1
|
Jameson A, Tomlinson J, Medlinskiene K, Howard D, Saeed I, Sohal J, Dalton C, Sagoo GS, Cardno A, Bristow GC, Fylan B, McLean SL. Normalising the Implementation of Pharmacogenomic (PGx) Testing in Adult Mental Health Settings: A Theory-Based Systematic Review. J Pers Med 2024; 14:1032. [PMID: 39452539 PMCID: PMC11508855 DOI: 10.3390/jpm14101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Pharmacogenomic (PGx) testing can help personalise psychiatric prescribing and improve on the currently adopted trial-and-error prescribing approach. However, widespread implementation is yet to occur. Understanding factors influencing implementation is pertinent to the psychiatric PGx field. Normalisation Process Theory (NPT) seeks to understand the work involved during intervention implementation and is used by this review (PROSPERO: CRD42023399926) to explore factors influencing PGx implementation in psychiatry. Four databases were systematically searched for relevant records and assessed for eligibility following PRISMA guidance. The QuADS tool was applied during quality assessment of included records. Using an abductive approach to codebook thematic analysis, barrier and facilitator themes were developed using NPT as a theoretical framework. Twenty-nine records were included in the data synthesis. Key barrier themes included a PGx knowledge gap, a lack of consensus in policy and guidance, and uncertainty towards the use of PGx. Facilitator themes included an interest in PGx use as a new and improved approach to prescribing, a desire for a multidisciplinary approach to PGx implementation, and the importance of fostering a climate for PGx implementation. Using NPT, this novel review systematically summarises the literature in the psychiatric PGx implementation field. The findings highlight a need to develop national policies on using PGx, and an education and training workforce plan for mental health professionals. By understanding factors influencing implementation, the findings help to address the psychiatric PGx implementation gap. This helps move clinical practice closer towards a personalised psychotropic prescribing approach and associated improvements in patient outcomes. Future policy and research should focus on the appraisal of PGx implementation in psychiatry and the role of pharmacists in PGx service design, implementation, and delivery.
Collapse
Affiliation(s)
- Adam Jameson
- Bradford District Care NHS Foundation Trust, Bradford BD18 3LD, UK
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
- Wolfson Centre for Applied Health Research, Bradford BD9 6RJ, UK
| | - Justine Tomlinson
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Kristina Medlinskiene
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
- Pharmacy Department, Hull University Teaching Hospitals NHS Trust, Hull HU3 2JZ, UK
| | - Dane Howard
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
- Leeds Teaching Hospitals NHS Foundation Trust, Leeds LS9 7TF, UK
| | - Imran Saeed
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
- Leeds Teaching Hospitals NHS Foundation Trust, Leeds LS9 7TF, UK
| | - Jaspreet Sohal
- Bradford District Care NHS Foundation Trust, Bradford BD18 3LD, UK
| | - Caroline Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Gurdeep S. Sagoo
- Population Health Sciences Institute, Newcastle University, Newcastle NE2 4HH, UK
| | - Alastair Cardno
- Leeds Institute of Health Sciences, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9LH, UK
| | - Greg C. Bristow
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Beth Fylan
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
- Wolfson Centre for Applied Health Research, Bradford BD9 6RJ, UK
- NIHR Yorkshire & Humber Patient Safety Research Collaboration, Bradford BD9 6RJ, UK
| | - Samantha L. McLean
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
- Wolfson Centre for Applied Health Research, Bradford BD9 6RJ, UK
| |
Collapse
|
2
|
Tesfamicael KG, Zhao L, Fernández-Rodríguez R, Adelson DL, Musker M, Polasek TM, Lewis MD. Efficacy and safety of pharmacogenomic-guided antidepressant prescribing in patients with depression: an umbrella review and updated meta-analysis. Front Psychiatry 2024; 15:1276410. [PMID: 39086729 PMCID: PMC11289719 DOI: 10.3389/fpsyt.2024.1276410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Aim To determine the efficacy and safety of pharmacogenomics (PGx)-guided antidepressant prescribing in patients with depression through an umbrella review and updated meta-analysis. Methods A comprehensive systematic search was conducted on PsycINFO, PubMed, Embase and the Cochrane databases. The pooled effect sizes of randomized controlled trials (RCTs) were expressed as mean differences for continuous data and risk ratios for noncontinuous data. Results Patients who received PGx-guided medications were 41% to 78% more likely to achieve remission and 20% to 49% more likely to respond to antidepressants than patients receiving treatment-as-usual (TAU). Conclusion PGx-guided antidepressant prescribing improves the treatment of depression. However, the significance and magnitude of the benefit varies widely between studies and different PGx testing panels. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022321324.
