1
|
Lou J, Xiang Z, Zhu X, Fan Y, Li J, Jin G, Cui S, Huang N. A bidirectional mendelian-randomization analyses of genetically predicted circulating levels of systemic inflammatory regulators with risk of sepsis. Medicine (Baltimore) 2025; 104:e42199. [PMID: 40295284 PMCID: PMC12040038 DOI: 10.1097/md.0000000000042199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
Whether there is a causal relationship between circulating levels of systemic inflammatory regulators and sepsis remains unclear. To determine whether genetically predicted circulating levels of cytokines are associated with risk of sepsis, a bidirectional two-sample Mendelian randomization (MR) analysis based on the a STROBE-compliant cross-sectional observational study was conducted utilizing gene-wide association study (GWAS) data. Selected with rigor, single-nucleotide polymorphisms served as instrumental variables for subsequent MR analysis. The preferred method for the MR analysis was the inverse-variance weighted approach. However, for comprehensive sensitivity analyses, 6 additional MR methods were employed. Cochrane's Q test was performed to examine heterogeneity. A leave-one-out method ensured the stability of MR results. Our findings suggest an inverse association between the levels of beta-nerve growth factor (BNGF) and the risk of sepsis development (OR = 0.769, 95% CI = 0.599-0.987, P = .039). In contrast, higher levels of TNF-related apoptosis-inducing ligand and vascular endothelial growth factor A (VEGF-A) are positively correlated with sepsis risk (OR = 1.094, 95% CI = 1.012-1.183, P = .025; OR = 1.182, 95% CI = 1.016-1.375, P = .031, respectively). Reverse MR Analysis indicated that sepsis risk is linked with lower circulating levels of adenosine deaminase and Interleukin-17A (β = -0.043, 95% CI = -0.085 to -0.002, P = .042; β = -0.061, 95% CI = -0.108 to -0.013, P = .012, respectively), and also with higher circulating levels of BNGF, delta/notchlike epidermal growth factor-related receptor, fibroblast growth factor 23, leukemia inhibitory factor, monocyte chemoattractant protein-1, and osteoprotegerin (β = 0.056, 95% CI = 0.015-0.096, P = .007; β = 0.137, 95% CI = 0.035-0.240, P = .009; β = 0.118, 95% CI = 0.020-0.216, P = .018; β = 0.136, 95% CI = 0.020-0.252, P = .022; β = 0.143, 95% CI = 0.043-0.242, P = .005; β = 0.116, 95% CI = 0.010-0.222, P = .031, respectively). Sum up, our study provides evidence supporting a bidirectional causal relationship between sepsis and genetically predicted circulating levels of systemic inflammatory regulators.
Collapse
Affiliation(s)
- Jiaqi Lou
- Burn Department, Ningbo No. 2 Hospital, Ningbo, China
| | - Ziyi Xiang
- Institute of Pathology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Xiaoyu Zhu
- Health Science Center, Ningbo University, Ningbo, China
| | - Youfen Fan
- Burn Department, Ningbo No. 2 Hospital, Ningbo, China
| | - Jiliang Li
- Burn Department, Ningbo No. 2 Hospital, Ningbo, China
| | - Guoying Jin
- Burn Department, Ningbo No. 2 Hospital, Ningbo, China
| | - Shengyong Cui
- Burn Department, Ningbo No. 2 Hospital, Ningbo, China
| | - Neng Huang
- Burn Department, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
2
|
Xu M, Chen H, Chen J, Ye R, Xiao H, Li J, Li C. Investigating Clinical Factors Influencing Pulmonary Fibrosis in Acute Diquat Poisoning. Int J Gen Med 2024; 17:5433-5441. [PMID: 39582918 PMCID: PMC11585977 DOI: 10.2147/ijgm.s488317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Objective This study aimed to explore the factors influencing pulmonary fibrosis in patients with acute diquat poisoning through logistic regression analysis. Methods A retrospective analysis was conducted on 68 cases of acute diquat poisoning due to suicidal intent admitted to our hospital from February 2020 to March 2023. Patients were divided into a combined group (28 cases with pulmonary fibrosis) and an acute diquat poisoning group (40 cases without). A healthy control group consisted of 40 individuals. General data were compared among the three groups, and laboratory indicators were analyzed. Single and multiple logistic regression analyses were performed to identify risk factors for pulmonary fibrosis. Results There were no significant differences in gender, age, BMI, poisoning status, or treatment timing among the groups (P > 0.05). The combined group had significantly higher diquat ingestion dose, SIRS score, SOFA score, and APACHE II score compared to the poisoning group (P < 0.05). In the acute poisoning group, these scores were also higher than in the healthy controls (P < 0.05). Laboratory indicators, including Hb, PLT, ALP, DBil, ALB, BUN, Glu, BNP, and pH, showed no significant differences (P > 0.05). However, WBC, ALT, TBil, DBil, Cr, K+, Tn I, and Lac levels were significantly higher in the combined group compared to the acute poisoning group (P < 0.05). Logistic regression analysis identified factors influencing pulmonary fibrosis as diquat ingestion dose, K+, ALT, PaO2, Lac, and HCO3-. Conclusion The factors influencing pulmonary fibrosis in acute diquat poisoning include diquat ingestion dose, K+, ALT, PaO2, Lac, and HCO3-. These findings enhance understanding of pulmonary fibrosis pathogenesis and may inform clinical management for affected patients.
