis, calcification, and plaque destabilization. Future Directions: The use of additional iron markers (e.g., NTBI) may help adequately predict predisposition to cardiovascular disease. Clinical studies are needed in the aging population to address the atherogenic role of iron fluctuations within physiological limits and the therapeutic value of iron restriction approaches. Antioxid. Redox Signal. 35, 387-414.
Collapse
Affiliation(s)
- Francesca Vinchi
- Iron Research Program, Lindsley F. Kimball Research Institute (LFKRI), New York Blood Center (NYBC), New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
19
|
Afsar RE, Kanbay M, Ibis A, Afsar B. In-depth review: is hepcidin a marker for the heart and the kidney? Mol Cell Biochem 2021; 476:3365-3381. [PMID: 33942218 DOI: 10.1007/s11010-021-04168-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Iron is an essential trace element involved in oxidation-reduction reactions, oxygen transport and storage, and energy metabolism. Iron in excess can be toxic for cells, since iron produces reactive oxygen species and is important for survival of pathogenic microbes. There is a fine-tuning in the regulation of serum iron levels, determined by intestinal absorption, macrophage iron recycling, and mobilization of hepatocyte stores versus iron utilization, primarily by erythroid cells in the bone marrow. Hepcidin is the major regulatory hormone of systemic iron homeostasis and is upregulated during inflammation. Hepcidin metabolism is altered in chronic kidney disease. Ferroportin is an iron export protein and mediates iron release into the circulation from duodenal enterocytes, splenic reticuloendothelial macrophages, and hepatocytes. Systemic iron homeostasis is controlled by the hepcidin-ferroportin axis at the sites of iron entry into the circulation. Hepcidin binds to ferroportin, induces its internalization and intracellular degradation, and thus inhibits iron absorption from enterocytes, and iron release from macrophages and hepatocytes. Recent data suggest that hepcidin, by slowing or preventing the mobilization of iron from macrophages, may promote atherosclerosis and may be associated with increased cardiovascular disease risk. This article reviews the current data regarding the molecular and cellular pathways of systemic and autocrine hepcidin production and seeks the answer to the question whether changes in hepcidin translate into clinical outcomes of all-cause and cardiovascular mortality, and cardiovascular and renal end-points.
Collapse
Affiliation(s)
- Rengin Elsurer Afsar
- Department of Nephrology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Mehmet Kanbay
- Department of Nephrology, Faculty of Medicine, Koc University, Istanbul, Turkey
| | - Avsin Ibis
- Department of Nephrology, Afyon Kocatepe Devlet Hastanesi, Afyon, Turkey
| | - Baris Afsar
- Department of Nephrology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
20
|
Biswas SK, Chatterjee S, Bandyopadhyay S, Kar S, Som NK, Saha S, Chakraborty S. Smartphone-Enabled Paper-Based Hemoglobin Sensor for Extreme Point-of-Care Diagnostics. ACS Sens 2021; 6:1077-1085. [PMID: 33635650 DOI: 10.1021/acssensors.0c02361] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report a simple, affordable (∼0.02 US $/test), rapid (within 5 min), and quantitative paper-based sensor integrated with smartphone application for on-spot detection of hemoglobin (Hgb) concentration using approximately 10 μL of finger-pricked blood. Quantitative analytical colorimetry is achieved via an Android-based application (Sens-Hb), integrating key operational steps of image acquisition, real-time analysis, and result dissemination. Further, feedback from the machine learning algorithm for adaptation of calibration data offers consistent dynamic improvement for precise predictions of the test results. Our study reveals a successful deployment of the extreme point-of-care test in rural settings where no infrastructural facilities for diagnostics are available. The Hgb test device is validated both in the controlled laboratory environment (n = 200) and on the field experiments (n = 142) executed in four different Indian villages. Validation results are well correlated with the pathological gold standard results (r = 0.9583) with high sensitivity and specificity for the healthy (n = 136) (>11 g/dL) (specificity: 97.2%), mildly anemic (n = 55) (<11 g/dL) (sensitivity: 87.5%, specificity: 100%), and severely anemic (n = 9) (<7 g/dL) (sensitivity: 100%, specificity: 100%) samples. Results from field trials reveal that only below 5% cases of the results are interpreted erroneously by classifying mildly anemic patients as healthy ones. On-field deployment has unveiled the test kit to be extremely user friendly that can be handled by minimally trained frontline workers for catering the needs of the underserved communities.