Collapse
Affiliation(s)
- Kiflu G. Tesfamicael
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Lijun Zhao
- Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | | | - David L. Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael Musker
- Adelaide Nursing School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas M. Polasek
- Centre for Medicine Use and Safety, Monash University, Melbourne, VIC, Australia
| | - Martin David Lewis
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
3
|
Jameson A, Faisal M, Fylan B, Bristow GC, Sohal J, Dalton C, Sagoo GS, Cardno AG, McLean SL. Proportion of Antipsychotics with CYP2D6 Pharmacogenetic (PGx) Associations Prescribed in an Early Intervention in Psychosis (EIP) Cohort: A Cross-Sectional Study. J Psychopharmacol 2024; 38:382-394. [PMID: 38494658 PMCID: PMC11010551 DOI: 10.1177/02698811241238283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Prescribing drugs for psychosis (antipsychotics) is challenging due to high rates of poor treatment outcomes, which are in part explained by an individual's genetics. Pharmacogenomic (PGx) testing can help clinicians tailor the choice or dose of psychosis drugs to an individual's genetics, particularly psychosis drugs with known variable response due to CYP2D6 gene variants ('CYP2D6-PGx antipsychotics'). AIMS This study aims to investigate differences between demographic groups prescribed 'CYP2D6-PGx antipsychotics' and estimate the proportion of patients eligible for PGx testing based on current pharmacogenomics guidance. METHODS A cross-sectional study took place extracting data from 243 patients' medical records to explore psychosis drug prescribing, including drug transitions. Demographic data such as age, sex, ethnicity, and clinical sub-team were collected and summarised. Descriptive statistics explored the proportion of 'CYP2D6-PGx antipsychotic' prescribing and the nature of transitions. We used logistic regression analysis to investigate associations between demographic variables and prescription of 'CYP2D6-PGx antipsychotic' versus 'non-CYP2D6-PGx antipsychotic'. RESULTS Two-thirds (164) of patients had been prescribed a 'CYP2D6-PGx antipsychotic' (aripiprazole, risperidone, haloperidol or zuclopenthixol). Over a fifth (23%) of patients would have met the suggested criteria for PGx testing, following two psychosis drug trials. There were no statistically significant differences between age, sex, or ethnicity in the likelihood of being prescribed a 'CYP2D6-PGx antipsychotic'. CONCLUSIONS This study demonstrated high rates of prescribing 'CYP2D6-PGx-antipsychotics' in an EIP cohort, providing a rationale for further exploration of how PGx testing can be implemented in EIP services to personalise the prescribing of drugs for psychosis.
Collapse
Affiliation(s)
- Adam Jameson
- Bradford District Care NHS Foundation Trust, Bradford, UK
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford, UK
- Wolfson Centre for Applied Health Research, Bradford, UK
| | - Muhammad Faisal
- Wolfson Centre for Applied Health Research, Bradford, UK
- Faculty of Health Studies, University of Bradford, Bradford, UK
- NIHR Yorkshire and Humber Patient Safety Research Collaboration (YH PSRC), Bradford, UK
| | - Beth Fylan
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford, UK
- Wolfson Centre for Applied Health Research, Bradford, UK
- NIHR Yorkshire and Humber Patient Safety Research Collaboration (YH PSRC), Bradford, UK
| | - Greg C Bristow
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford, UK
| | - Jaspreet Sohal
- Bradford District Care NHS Foundation Trust, Bradford, UK
| | - Caroline Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Gurdeep S Sagoo
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alastair G Cardno
- Leeds Institute of Health Sciences, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Samantha L McLean
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford, UK
- Wolfson Centre for Applied Health Research, Bradford, UK
| |
Collapse
|
4
|
Maruf AA, Shields M, Fryza A, Wondrasek A, Leong C, Kowalec K, Bousman C. Knowledge and perceptions of pharmacogenomics among pharmacists in Manitoba, Canada. Pharmacogenomics 2024; 25:175-186. [PMID: 38506345 DOI: 10.2217/pgs-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Objective: This work was designed to describe the knowledge and perceptions of pharmacogenomics (PGx) among pharmacists in the Canadian province of Manitoba. Methods: A 40-item, web-based survey was distributed to pharmacists in Manitoba. Results: Of 74 participants, one third had some education or training in PGx, and 12.2% had used PGx test results in their practice. Participants' self-rated knowledge of PGx testing and common PGx resources (e.g., Pharmacogenomics Knowledge Base, Clinical Pharmacogenetics Implementation Consortium) was low. Most pharmacists surveyed believe that PGx can improve medication efficacy (82.4%) or prevent adverse drug reactions (81.1%). Most (91%) desired more education on PGx. Conclusion: Manitoba pharmacists reported positive perceptions toward PGx. However, they are currently underprepared to implement PGx into practice.
Collapse
Affiliation(s)
- Abdullah Al Maruf
- College of Pharmacy, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Meagan Shields
- Department of Medical Genetics, University of Calgary, Calgary, AB, T2N 4N2, Canada
| | - Amber Fryza
- College of Pharmacy, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada
| | - Amanda Wondrasek
- College of Pharmacy, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada
| | - Christine Leong
- College of Pharmacy, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
- Department of Psychiatry, Max Rady College of Medicine, University of Manitoba, MB, R3E 3N4, Canada
| | - Kaarina Kowalec
- College of Pharmacy, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada
- Department of Medical Epidemiology & Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Chad Bousman
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB, T2N 4N2, Canada
- Departments of Physiology & Pharmacology & Community Health Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
5
|
Wollmann BM, Smith RL, Kringen MK, Ingelman-Sundberg M, Molden E, Størset E. Evidence for solanidine as a dietary CYP2D6 biomarker: Significant correlation with risperidone metabolism. Br J Clin Pharmacol 2024; 90:740-747. [PMID: 36960588 DOI: 10.1111/bcp.15721] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/28/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023] Open
Abstract
AIMS The extensive variability in cytochrome P450 2D6 (CYP2D6) metabolism is mainly caused by genetic polymorphisms. However, there is large, unexplained variability in CYP2D6 metabolism within CYP2D6 genotype subgroups. Solanidine, a dietary compound found in potatoes, is a promising phenotype biomarker predicting individual CYP2D6 metabolism. The aim of this study was to investigate the correlation between solanidine metabolism and the CYP2D6-mediated metabolism of risperidone in patients with known CYP2D6 genotypes. METHODS The study included therapeutic drug monitoring (TDM) data from CYP2D6-genotyped patients treated with risperidone. Risperidone and 9-hydroxyrisperidone levels were determined during TDM, and reprocessing of the respective TDM full-scan high-resolution mass spectrometry files was applied for semi-quantitative measurements of solanidine and five metabolites (M402, M414, M416, M440 and M444). Spearman's tests determined the correlations between solanidine metabolic ratios (MRs) and the 9-hydroxyrisperidone-to-risperidone ratio. RESULTS A total of 229 patients were included. Highly significant, positive correlationswere observed between all solanidine MRs and the 9-hydroxyrisperidone-to-risperidone ratio (ρ > 0.6, P < .0001). The strongest correlation was observed for the M444-to-solanidine MR in patients with functional CYP2D6 metabolism, i.e., genotype activity scores of 1 and 1.5 (ρ 0.72-0.77, P < .0001). CONCLUSION The present study shows strong, positive correlations between solanidine metabolism and CYP2D6-mediated risperidone metabolism. The strong correlation within patients carrying CYP2D6 genotypes encoding functional CYP2D6 metabolism suggests that solanidine metabolism may predict individual CYP2D6 metabolism, and hence potentially improve personalized dosing of drugs metabolized by CYP2D6.