Collapse
Affiliation(s)
- Meili Xu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi University Key Laboratory of Emergency Medicine, Nanning, Guangxi, People’s Republic of China
| | - Hongliu Chen
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi University Key Laboratory of Emergency Medicine, Nanning, Guangxi, People’s Republic of China
| | - Jianjing Chen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Rongzong Ye
- Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Huan Xiao
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi University Key Laboratory of Emergency Medicine, Nanning, Guangxi, People’s Republic of China
| | - Jingwen Li
- Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Chaoqian Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi University Key Laboratory of Emergency Medicine, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
3
|
Niu X, Wang C, Li H, Chen W. Role of OPG/RANKL/RANK/TLR4 signaling pathway in sepsis-associated acute kidney injury. BMC Nephrol 2024; 25:205. [PMID: 38910256 PMCID: PMC11194911 DOI: 10.1186/s12882-024-03648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Sepsis-associated acute kidney injury (SA-AKI) has high mortality rates. The osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL)/receptor activator of nuclear factor-κB (RANK)/Toll-like receptor 4 (TLR4) pathway and its potential role in SA-AKI pathogenesis remain to be fully understood. Herein, we addressed this issue using mouse models. METHODS An SA-AKI mouse model was established using the cecal ligation and puncture method (CLP). Mice were grouped into sham, CLP model, CLP + recombinant RANKL, and CLP + anti-RANKL groups. Serum creatinine (Scr) and blood urea nitrogen (BUN) levels were measured to assess kidney function. ELISA was used to detect serum IL-1β, TNF-α, and IL-6 levels. Real-time quantitative PCR and Western blot were used to detect the mRNA and protein expression levels of OPG, RANKL, RANK, and TLR4 in kidney tissues. HE staining was performed to evaluate the pathological changes. RESULTS The CLP model group showed higher levels of Scr and BUN, indicating impaired kidney function in SA-AKI, compared to the sham group. Treatment with recombinant RANKL in the CLP + recombinant RANKL group reduced Scr and BUN levels, while anti-RANKL treatment in the CLP + anti-RANKL group elevated their levels. Moreover, the CLP model group had significantly increased IL-1β, TNF-α, and IL-6 than the sham group, indicating elevated inflammation in SA-AKI. The CLP + recombinant RANKL group demonstrated decreased cytokine levels, whereas the CLP + anti-RANKL group showed an increase. Additionally, the histopathological evaluation revealed distinct kidney tissue damage in the CLP model group. Recombinant RANKL treatment reduced this damage, while anti-RANKL treatment exacerbated it. Mechanically, the mRNA and protein expression of RANKL were significantly decreased, while those of OPG, RANK, and TLR4 were significantly increased in the CLP model group and the CLP + anti-RANKL group. Interestingly, treatment with recombinant RANKL reversed these changes, as evidenced by significantly increased RANKL but decreased OPG, RANK, and TLR4. CONCLUSION The OPG/RANKL/RANK/TLR4 pathway is involved in SA-AKI pathogenesis. Recombinant RANKL treatment attenuates the inflammatory response and kidney tissue damage in SA-AKI, possibly via regulating this pathway. This pathway shows promise as a therapeutic target for SA-AKI.
