1
|
Price KM, Wigg KG, Feng Y, Blokland K, Wilkinson M, He G, Kerr EN, Carter TC, Guger SL, Lovett MW, Strug LJ, Barr CL. Genome-wide association study of word reading: Overlap with risk genes for neurodevelopmental disorders. GENES BRAIN AND BEHAVIOR 2020; 19:e12648. [PMID: 32108986 DOI: 10.1111/gbb.12648] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 01/28/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Reading disabilities (RD) are the most common neurocognitive disorder, affecting 5% to 17% of children in North America. These children often have comorbid neurodevelopmental/psychiatric disorders, such as attention deficit/hyperactivity disorder (ADHD). The genetics of RD and their overlap with other disorders is incompletely understood. To contribute to this, we performed a genome-wide association study (GWAS) for word reading. Then, using summary statistics from neurodevelopmental/psychiatric disorders, we computed polygenic risk scores (PRS) and used them to predict reading ability in our samples. This enabled us to test the shared aetiology between RD and other disorders. The GWAS consisted of 5.3 million single nucleotide polymorphisms (SNPs) and two samples; a family-based sample recruited for reading difficulties in Toronto (n = 624) and a population-based sample recruited in Philadelphia [Philadelphia Neurodevelopmental Cohort (PNC)] (n = 4430). The Toronto sample SNP-based analysis identified suggestive SNPs (P ~ 5 × 10-7 ) in the ARHGAP23 gene, which is implicated in neuronal migration/axon pathfinding. The PNC gene-based analysis identified significant associations (P < 2.72 × 10-6 ) for LINC00935 and CCNT1, located in the region of the KANSL2/CCNT1/LINC00935/SNORA2B/SNORA34/MIR4701/ADCY6 genes on chromosome 12q, with near significant SNP-based analysis. PRS identified significant overlap between word reading and intelligence (R2 = 0.18, P = 7.25 × 10-181 ), word reading and educational attainment (R2 = 0.07, P = 4.91 × 10-48 ) and word reading and ADHD (R2 = 0.02, P = 8.70 × 10-6 ; threshold for significance = 7.14 × 10-3 ). Overlap was also found between RD and autism spectrum disorder (ASD) as top-ranked genes were previously implicated in autism by rare and copy number variant analyses. These findings support shared risk between word reading, cognitive measures, educational outcomes and neurodevelopmental disorders, including ASD.
Collapse
Affiliation(s)
- Kaitlyn M Price
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Karen G Wigg
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yu Feng
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kirsten Blokland
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Margaret Wilkinson
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gengming He
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth N Kerr
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Tasha-Cate Carter
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Holland Bloorview Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Sharon L Guger
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maureen W Lovett
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Lisa J Strug
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Cathy L Barr
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Gialluisi A, Andlauer TFM, Mirza-Schreiber N, Moll K, Becker J, Hoffmann P, Ludwig KU, Czamara D, St Pourcain B, Brandler W, Honbolygó F, Tóth D, Csépe V, Huguet G, Morris AP, Hulslander J, Willcutt EG, DeFries JC, Olson RK, Smith SD, Pennington BF, Vaessen A, Maurer U, Lyytinen H, Peyrard-Janvid M, Leppänen PHT, Brandeis D, Bonte M, Stein JF, Talcott JB, Fauchereau F, Wilcke A, Francks C, Bourgeron T, Monaco AP, Ramus F, Landerl K, Kere J, Scerri TS, Paracchini S, Fisher SE, Schumacher J, Nöthen MM, Müller-Myhsok B, Schulte-Körne G. Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Transl Psychiatry 2019; 9:77. [PMID: 30741946 PMCID: PMC6370792 DOI: 10.1038/s41398-019-0402-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562-3468). We observed a genome-wide significant effect (p < 1 × 10-8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene; rs17663182 p = 4.73 × 10-9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; rs16928927, p = 2.25 × 10-8). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 × 10-8) and with all the cognitive traits tested (p = 3.07 × 10-8), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p ~ [10-5-10-7]) and negatively associated with ADHD PRS (p ~ [10-8-10-17]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities.
Collapse
Affiliation(s)
- Alessandro Gialluisi
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (Sypartially), Munich, Germany
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Till F M Andlauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (Sypartially), Munich, Germany
| | - Nazanin Mirza-Schreiber
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kristina Moll
- Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilians University, Munich, Germany
| | - Jessica Becker
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - William Brandler
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
| | - Ferenc Honbolygó
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Dénes Tóth
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Valéria Csépe
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Guillaume Huguet
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Andrew P Morris
- Department of Biostatistics, Universiy of Liverpool, Liverpool, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jacqueline Hulslander
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Erik G Willcutt
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - John C DeFries
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Richard K Olson
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Shelley D Smith
- Developmental Neuroscience Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bruce F Pennington
- Developmental Neuropsychology Lab & Clinic, Department of Psychology, University of Denver, Denver, CO, USA
| | - Anniek Vaessen
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience & Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands
| | - Urs Maurer
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Heikki Lyytinen
- Centre for Research on Learning and Teaching, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | | | - Paavo H T Leppänen
- Centre for Research on Learning and Teaching, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Milene Bonte
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience & Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands
| | - John F Stein
- Department of Physiology, University of Oxford, Oxford, UK
| | - Joel B Talcott
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Fabien Fauchereau
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Arndt Wilcke
- Cognitive Genetics Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Tufts University, Medford, MA, USA
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Ecole Normale Supérieure, CNRS, EHESS, PSL Research University, Paris, France
| | - Karin Landerl
- Institute of Psychology, University of Graz, Graz, Austria and BioTechMed, Graz, Austria
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Molecular Medicine Program, Biomedicum, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
- School of Basic and Medical Biosciences, King's College London, London, UK
| | - Thomas S Scerri
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- The Walter and Eliza Hall Institute of Medical Research & Melbourne University, Melbourne, Australia
| | | | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Johannes Schumacher
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
- Munich Cluster for Systems Neurology (Sypartially), Munich, Germany.