Collapse
Affiliation(s)
| | - Robert L Smith
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marianne Kristiansen Kringen
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- Department of Life Science and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Elisabet Størset
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
6
|
Larrue R, Fellah S, Hennart B, Sabaouni N, Boukrout N, Van der Hauwaert C, Delage C, Cheok M, Perrais M, Cauffiez C, Allorge D, Pottier N. Integrating rare genetic variants into DPYD pharmacogenetic testing may help preventing fluoropyrimidine-induced toxicity. THE PHARMACOGENOMICS JOURNAL 2024; 24:1. [PMID: 38216550 PMCID: PMC10786722 DOI: 10.1038/s41397-023-00322-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
Variability in genes involved in drug pharmacokinetics or drug response can be responsible for suboptimal treatment efficacy or predispose to adverse drug reactions. In addition to common genetic variations, large-scale sequencing studies have uncovered multiple rare genetic variants predicted to cause functional alterations in genes encoding proteins implicated in drug metabolism, transport and response. To understand the functional importance of rare genetic variants in DPYD, a pharmacogene whose alterations can cause severe toxicity in patients exposed to fluoropyrimidine-based regimens, massively parallel sequencing of the exonic regions and flanking splice junctions of the DPYD gene was performed in a series of nearly 3000 patients categorized according to pre-emptive DPD enzyme activity using the dihydrouracil/uracil ([UH2]/[U]) plasma ratio as a surrogate marker of DPD activity. Our results underscore the importance of integrating next-generation sequencing-based pharmacogenomic interpretation into clinical decision making to minimize fluoropyrimidine-based chemotherapy toxicity without altering treatment efficacy.
Collapse
Affiliation(s)
- Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France.
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France.
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Benjamin Hennart
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Naoual Sabaouni
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Nihad Boukrout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Clément Delage
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Meyling Cheok
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Delphine Allorge
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| |
Collapse
|
7
|
Maruf AA, Aziz MA. The Potential Roles of Pharmacists in the Clinical Implementation of Pharmacogenomics. PHARMACY 2023; 11:180. [PMID: 37987390 PMCID: PMC10661263 DOI: 10.3390/pharmacy11060180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
The field of pharmacogenomics is at the forefront of a healthcare revolution, promising to usher in a new era of precision medicine [...].
Collapse
Affiliation(s)
- Abdullah Al Maruf
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E OT5, Canada;
- Bangladesh Pharmacogenomics Research Network (BdPGRN), Dhaka 1219, Bangladesh
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Md. Abdul Aziz
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E OT5, Canada;
- Bangladesh Pharmacogenomics Research Network (BdPGRN), Dhaka 1219, Bangladesh
| |
Collapse
|
8
|
Jamrat S, Sukasem C, Sratthaphut L, Hongkaew Y, Samanchuen T. A precision medicine approach to personalized prescribing using genetic and nongenetic factors for clinical decision-making. Comput Biol Med 2023; 165:107329. [PMID: 37611418 DOI: 10.1016/j.compbiomed.2023.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Screening potential drug-drug interactions, drug-gene interactions, contraindications, and other factors is crucial in clinical practice. However, implementing these screening concepts in real-world settings poses challenges. This work proposes an approach towards precision medicine that combines genetic and nongenetic factors to facilitate clinical decision-making. The approach focuses on raising the performance of four potential interaction screenings in the prescribing process, including drug-drug interactions, drug-gene interactions, drug-herb interactions, drug-social lifestyle interactions, and two potential considerations for patients with liver or renal impairment. The work describes the design of a curated knowledge-based model called the knowledge model for potential interaction and consideration screening, the screening logic for both the detection module and inference module, and the personalized prescribing report. Three case studies have demonstrated the proof-of-concept and effectiveness of this approach. The proposed approach aims to reduce decision-making processes for healthcare professionals, reduce medication-related harm, and enhance treatment effectiveness. Additionally, the recommendation with a semantic network is suggested to assist in risk-benefit analysis when health professionals plan therapeutic interventions with new medicines that have insufficient evidence to establish explicit recommendations. This approach offers a promising solution to implementing precision medicine in clinical practice.