Collapse
Affiliation(s)
- Sujay K. Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Subhamoy Chatterjee
- Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumya Bandyopadhyay
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shantimoy Kar
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Currently working as a postdoctoral research assistant in the University of Glasgow, Glasgow G12 8LT, U.K
| | - Nirmal K. Som
- BC Roy Technology Hospital, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Satadal Saha
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- BC Roy Institute of Medical Science and Research, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- JSV Innovations Pvt. Ltd, Kolkata 700025, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
21
|
Abstract
Abstract
Collapse
Affiliation(s)
- Tibor Kempf
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Kai C Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
22
|
The Molecular Mechanisms of Iron Metabolism and Its Role in Cardiac Dysfunction and Cardioprotection. Int J Mol Sci 2020; 21:ijms21217889. [PMID: 33114290 PMCID: PMC7660609 DOI: 10.3390/ijms21217889] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential mineral participating in different functions of the organism under physiological conditions. Numerous biological processes, such as oxygen and lipid metabolism, protein production, cellular respiration, and DNA synthesis, require the presence of iron, and mitochondria play an important role in the processes of iron metabolism. In addition to its physiological role, iron may be also involved in the adaptive processes of myocardial "conditioning". On the other hand, disorders of iron metabolism are involved in the pathological mechanisms of the most common human diseases and include a wide range of them, such as type 2 diabetes, obesity, and non-alcoholic fatty liver disease, and accelerate the development of atherosclerosis. Furthermore, iron also exerts potentially deleterious effects that may be manifested under conditions of ischemia/reperfusion (I/R) injury, myocardial infarction, heart failure, coronary artery angioplasty, or heart transplantation, due to its involvement in reactive oxygen species (ROS) production. Moreover, iron has been recently described to participate in the mechanisms of iron-dependent cell death defined as "ferroptosis". Ferroptosis is a form of regulated cell death that is distinct from apoptosis, necroptosis, and other types of cell death. Ferroptosis has been shown to be associated with I/R injury and several other cardiac diseases as a significant form of cell death in cardiomyocytes. In this review, we will discuss the role of iron in cardiovascular diseases, especially in myocardial I/R injury, and protective mechanisms stimulated by different forms of "conditioning" with a special emphasis on the novel targets for cardioprotection.
Collapse
|
23
|
Investigation of gene-gene interactions in cardiac traits and serum fatty acid levels in the LURIC Health Study. PLoS One 2020; 15:e0238304. [PMID: 32915819 PMCID: PMC7485803 DOI: 10.1371/journal.pone.0238304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/13/2020] [Indexed: 01/25/2023] Open
Abstract
Epistasis analysis elucidates the effects of gene-gene interactions (G×G) between multiple loci for complex traits. However, the large computational demands and the high multiple testing burden impede their discoveries. Here, we illustrate the utilization of two methods, main effect filtering based on individual GWAS results and biological knowledge-based modeling through Biofilter software, to reduce the number of interactions tested among single nucleotide polymorphisms (SNPs) for 15 cardiac-related traits and 14 fatty acids. We performed interaction analyses using the two filtering methods, adjusting for age, sex, body mass index (BMI), waist-hip ratio, and the first three principal components from genetic data, among 2,824 samples from the Ludwigshafen Risk and Cardiovascular (LURIC) Health Study. Using Biofilter, one interaction nearly met Bonferroni significance: an interaction between rs7735781 in XRCC4 and rs10804247 in XRCC5 was identified for venous thrombosis with a Bonferroni-adjusted likelihood ratio test (LRT) p: 0.0627. A total of 57 interactions were identified from main effect filtering for the cardiac traits G×G (10) and fatty acids G×G (47) at Bonferroni-adjusted LRT p < 0.05. For cardiac traits, the top interaction involved SNPs rs1383819 in SNTG1 and rs1493939 (138kb from 5’ of SAMD12) with Bonferroni-adjusted LRT p: 0.0228 which was significantly associated with history of arterial hypertension. For fatty acids, the top interaction between rs4839193 in KCND3 and rs10829717 in LOC107984002 with Bonferroni-adjusted LRT p: 2.28×10−5 was associated with 9-trans 12-trans octadecanoic acid, an omega-6 trans fatty acid. The model inflation factor for the interactions under different filtering methods was evaluated from the standard median and the linear regression approach. Here, we applied filtering approaches to identify numerous genetic interactions related to cardiac-related outcomes as potential targets for therapy. The approaches described offer ways to detect epistasis in the complex traits and to improve precision medicine capability.