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
3
|
Müller B, Wilcke A, Czepezauer I, Ahnert P, Boltze J, Kirsten H. Association, characterisation and meta-analysis of SNPs linked to general reading ability in a German dyslexia case-control cohort. Sci Rep 2016; 6:27901. [PMID: 27312598 PMCID: PMC4911550 DOI: 10.1038/srep27901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/26/2016] [Indexed: 12/25/2022] Open
Abstract
Dyslexia is a severe disorder in the acquisition of reading and writing. Several studies investigated the role of genetics for reading, writing and spelling ability in the general population. However, many of the identified SNPs were not analysed in case-control cohorts. Here, we investigated SNPs previously linked to reading or spelling ability in the general population in a German case-control cohort. Furthermore, we characterised these SNPs for functional relevance with in silico methods and meta-analysed them with previous studies. A total of 16 SNPs within five genes were included. The total number of risk alleles was higher in cases than in controls. Three SNPs were nominally associated with dyslexia: rs7765678 within DCDC2, and rs2038137 and rs6935076 within KIAA0319. The relevance of rs2038137 and rs6935076 was further supported by the meta-analysis. Functional profiling included analysis of tissue-specific expression, annotations for regulatory elements and effects on gene expression levels (eQTLs). Thereby, we found molecular mechanistical implications for 13 of all 16 included SNPs. SNPs associated in our cohort showed stronger gene-specific eQTL effects than non-associated SNPs. In summary, our results validate SNPs previously linked to reading and spelling in the general population in dyslexics and provide insights into their putative molecular pathomechanisms.
Collapse
Affiliation(s)
- Bent Müller
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Arndt Wilcke
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,Translational Centre for Regenerative Medicine (TRM), Leipzig, Germany
| | - Ivonne Czepezauer
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,Fraunhofer Research Institution for Marine Biotechnology, Department of Medical Cell Technology, Lübeck, Germany.,Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | - Holger Kirsten
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,Translational Centre for Regenerative Medicine (TRM), Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
5
|
Field LL, Shumansky K, Ryan J, Truong D, Swiergala E, Kaplan BJ. Dense-map genome scan for dyslexia supports loci at 4q13, 16p12, 17q22; suggests novel locus at 7q36. GENES, BRAIN, AND BEHAVIOR 2013; 12:56-69. [PMID: 23190410 DOI: 10.1111/gbb.12003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/05/2012] [Accepted: 11/15/2012] [Indexed: 11/30/2022]
Abstract
Analysis of genetic linkage to dyslexia was performed using 133,165 array-based SNPs genotyped in 718 persons from 101 dyslexia-affected families. Results showed five linkage peaks with lod scores >2.3 (4q13.1, 7q36.1-q36.2, 7q36.3, 16p12.1, and 17q22). Of these five regions, three have been previously implicated in dyslexia (4q13.1, 16p12.1, and 17q22), three have been implicated in attention-deficit hyperactivity disorder (ADHD, which highly co-occurs with dyslexia; 4q13.1, 7q36.3, 16p12.1) and four have been implicated in autism (a condition characterized by language deficits; 7q36.1-q36.2, 7q36.3, 16p12.1, and 17q22). These results highlight the reproducibility of dyslexia linkage signals, even without formally significant lod scores, and suggest dyslexia predisposing genes with relatively major effects and locus heterogeneity. The largest lod score (2.80) occurred at 17q22 within the MSI2 gene, involved in neuronal stem cell lineage proliferation. Interestingly, the 4q13.1 linkage peak (lod 2.34) occurred immediately upstream of the LPHN3 gene, recently reported both linked and associated with ADHD. Separate analyses of larger pedigrees revealed lods >2.3 at 1-3 regions per family; one family showed strong linkage (lod 2.9) to a known dyslexia locus (18p11) not detected in our overall data, demonstrating the value of analyzing single large pedigrees. Association analysis identified no SNPs with genome-wide significance, although a borderline significant SNP (P = 6 × 10(-7)) occurred at 5q35.1 near FGF18, involved in laminar positioning of cortical neurons during development. We conclude that dyslexia genes with relatively major effects exist, are detectable by linkage analysis despite genetic heterogeneity, and show substantial overlapping predisposition with ADHD and autism.
Collapse
MESH Headings
- Adolescent
- Attention Deficit Disorder with Hyperactivity/genetics
- Autistic Disorder/genetics
- Case-Control Studies
- Child
- Chromosomes, Human, Pair 16
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 4
- Chromosomes, Human, Pair 7
- Dyslexia/genetics
- Female
- Fibroblast Growth Factors/genetics
- Genetic Association Studies
- Genetic Loci
- Genetic Predisposition to Disease
- Genome, Human
- Humans
- Male
- Pedigree
- Physical Chromosome Mapping
- Polymorphism, Single Nucleotide
- RNA-Binding Proteins/genetics
- Receptors, G-Protein-Coupled/genetics
- Receptors, Peptide/genetics
- Transcriptome
Collapse
Affiliation(s)
- L L Field
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|