Collapse
Affiliation(s)
- Samart Jamrat
- Technology of Information System Management Division, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand; Artificial Intelligence and Metabolomics Research Group, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center, Ramathibodi Hospital, Bangkok, 10400, Thailand; Bumrungrad Genomic Medicine Institute, Bumrungrad International Hospital, Bangkok, 10110, Thailand
| | - Lawan Sratthaphut
- Artificial Intelligence and Metabolomics Research Group, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand; Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Yaowaluck Hongkaew
- Bumrungrad Genomic Medicine Institute, Bumrungrad International Hospital, Bangkok, 10110, Thailand; Research and Development Laboratory, Bumrungrad International Hospital, Bangkok, 10110, Thailand
| | - Taweesak Samanchuen
- Technology of Information System Management Division, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
9
|
Wollmann BM, Størset E, Kringen MK, Molden E, Smith RL. Prediction of CYP2D6 poor metabolizers by measurements of solanidine and metabolites-a study in 839 patients with known CYP2D6 genotype. Eur J Clin Pharmacol 2023; 79:523-531. [PMID: 36806969 PMCID: PMC10038974 DOI: 10.1007/s00228-023-03462-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/26/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE Poor metabolizers (PMs) of the highly polymorphic enzyme CYP2D6 are usually at high risk of adverse effects during standard recommended dosing of CYP2D6-metabolized drugs. We studied if the metabolism of solanidine, a dietary compound found in potatoes, could serve as a biomarker predicting the CYP2D6 PM phenotype for precision dosing. METHODS The study included 839 CYP2D6-genotyped patients who were randomized by a 4:1 ratio into test or validation cohorts. Full-scan high-resolution mass spectrometry data files of previously analyzed serum samples were reprocessed for identification and quantification of solanidine and seven metabolites. Metabolite-to-solanidine ratios (MRs) of the various solanidine metabolites were calculated prior to performing receiver operator characteristic (ROC) and multiple linear regression analyses on the test cohort. The MR thresholds obtained from the ROC analyses were tested for the prediction of CYP2D6 PMs in the validation cohort. RESULTS In the test cohort, the M414-to-solanidine MR attained the highest sensitivity and specificity parameters from the ROC analyses (0.98 and 1.00) and highest explained variance from the linear models (R2 = 0.68). Below these thresholds, CYP2D6 PM predictions were tested in the validation cohort providing positive and negative predictive values of 100% for the MR of M414, while similar values for the other MRs ranged from 20.5 to 73.3% and 96.7 to 99.3%, respectively. CONCLUSION The M414-to-solanidine MR is an excellent predictor of the CYP2D6 PM phenotype. By measuring solanidine and metabolites using liquid chromatography-mass spectrometry in patient serum samples, CYP2D6 PMs can easily be identified, hence facilitating the implementation of precision dosing in clinical practice.
Collapse
Affiliation(s)
- Birgit M Wollmann
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23 Vinderen, 0319, Oslo, Norway.
| | - Elisabet Størset
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23 Vinderen, 0319, Oslo, Norway
| | - Marianne Kristiansen Kringen
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23 Vinderen, 0319, Oslo, Norway
- Department of Life Science and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23 Vinderen, 0319, Oslo, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Robert L Smith
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23 Vinderen, 0319, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Mostaid MS, Aziz MA, Maisha JA, Islam MS, Maruf AA. A review of pharmacogenetic studies in the Bangladeshi population. Drug Metab Pers Ther 2023:dmdi-2022-0194. [PMID: 36854045 DOI: 10.1515/dmpt-2022-0194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/25/2023] [Indexed: 03/02/2023]
Abstract
Pharmacogenetics (PGx)-guided prescribing is an evidence-based precision medicine strategy. Although the past two decades have reported significant advancements in both the quality and quantity of PGx research studies, they are seldom done in developing countries like Bangladesh. This review identified and summarized PGx studies conducted in the Bangladeshi population by searching PubMed and Google Scholar. Additionally, a quality evaluation of the identified studies was also carried out. Eleven PGx studies were identified that looked at the effects of genetic variants on blood thinners (CYP2C9, VKORC1, and ITGB3), cancer drugs (TPMT, MTHFR, DPYD, ERCC1, GSTP1, XPC, XRCC1, TP53, XPD, and ABCC4), statins (COQ2, CYP2D6, and CYP3A5), and prednisolone (ABCB1, CYP3A5, and NR3C1) in the Bangladeshi population. Most studies were of low to moderate quality. Although the identified studies demonstrated the potential for PGx testing, the limited PGx literature in the Bangladeshi population poses a significant challenge in the widespread implementation of PGx testing in Bangladesh.
Collapse
Affiliation(s)
- Md Shaki Mostaid
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md Abdul Aziz
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Jeba Atkia Maisha
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Mohammad Safiqul Islam
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abdullah Al Maruf
- The Mathison Centre for Mental Health Research & Education, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
11
|
Public Attitudes toward Pharmacogenomic Testing and Establishing a Statewide Pharmacogenomics Database in the State of Minnesota. J Pers Med 2022; 12:jpm12101615. [PMID: 36294754 PMCID: PMC9604616 DOI: 10.3390/jpm12101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022] Open
Abstract
The clinical adoption and implementation of pharmacogenomics (PGx) beyond academic medical centers remains slow, restricting the general population from benefitting from this important component of personalized medicine. As an initial step in the statewide initiative of PGx implementation in Minnesota, we engaged community members and assessed attitudes towards PGx testing and acceptability of establishing a secure statewide PGx database for clinical and research use among Minnesota residents. Data was collected from 808 adult attendees at the 2021 Minnesota State Fair through an electronic survey. Eighty-four percent of respondents felt comfortable getting a PGx test for clinical care. Most respondents trusted health professionals (78.2%) and researchers (73.0%) to keep their PGx data private. The majority expressed their support and interest in participating in a statewide PGx database for clinical and research use (64–72%). Higher acceptability of the statewide PGx database was associated with younger age, higher education, higher health literacy, having health insurance, and prior genetic testing. The study sample representing Minnesota residents expressed high acceptability of receiving PGx testing and willingness to participate in PGx data sharing for clinical and research use. Community support and engagement are needed to advance PGx implementation and research on the state scale.