Collapse
Affiliation(s)
- Xinrong Niu
- Department of Critical Care Medicine, Xinjiang Uyghur Autonomous Region People's Hospital, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, P.R. China.
| | - Caihong Wang
- Department of Critical Care Medicine, Xinjiang Uyghur Autonomous Region People's Hospital, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, P.R. China
| | - Hui Li
- Department of Critical Care Medicine, Xinjiang Uyghur Autonomous Region People's Hospital, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, P.R. China
| | - Weilin Chen
- Department of Critical Care Medicine, Xinjiang Uyghur Autonomous Region People's Hospital, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, P.R. China
| |
Collapse
|
4
|
Giannakopoulos A, Efthymiadou A, Kritikou D, Chrysis D. Osteoprotegerin in infection-induced acute inflammatory states in children. Heliyon 2024; 10:e27565. [PMID: 38509997 PMCID: PMC10951505 DOI: 10.1016/j.heliyon.2024.e27565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
Background and aims Osteoprotegerin (OPG) is a tumor necrosis factor receptor superfamily member which increases in chronic inflammation and is associated with altered bone turnover and cardiovascular complications. In this study, we investigated whether OPG increases during acute inflammatory states induced by infections in children and correlated its levels with other biomarkers. Materials and methods This is a prospective study that included 59 patients with documented bacterial infections, 20 with viral infections and 20 healthy controls. OPG, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and white blood cells (WBC) were measured. Results OPG serum levels were significantly increased during inflammation induced by a bacterial infection, compared to viral infection and controls (4.17 pmol/l (2.40-12.12) vs 3.2 (1.66-5.33) and 3 pmol/l (2.13-4.76), respectively, p < 0.001). In addition, OPG correlated well with CRP (rho = 0.428, p = 0.0011), ESR (rho = 0.3, p = 0.026), and WBC (rho = 0.266, p = 0.05) only in the group with bacterial infection. The sensitivity of CRP in detecting a bacterial infection was superior to OPG (67.3% vs 38.3%). Conclusion This study provides proof of concept that OPG increases differentially in bacterial infections, although with a lower sensitivity than CRP. Further studies are needed to define the role of OPG during the inflammatory states of infection in pediatric infections.
Collapse
Affiliation(s)
- Aristeidis Giannakopoulos
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, Greece
| | - Alexandra Efthymiadou
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, Greece
| | - Dimitra Kritikou
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, Greece
| | - Dionisios Chrysis
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, Greece
| |
Collapse
|
5
|
Zhang D, Xu C, Zhang J, Zeng R, Qi Q, Xu J, Pan Y, Liu X, Shi S, Zhang J, Dong L. Plasma TNFRSF11B as a New Predictive Inflammatory Marker of Sepsis-ARDS with Endothelial Dysfunction. J Proteome Res 2023; 22:3640-3651. [PMID: 37851947 PMCID: PMC10629264 DOI: 10.1021/acs.jproteome.3c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 10/20/2023]
Abstract
Inflammation plays an important role in the development of sepsis-acute respiratory distress syndrome (ARDS). Olink inflammation-related biomarker panels were used to analyze the levels of 92 inflammation-related proteins in plasma with sepsis-ARDS (n = 25) and healthy subjects (n = 25). There were significant differences in 64 inflammatory factors, including TNFRSF11B in sepsis-ARDS, which was significantly higher than that in controls. Functional analysis showed that TNFRSF11B was closely focused on signal transduction, immune response, and inflammatory response. The TNFRSF11B level in sepsis-ARDS plasma, LPS-induced mice, and LPS-stimulated HUVECs significantly increased. The highest plasma concentration of TNFRSF11B in patients with sepsis-ARDS was 10-20 ng/mL, and 10 ng/mL was selected to stimulate HUVECs. Western blot results demonstrated that the levels of syndecan-1, claudin-5, VE-cadherin, occludin, aquaporin-1, and caveolin-1 in TNFRSF11B-stimulated HUVECs decreased, whereas that of connexin-43 increased in TNFRSF11B-stimulated HUVECs. To the best of the authors' knowledge, this study was the first to reveal elevated TNFRSF11B in sepsis-ARDS associated with vascular endothelial dysfunction. In summary, TNFRSF11B may be a new potential predictive and diagnostic biomarker for vascular endothelium damage in sepsis-ARDS.