Collapse
|
24
|
Hepcidin and ferritin levels in restless legs syndrome: a case-control study. Sci Rep 2020; 10:11914. [PMID: 32681031 PMCID: PMC7367854 DOI: 10.1038/s41598-020-68851-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/24/2020] [Indexed: 01/11/2023] Open
Abstract
The association between restless legs syndrome (RLS) and iron homeostasis remains unclear. We compared serum hepcidin and ferritin levels in patients with RLS and controls, and assessed their relationships with RLS phenotype, drug intake, and history of augmentation syndrome. 102 drug-free RLS patients (age 58.9 [24.5–77.2], 63 females) and 73 controls (age 56.8 [23.46–76.6], 45 females) underwent a polysomnography recording. Hepcidin levels were quantified by ELISA. 34 RLS patients had a second assessment after starting dopaminergic drugs. Ferritin level was low (< 50 µg/l) in 14.7% of patients and 25% of controls, with no between-group differences in the mean values. Hepcidin levels were higher in patients even after adjustment for confounding factors, and excluding participants with low ferritin levels. Ferritin and hepcidin levels were comparable before and after treatment, and between patients with (n = 17) and without history of augmentation. Ferritin and hepcidin levels correlated with age, body mass index, and periodic leg movements. Higher hepcidin levels were associated with older age, older age at RLS onset, less daytime sleepiness and familial RLS. In conclusion, serum hepcidin levels but not ferritin were higher in RLS patients regardless of treatment and history of augmentation. Serum hepcidin may be a more relevant biomarker of RLS than ferritin.
Collapse
|
25
|
Weidmann H, Bannasch JH, Waldeyer C, Shrivastava A, Appelbaum S, Ojeda-Echevarria FM, Schnabel R, Lackner KJ, Blankenberg S, Zeller T, Karakas M. Iron Metabolism Contributes to Prognosis in Coronary Artery Disease: Prognostic Value of the Soluble Transferrin Receptor Within the AtheroGene Study. J Am Heart Assoc 2020; 9:e015480. [PMID: 32321351 PMCID: PMC7428563 DOI: 10.1161/jaha.119.015480] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Coronary heart disease is a leading cause of mortality worldwide. Iron deficiency, a frequent comorbidity of coronary heart disease, causes an increased expression of transferrin receptor and soluble transferrin receptor levels (sTfR) levels, while iron repletion returns sTfR levels to the normal physiological range. Recently, sTfR levels were proposed as a potential new marker of iron metabolism in cardiovascular diseases. Therefore, we aimed to evaluate the prognostic value of circulating sTfR levels in a large cohort of patients with coronary heart disease. Methods and Results The disease cohort comprised 3423 subjects who had angiographically documented coronary heart disease and who participated in the AtheroGene study. Serum levels of sTfR were determined at baseline using an automated immunoassay (Roche Cobas Integra 400). Two main outcomes were considered: a combined end point of myocardial infarction and cardiovascular death and cardiovascular death alone. During a median follow‐up of 4.0 years, 10.3% of the patients experienced an end point. In Cox regression analyses for sTfR levels, the hazard ratio (HR) for future cardiovascular death and/or myocardial infarction was 1.27 (95% CI, 1.11–1.44, P<0.001) after adjustment for sex and age. This association remained significant (HR, 1.23; 95% CI, 1.03–1.46, P=0.02) after additional adjustment for body mass index, smoking status, hypertension, diabetes mellitus, dyslipidemia, C‐reactive protein, and surrogates of cardiac function, size of myocardial necrosis (hs‐Tnl), and hemoglobin levels. Conclusions In this large cohort study, sTfR levels were strongly associated with future myocardial infarction and cardiovascular death. This implicates a role for sTfR in secondary cardiovascular risk prediction.
Collapse
Affiliation(s)
- Henri Weidmann
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg Germany
| | - Johannes H Bannasch
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany
| | - Christoph Waldeyer
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg Germany
| | - Apurva Shrivastava
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg Germany
| | - Sebastian Appelbaum
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany
| | | | - Renate Schnabel
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg Germany
| | - Karl J Lackner
- Department of Laboratory Medicine University Medical Center Johannes Gutenberg University Mainz Mainz Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main Mainz Germany
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg Germany
| | - Tanja Zeller
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg Germany
| | - Mahir Karakas
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg Germany
| |
Collapse
|
26
|
von Eckardstein A. Iron in Coronary Heart Disease—J-Shaped Associations and Ambivalent Relationships. Clin Chem 2019; 65:821-823. [DOI: 10.1373/clinchem.2019.303420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
|