Collapse
|
12
|
Ho TT, Bell G, Gammal RS, Gregornik D, Wake DT, Dunnenberger HM. A clinician’s guide for counseling patients on results of a multigene pharmacogenomic panel. Am J Health Syst Pharm 2022; 79:1634-1644. [DOI: 10.1093/ajhp/zxac189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Disclaimer
In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.
Purpose
This article explores approaches to pharmacogenomic counseling for patients who have undergone multigene panel testing by describing the collective experience of 5 institutions.
Summary
Multigene panel pharmacogenomic testing has the potential to unlock a myriad of information about a patient’s past, present, and future drug response. The multifaceted nature of drug response coupled with the complexity of genetic results necessitates some form of patient education through pharmacogenomic counseling. Published literature regarding disclosure of pharmacogenomic test results is limited. This article compares the counseling practices of pharmacists from 5 different institutions with pharmacogenomics clinics whose experience represents perspectives ranging from academia to community clinical environments. Overarching counseling themes discussed during result disclosure center around (1) pharmacogenomic results, (2) gene-drug interactions, (3) gene-drug-drug interactions, (4) drug changes (5) future, familial, or disease-risk implications, (6) updates in the interpretation and application of pharmacogenomic results, (7) gauging patient comprehension, and (8) sharing results and supplemental information.
Conclusion
Dedicating time to counseling patients on the results of a multigene pharmacogenomic panel is important given the lifelong applications of a test that is generally performed only once. The content and methods of disclosing test results shared by the experiences of pharmacists at 5 different institutions serve as guide to be further refined as research addresses effective communication strategies that enhance patient comprehension of pharmacogenomic results.
Collapse
Affiliation(s)
- Teresa T Ho
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa , FL, and Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Gillian Bell
- Genetics & Personalized Medicine Department, Mission Health, Asheville, NC, and Genome Medical, South San Francisco , CA, USA
| | | | - David Gregornik
- Department of Pharmacy Practice, Massachusetts College of Pharmacy and Health Sciences, Boston , MA, USA
| | - Dyson T Wake
- Pharmacogenomics Program, Children's Minnesota, Minneapolis , MN, USA
| | | |
Collapse
|
13
|
Maruf AA, Bousman CA. Approaches and hurdles of implementing pharmacogenetic testing in the psychiatric clinic. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2022; 1:e26. [PMID: 38868642 PMCID: PMC11114389 DOI: 10.1002/pcn5.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 06/14/2024]
Abstract
Pharmacogenetic (PGx) testing has emerged as a tool for predicting a person's ability to process and react to drugs. Despite the growing evidence-base, enthusiasm, and successful efforts to implement PGx testing in psychiatry, a consensus on how best to implement PGx testing into practice has not been established and numerous hurdles to widespread adoption remain to be overcome. In this article, we summarize the most used approaches and commonly encountered hurdles when implementing PGx testing into routine psychiatric care. We also highlight effective strategies that have been used to overcome hurdles. These strategies include the development of user-friendly clinical workflows for test ordering, use, and communication of results, establishment of test standardization and reimbursement policies, and development of tailored curriculums for educating health-care providers and the public. Although knowledge and awareness of these approaches and strategies to overcome hurdles alone may not be sufficient for successful implementation, they are necessary to ensure the effective spread, scale, and sustainability of PGx testing in psychiatry and other areas of medicine.
Collapse
Affiliation(s)
- Abdullah Al Maruf
- Rady Faculty of Health Sciences, College of PharmacyUniversity of ManitobaWinnipegManitobaCanada
- Children's Hospital Research Institute of ManitobaWinnipegManitobaCanada
- Centre on AgingUniversity of ManitobaWinnipegManitobaCanada
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Departments of Psychiatry and Physiology & PharmacologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Chad A. Bousman
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Departments of Psychiatry and Physiology & PharmacologyUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical GeneticsUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
14
|
Bousman CA, Oomen A, Jessel CD, Tampi RR, Forester BP, Eyre HA, Lavretsky H, Müller DJ. Perspectives on the Clinical Use of Pharmacogenetic Testing in Late-Life Mental Healthcare: A Survey of the American Association of Geriatric Psychiatry Membership. Am J Geriatr Psychiatry 2022; 30:560-571. [PMID: 34740522 DOI: 10.1016/j.jagp.2021.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To assess perspectives on pharmacogenetic (PGx) testing among members of the American Association of Geriatric Psychiatry (AAGP). DESIGN Cross-sectional survey. PARTICIPANTS Members of the AAGP. MEASUREMENTS Anonymous web-based survey consisting of 41 items covering experiences, indications, barriers, facilitators and ethical, legal and social implications for PGx testing. RESULTS A total of 124 surveys were completed (response rate = 13%). Most respondents (60%) had used PGx testing but an equal proportion (58%) was uncertain about the clinical usefulness of PGx testing in late-life mental health. Despite self-reported confidence in the ability to order and interpret PGx testing, 60% of respondents felt there was not enough clinical evidence for them to use PGx testing in their practice. This was compounded by uncertainties related to their ethical obligation and legal liability when interpreting and using (or not using) PGx testing results. Respondents strongly affirmed that clinical and legal guidelines for PGx testing in older adults are needed and would be helpful. CONCLUSION The findings suggest additional PGx research and physician education in late-life mental healthcare settings is required to reconcile uncertainties related to the clinical efficacy and ethico-legal aspects of PGx testing as well as address current knowledge barriers to testing uptake. These efforts would be further facilitated by the development of clinical practice guidelines to ensure equitable access to testing and standardized implementation of PGx-informed prescribing in older adults.