Collapse
Affiliation(s)
- Dong Zhang
- Department
of Respiratory and Intensive Care Unit, Shandong Provincial Qianfoshan
Hospital, Shandong University, Jinan 250021, Shandong China
| | - Changjuan Xu
- Department
of Respiratory and Intensive Care Unit, The First Affiliated
Hospital of Shandong First Medical University and Shandong Provincial
Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong
Characteristic Laboratory of Clinical Transformation of Respiratory
Biological Immunity and Regenerative Medicine, Jinan 250021, Shandong China
| | - Jintao Zhang
- Department
of Respiratory and Intensive Care Unit, The First Affiliated
Hospital of Shandong First Medical University and Shandong Provincial
Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong
Characteristic Laboratory of Clinical Transformation of Respiratory
Biological Immunity and Regenerative Medicine, Jinan 250021, Shandong China
| | - Rong Zeng
- Department
of Respiratory and Intensive Care Unit, Shandong Provincial Qianfoshan
Hospital, Shandong University, Jinan 250021, Shandong China
| | - Qian Qi
- Department
of Respiratory and Intensive Care Unit, The First Affiliated
Hospital of Shandong First Medical University and Shandong Provincial
Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong
Characteristic Laboratory of Clinical Transformation of Respiratory
Biological Immunity and Regenerative Medicine, Jinan 250021, Shandong China
| | - Jiawei Xu
- Department
of Respiratory and Intensive Care Unit, The First Affiliated
Hospital of Shandong First Medical University and Shandong Provincial
Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong
Characteristic Laboratory of Clinical Transformation of Respiratory
Biological Immunity and Regenerative Medicine, Jinan 250021, Shandong China
| | - Yun Pan
- Department
of Respiratory and Intensive Care Unit, Shandong Provincial Qianfoshan
Hospital, Shandong University, Jinan 250021, Shandong China
| | - Xiaofei Liu
- Department
of Respiratory and Intensive Care Unit, The First Affiliated
Hospital of Shandong First Medical University and Shandong Provincial
Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong
Characteristic Laboratory of Clinical Transformation of Respiratory
Biological Immunity and Regenerative Medicine, Jinan 250021, Shandong China
| | - Shuochuan Shi
- Department
of Respiratory and Intensive Care Unit, The First Affiliated
Hospital of Shandong First Medical University and Shandong Provincial
Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong
Characteristic Laboratory of Clinical Transformation of Respiratory
Biological Immunity and Regenerative Medicine, Jinan 250021, Shandong China
| | - Jianning Zhang
- Department
of Respiratory and Intensive Care Unit, The First Affiliated
Hospital of Shandong First Medical University and Shandong Provincial
Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong
Characteristic Laboratory of Clinical Transformation of Respiratory
Biological Immunity and Regenerative Medicine, Jinan 250021, Shandong China
| | - Liang Dong
- Department
of Respiratory and Intensive Care Unit, Shandong Provincial Qianfoshan
Hospital, Shandong University, Jinan 250021, Shandong China
- Department
of Respiratory and Intensive Care Unit, The First Affiliated
Hospital of Shandong First Medical University and Shandong Provincial
Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong
Characteristic Laboratory of Clinical Transformation of Respiratory
Biological Immunity and Regenerative Medicine, Jinan 250021, Shandong China
| |
Collapse
|
6
|
Van Nynatten LR, Slessarev M, Martin CM, Leligdowicz A, Miller MR, Patel MA, Daley M, Patterson EK, Cepinskas G, Fraser DD. Novel plasma protein biomarkers from critically ill sepsis patients. Clin Proteomics 2022; 19:50. [PMID: 36572854 PMCID: PMC9792322 DOI: 10.1186/s12014-022-09389-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite the high morbidity and mortality associated with sepsis, the relationship between the plasma proteome and clinical outcome is poorly understood. In this study, we used targeted plasma proteomics to identify novel biomarkers of sepsis in critically ill patients. METHODS Blood was obtained from 15 critically ill patients with suspected/confirmed sepsis (Sepsis-3.0 criteria) on intensive care unit (ICU) Day-1 and Day-3, as well as age- and sex-matched 15 healthy control subjects. A total of 1161 plasma proteins were measured with proximal extension assays. Promising sepsis biomarkers were narrowed with machine learning and then correlated with relevant clinical and laboratory variables. RESULTS The median age for critically ill sepsis patients was 56 (IQR 51-61) years. The median MODS and SOFA values were 7 (IQR 5.0-8.0) and 7 (IQR 5.0-9.0) on ICU Day-1, and 4 (IQR 3.5-7.0) and 6 (IQR 3.5-7.0) on ICU Day-3, respectively. Targeted proteomics, together with feature selection, identified the leading proteins that distinguished sepsis patients from healthy control subjects with ≥ 90% classification accuracy; 25 proteins on ICU Day-1 and 26 proteins on ICU Day-3 (6 proteins overlapped both ICU days; PRTN3, UPAR, GDF8, NTRK3, WFDC2 and CXCL13). Only 7 of the leading proteins changed significantly between ICU Day-1 and Day-3 (IL10, CCL23, TGFα1, ST2, VSIG4, CNTN5, and ITGAV; P < 0.01). Significant correlations were observed between a variety of patient clinical/laboratory variables and the expression of 15 proteins on ICU Day-1 and 14 proteins on ICU Day-3 (P < 0.05). CONCLUSIONS Targeted proteomics with feature selection identified proteins altered in critically ill sepsis patients relative to healthy control subjects. Correlations between protein expression and clinical/laboratory variables were identified, each providing pathophysiological insight. Our exploratory data provide a rationale for further hypothesis-driven sepsis research.