Collapse
Affiliation(s)
- Chad A Bousman
- Department of Medical Genetics, University of Calgary (CAB), Calgary, AB, Canada; Department of Psychiatry, University of Calgary (CAB), Calgary, AB, Canada; Department of Physiology & Pharmacology, University of Calgary (CAB), Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary (CAB, AO), Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary (CAB, CDJ), Calgary, AB, Canada.
| | - Anita Oomen
- Alberta Children's Hospital Research Institute, University of Calgary (CAB, AO), Calgary, AB, Canada
| | - Chaten D Jessel
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary (CAB, CDJ), Calgary, AB, Canada
| | - Rajesh R Tampi
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University (RRT), Cleveland, OH; Department of Psychiatry, Yale School of Medicine (RRT), New Haven, CT
| | - Brent P Forester
- Division of Geriatric Psychiatry, McLean Hospital (BPF), Belmont, MA; Harvard Medical School (BPF), Boston, MA
| | - Harris A Eyre
- Neuroscience-inspired Policy Initiative, Organisation for Economic Co-Operation and Development (OECD) and PRODEO Institute (HAE), Paris, France; Institute for Mental Health and Physical Health and Clinical Translation (IMPACT), Deakin University (HAE), Geelong, Victoria, Australia; Global Brain Health Institute, University of California, San Francisco and Trinity College Dublin (HAE), Dublin, Ireland; Department of Psychiatry, Baylor College of Medicine (HAE), Houston, TX
| | - Helen Lavretsky
- Department of Psychiatry, Semel Institute for Neuroscience, University of California Los Angeles (HL), Los Angeles, CA
| | - Daniel J Müller
- Department of Psychiatry, University of Toronto (DJM), Toronto, Ontario, Canada; Centre for Addiction and Mental Health, University of Toronto (DJM), Toronto, Ontario, Canada
| |
Collapse
|
15
|
Elchynski AL, Cicali EJ, Ferrer Del Busto MC, Hamilton A, Chang KL, Schmidt SO, Weiner B, Davis R, Estores D, Max Smith D, Wiisanen K, Johnson JA, Cavallari LH. Determining the potential clinical value of panel-based pharmacogenetic testing in patients with chronic pain or gastroesophageal reflux disease. THE PHARMACOGENOMICS JOURNAL 2021; 21:657-663. [PMID: 34075203 PMCID: PMC8605985 DOI: 10.1038/s41397-021-00244-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/31/2022]
Abstract
We aimed to determine the potential value of panel-based pharmacogenetic (PGx) testing in patients with chronic pain or gastroesophageal reflux disease (GERD) who underwent single-gene PGx testing to guide opioid or proton pump inhibitor (PPI) therapy, respectively. Of 448 patients included (chronic pain, n = 337; GERD, n = 111), mean age was 57 years, 68% were female, and 73% were white. Excluding opiates for the pain cohort and PPIs for the GERD cohort, 76.6% of patients with pain and 71.2% with GERD were prescribed at least one additional medication with a high level of PGx evidence, most commonly ondansetron or selective serotonin reuptake inhibitors. The most common genes that could inform PGx drug prescribing were CYP2C19, CYP2D6, CYP2C9, and SLCO1B1. Our findings suggest that patients with chronic pain or GERD are commonly prescribed drugs with a high level of evidence for a PGx-guided approach, supporting panel-based testing in these populations.
Collapse
Affiliation(s)
- Amanda L Elchynski
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Emily J Cicali
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Maria C Ferrer Del Busto
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alessandra Hamilton
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ku-Lang Chang
- Department of Community Health and Family Medicine, College of Medicine University of Florida, Gainesville, FL, USA
| | - Siegfried O Schmidt
- Department of Community Health and Family Medicine, College of Medicine University of Florida, Gainesville, FL, USA
| | - Brian Weiner
- Division of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, FL, USA
- Charles E. Schmidt School of Medicine, Florida Atlantic University, Boca Raton, FL, USA
- Digestive Disease Institute at the Cleveland Clinic, Weston, FL, USA
| | - Richard Davis
- Division of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, FL, USA
| | - David Estores
- Division of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, FL, USA
| | - D Max Smith
- MedStar Health, Columbia, MD, USA
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Kristin Wiisanen
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Larisa H Cavallari
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA.
- Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Mroz P, Michel S, Allen JD, Meyer T, McGonagle EJ, Carpentier R, Vecchia A, Schlichte A, Bishop JR, Dunnenberger HM, Yohe S, Thyagarajan B, Jacobson PA, Johnson SG. Development and Implementation of In-House Pharmacogenomic Testing Program at a Major Academic Health System. Front Genet 2021; 12:712602. [PMID: 34745204 PMCID: PMC8564018 DOI: 10.3389/fgene.2021.712602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Pharmacogenomics (PGx) studies how a person's genes affect the response to medications and is quickly becoming a significant part of precision medicine. The clinical application of PGx principles has consistently been cited as a major opportunity for improving therapeutic outcomes. Several recent studies have demonstrated that most individuals (> 90%) harbor PGx variants that would be clinically actionable if prescribed a medication relevant to that gene. In multiple well-conducted studies, the results of PGx testing have been shown to guide therapy choice and dosing modifications which improve treatment efficacy and reduce the incidence of adverse drug reactions (ADRs). Although the value of PGx testing is evident, its successful implementation in a clinical setting presents a number of challenges to molecular diagnostic laboratories, healthcare systems, providers and patients. Different molecular methods can be applied to identify PGx variants and the design of the assay is therefore extremely important. Once the genotyping results are available the biggest technical challenge lies in turning this complex genetic information into phenotypes and actionable recommendations that a busy clinician can effectively utilize to provide better medical care, in a cost-effective, efficient and reliable manner. In this paper we describe a successful and highly collaborative implementation of the PGx testing program at the University of Minnesota and MHealth Fairview Molecular Diagnostic Laboratory and selected Pharmacies and Clinics. We offer detailed descriptions of the necessary components of the pharmacogenomic testing implementation, the development and technical validation of the in-house SNP based multiplex PCR based assay targeting 20 genes and 48 SNPs as well as a separate CYP2D6 copy number assay along with the process of PGx report design, results of the provider and pharmacists usability studies, and the development of the software tool for genotype-phenotype translation and gene-phenotype-drug CPIC-based recommendations. Finally, we outline the process of developing the clinical workflow that connects the providers with the PGx experts within the Molecular Diagnostic Laboratory and the Pharmacy.
Collapse
Affiliation(s)
- Pawel Mroz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Stephen Michel
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Josiah D Allen
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| | - Tim Meyer
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| | - Erin J McGonagle
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| | | | | | | | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States.,Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Henry M Dunnenberger
- Mark R Neaman Center for Personalized Medicine Center, NorthShore University HealthSystem, Evanston, IL, United States
| | - Sophia Yohe
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| | - Steven G Johnson
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
17
|
Haga SB. Revisiting Secondary Information Related to Pharmacogenetic Testing. Front Genet 2021; 12:741395. [PMID: 34659361 PMCID: PMC8517135 DOI: 10.3389/fgene.2021.741395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Incidental or secondary findings have been a major part of the discussion of genomic medicine research and clinical applications. For pharmacogenetic (PGx) testing, secondary findings arise due to the pleiotropic effects of pharmacogenes, often related to their endogenous functions. Unlike the guidelines that have been developed for whole exome or genome sequencing applications for management of secondary findings (though slightly different from PGx testing in that these refer to detection of variants in multiple genes, some with clinical significance and actionability), no corresponding guidelines have been developed for PGx clinical laboratories. Nonetheless, patient and provider education will remain key components of any PGx testing program to minimize adverse responses related to secondary findings.
Collapse
|
18
|
Luczak T, Brown SJ, Armbruster D, Hundertmark M, Brown J, Stenehjem D. Strategies and settings of clinical pharmacogenetic implementation: a scoping review of pharmacogenetics programs. Pharmacogenomics 2021; 22:345-364. [PMID: 33829852 DOI: 10.2217/pgs-2020-0181] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Pharmacogenetic (PGx) literature has shown beneficial outcomes in safety, efficacy and cost when evidence-based gene-drug decision making is incorporated into clinical practice. PGx programs with successfully implemented clinical services have been published in a variety of settings including academic health centers and community practice. The primary objective was to systematically scope the literature to characterize the current trends, extent, range and nature of clinical PGx programs. Forty articles representing 19 clinical PGx programs were included in analysis. Most programs are in urban, academic institutions. Education, governance and workflow were commonly described while billing/reimbursement and consent were not. This review provides an overview of current PGx models that can be used as a reference for institutions beginning the implementation process.
Collapse
Affiliation(s)
- Tiana Luczak
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, College of Pharmacy, Duluth, MN 55812, USA
- Essentia Health, Duluth, MN 55805, USA
| | - Sarah Jane Brown
- Health Sciences Libraries, University of Minnesota, MN 55455, USA
| | - Danielle Armbruster
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, College of Pharmacy, Duluth, MN 55812, USA
| | - Megan Hundertmark
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, College of Pharmacy, Duluth, MN 55812, USA
| | - Jacob Brown
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, College of Pharmacy, Duluth, MN 55812, USA
| | - David Stenehjem
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, College of Pharmacy, Duluth, MN 55812, USA
| |
Collapse
|
19
|
Liko I, Corbin L, Tobin E, Aquilante CL, Lee YM. Implementation of a pharmacist-provided pharmacogenomics service in an executive health program. Am J Health Syst Pharm 2021; 78:1094-1103. [PMID: 33772264 DOI: 10.1093/ajhp/zxab137] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE We describe the implementation of a pharmacist-provided pharmacogenomics (PGx) service in an executive health program (EHP) at an academic medical center. SUMMARY As interest in genomic testing grows, pharmacists have the opportunity to advance the use of PGx in EHPs, in collaboration with other healthcare professionals. In November 2018, a pharmacist-provided PGx service was established in the EHP at the University of Colorado Hospital. The team members included 3 physicians, a pharmacist trained in PGx, a registered dietitian/exercise physiologist, a nurse, and 2 medical assistants. We conducted 4 preimplementation steps: (1) assessment of the patient population, (2) selection of a PGx test, (3) establishment of a visit structure, and (4) selection of a billing model. The PGx consultations involved two 1-hour visits. The first visit encompassed pretest PGx education, review of the patient's current medications and previous medication intolerances, and DNA sample collection for genotyping. After this visit, the pharmacist developed a therapeutic plan based on the PGx test results, discussed the results and plan with the physician, and created a personalized PGx report. At the second visit, the pharmacist reviewed the PGx test results, personalized the PGx report, and discussed the PGx-guided therapeutic plan with the patient. Overall, the strategy worked well; minor challenges included evaluation of gene-drug pairs with limited PGx evidence, communication of information to non-EHP providers, scheduling issues, and reimbursement. CONCLUSION The addition of a PGx service within an EHP was feasible and provided pharmacists the opportunity to lead PGx efforts and collaborate with physicians to expand the precision medicine footprint at an academic medical center.