Collapse
Affiliation(s)
| | - Marat Slessarev
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Claudio M Martin
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Aleks Leligdowicz
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Michael R Miller
- Lawson Health Research Institute, London, ON, Canada
- Pediatrics, Western University, London, ON, Canada
| | - Maitray A Patel
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Lawson Health Research Institute, London, ON, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
- The Vector Institute for Artificial Intelligence, Toronto, ON, M5G 1M1, Canada
| | | | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, Canada.
- Pediatrics, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Western University, London, ON, Canada.
- Physiology and Pharmacology, Western University, London, ON, Canada.
- London Health Sciences Centre, Room C2-C82, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
7
|
RANKL Impairs the TLR4 Pathway by Increasing TRAF6 and RANK Interaction in Macrophages. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7740079. [PMID: 35463988 PMCID: PMC9019442 DOI: 10.1155/2022/7740079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022]
Abstract
High serum levels of osteoprotegerin (OPG) are found in patients with obesity, type 2 diabetes, sepsis, or septic shock and are associated with a high mortality rate in stroke. The primary known function of OPG is to bind to the receptor activator of NF-κB ligand (RANKL), and by doing so, it inhibits the binding between RANKL and its receptor (RANK). TLR4 signaling in macrophages involves TRAF6 recruitment and contributes to low-grade chronic inflammation in adipose tissue. LPS is a classical activator of the TLR4 pathway and induces the expression of inflammatory cytokines in macrophages. We have previously observed that in the presence of RANKL, there is no LPS-induced activation of TLR4 in macrophages. In this study, we investigated the crosstalk between RANK and TLR4 pathways in macrophages stimulated with both RANKL and LPS to unveil the role of OPG in inflammatory processes. We found that RANKL inhibits TLR4 activation by binding to RANK, promoting the binding between TRAF6 and RANK, lowering TLR4 activation and the expression of proinflammatory mediators. Furthermore, high OPG levels aggravate inflammation by inhibiting RANKL. Our findings elect RANKL as a candidate for drug development as a way to mitigate the impact of obesity-induced inflammation in patients.
Collapse
|
8
|
Barber BE, Grigg MJ, Piera KA, Chen Y, William T, Weinberg JB, Yeo TW, Anstey NM. Endothelial glycocalyx degradation and disease severity in Plasmodium vivax and Plasmodium knowlesi malaria. Sci Rep 2021; 11:9741. [PMID: 33963210 PMCID: PMC8105350 DOI: 10.1038/s41598-021-88962-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Degradation of the endothelial glycocalyx is associated with mortality in adult falciparum malaria. However, its role in the pathogenesis of non-falciparum malaria is unknown. In Malaysian patients with knowlesi (n = 200) and vivax (n = 61) malaria, and in healthy controls (n = 50), we measured glycocalyx breakdown products plasma syndecan-1 and urinary glycosaminoglycans, and evaluated correlations with biomarkers of disease severity. Urinary glycosaminoglycans were increased in patients with knowlesi and vivax malaria compared to healthy controls, and in knowlesi malaria were highest in those with severe disease. In knowlesi malaria, plasma syndecan-1 was also highest in those with severe disease, and correlated with markers of endothelial activation (angiopoietin-2, osteoprotegerin, ICAM-1), asymmetric dimethylarginine (ADMA) and impaired microvascular reactivity. Syndecan-1 also correlated with endothelial activation (ICAM-1, angiopoietin-2) and ADMA in vivax malaria. In knowlesi malaria increased syndecan-1 was associated with acute kidney injury, after controlling for age and parasitemia. In knowlesi malaria, the difference in median syndecan-1 between severe and non-severe disease was more marked in females than males. Endothelial glycocalyx degradation is increased in knowlesi and vivax malaria, and associated with disease severity and acute kidney injury in knowlesi malaria. Agents that inhibit glycocalyx breakdown may represent adjunctive therapeutics for severe non-falciparum malaria.
Collapse
Affiliation(s)
- Bridget E. Barber
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, QLD 4006 Australia ,Menzies School of Health Research and Charles Darwin University, Darwin, Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Matthew J. Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Kim A. Piera
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Youwei Chen
- Duke University and V.A. Medical Centre, Durham, USA
| | - Timothy William
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia ,Gleneagles Hospital, Kota Kinabalu, Malaysia
| | | | - Tsin W. Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nicholas M. Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| |
Collapse
|
9
|
Role of Osteoprotegerin as Novel Marker in Urinary Stone Formers: A Pilot Study. Nephrourol Mon 2021. [DOI: 10.5812/numonthly.112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Urinary tract calculus formation can be prevented by identifying molecules and metabolic disturbances that affect this process. Osteoprotegerin (OPG), a cytokine of the TNF receptor superfamily, has been demonstrated to mediate vascular calcification and intimal calcification. Endothelial injury and oxidative stress are known to play a role in urolithiasis in the form of Randall’s plaques. Objectives: The present study aimed to compare 24-h urinary and serum OPG levels of patients with and without urolithiasis. Methods: In this case-control study, 24-h urinary levels of OPG (pg/mL), serum levels of OPG (pg/mL), and creatinine (mg/dL) were measured in both groups. Urinary and serum levels of OPG were determined by enzyme-linked immunosorbent assay (ELISA) using human OPG kits. Results: Mean serum creatinine was 0.86 ± 0.21 mg/dL in the case group and 0.77± 0.16 mg/dL in controls. The difference in the mean serum OPG levels between the cases (227.13 ± 98.02 pg/mL) and controls (47.28 ± 29.61 pg/mL) was highly significant (P value < 0.0001). The difference in the mean 24-h urinary OPG levels between the cases (156.12 ± 174.31 pg/mL) and controls (9.32 ± 23.72 pg/mL) was highly significant (P value < 0.001). Conclusions: There were significantly higher levels of OPG in serum and 24-h urine samples of cases than in controls. Hence, it requires further large studies to make OPG a diagnostic and prognostic marker.
Collapse
|
10
|
Zhu Y, Li J, Li Q, Pang Y. Characterization of lamprey (Lampetra japonica) tnfr10-like gene: A potential granulocyte marker molecule and its immune functions. Mol Immunol 2020; 124:25-34. [PMID: 32497752 DOI: 10.1016/j.molimm.2020.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/29/2022]
Abstract
Tumor necrosis factor receptor superfamily (TNFRSF) is an ancient protein superfamily. By binding to tumor necrosis factor (TNF), it can participate in inflammatory response, apoptosis, lymphocyte homeostasis and tissue development. Seven TNFR members have previously been identified in lampreys but detailed functions of TNFR members are not yet to be resolved. Here, we demonstrate some of the distinguishing features of TNFR10-like member which belongs to TNFRSF. The immunohistochemical results indicate that the TNFR10-like protein is abundant in vascular epithelial cells of the lamprey typhlosole and gills. The expression of tnfr10-like gene has a significantly increased at transcription level after Vibrio anguillarum, Staphylococcus aureus and Poly (I:C) stimulation. Notably, TNFR10-like is specifically expressed in the granulocytes of lamprey peripheral blood and supraneural body. Besides, overexpression tnfr10-like gene in HEK-293 T cells cause a decrease in cell activity and able to activate nuclear transcription factor-κB (NF-κB). Together, these results imply that L-TNFR10-like may play a vital role as a potential marker in lamprey granulocytes and may also be involved in regulation of immune response mediated by itself.
Collapse
Affiliation(s)
- Yigao Zhu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jun Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|