Collapse
Affiliation(s)
- Ina Liko
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO,USA
| | - Lisa Corbin
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, CO,USA
| | - Eric Tobin
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO,USA
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO,USA
| | - Yee Ming Lee
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO,USA
| |
Collapse
|
20
|
Bousman CA, Wu P, Aitchison KJ, Cheng T. Sequence2Script: A Web-Based Tool for Translation of Pharmacogenetic Data Into Evidence-Based Prescribing Recommendations. Front Pharmacol 2021; 12:636650. [PMID: 33815120 PMCID: PMC8015939 DOI: 10.3389/fphar.2021.636650] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Pharmacogenomic (PGx) testing has emerged as an effective strategy for informing drug selection and dosing. This has led to an increase in the use of PGx testing in the clinic and has catalyzed the emergence of a burgeoning commercial PGx testing industry. However, not all PGx tests are equivalent in their approach to translating testing results into prescribing recommendations, due to an absence of regulatory standards. As such, those generating and using PGx data require tools for ensuring the prescribing recommendations they are provided align with current peer-reviewed PGx-based prescribing guidelines developed by expert groups or approved product labels. Herein, we present Sequence2Script (sequence2script.com), a simple, free, and transparent web-based tool to assist in the efficient translation of PGx testing results into evidence-based prescribing recommendations. The tool was designed with a wide-range of user groups (e.g., healthcare providers, laboratory staff, researchers) in mind. The tool supports 97 gene-drug pairs with evidence-based prescribing guidelines, allows users to adjust recommendations for concomitant inhibitors and inducers, and generates a clinical report summarizing the patient's genotype, inferred phenotype, phenoconverted phenotype (if applicable), and corresponding prescribing recommendations. In this paper, we describe each of the tool's features, provide use case examples, and discuss limitations of and future development plans for the tool. Although we recognize that Sequecnce2Script may not meet the needs of every user, the hope is that this novel tool will facilitate more standardized use of PGx testing results and reduce barriers to implementing these results into practice.
Collapse
Affiliation(s)
- Chad A Bousman
- Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patrick Wu
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Katherine J Aitchison
- Departments of Psychiatry, Medical Genetics and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Tony Cheng
- Ushiosoft Corporation, Calgary, AB, Canada
| |
Collapse
|
21
|
Ward KM, Taubman DS, Pasternak AL, Burghardt KJ, Ellingrod VL, Parikh SV. Teaching psychiatric pharmacogenomics effectively: Evaluation of a novel interprofessional online course. JOURNAL OF THE AMERICAN COLLEGE OF CLINICAL PHARMACY 2021. [DOI: 10.1002/jac5.1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kristen M. Ward
- Department of Clinical Pharmacy, College of Pharmacy University of Michigan Ann Arbor Michigan USA
| | | | - Amy L. Pasternak
- Department of Clinical Pharmacy, College of Pharmacy University of Michigan Ann Arbor Michigan USA
| | - Kyle J. Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences Wayne State University Detroit Michigan USA
| | - Vicki L. Ellingrod
- Department of Clinical Pharmacy, College of Pharmacy University of Michigan Ann Arbor Michigan USA
- Department of Psychiatry, School of Medicine University of Michigan Ann Arbor Michigan USA
| | - Sagar V. Parikh
- Department of Psychiatry University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
22
|
Stevenson JM, Alexander GC, Palamuttam N, Mehta HB. Projected Utility of Pharmacogenomic Testing Among Individuals Hospitalized With COVID-19: A Retrospective Multicenter Study in the United States. Clin Transl Sci 2021; 14:153-162. [PMID: 33085221 PMCID: PMC7877860 DOI: 10.1111/cts.12919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 12/24/2022] Open
Abstract
Many academic institutions are collecting blood samples from patients seeking treatment for coronavirus disease 2019 (COVID-19) to build research biorepositories. It may be feasible to extract pharmacogenomic (PGx) information from biorepositories for clinical use. We sought to characterize the potential value of multigene PGx testing among individuals hospitalized with COVID-19 in the United States. We performed a cross-sectional analysis of electronic health records from consecutive individuals hospitalized with COVID-19 at a large, urban academic health system. We characterized medication orders, focusing on medications with actionable PGx guidance related to 14 commonly assayed genes (CYP2C19, CYP2C9, CYP2D6, CYP3A5, DPYD, G6PD, HLA-A, HLA-B, IFNL3, NUDT15, SLCO1B1, TPMT, UGT1A1, and VKORC1). A simulation analysis combined medication data with population phenotype frequencies to estimate how many treatment modifications would be enabled if multigene PGx results were available. Sixty-four unique medications with PGx guidance were ordered at least once in the cohort (n = 1,852, mean age 60.1 years). Nearly nine in 10 individuals (89.7%) had at least one order for a medication with PGx guidance and 427 patients (23.1%) had orders for 4 or more actionable medications. Using a simulation, we estimated that 17 treatment modifications per 100 patients would be enabled if PGx results were available. The genes CYP2D6 and CYP2C19 were responsible for the majority of treatment modifications, and the medications most often affected were ondansetron, oxycodone, and clopidogrel. PGx results would be relevant for nearly all individuals hospitalized with COVID-19 and would provide the opportunity to improve clinical care.
Collapse
Affiliation(s)
- James M. Stevenson
- Division of Clinical PharmacologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - G. Caleb Alexander
- Center for Drug Safety and EffectivenessJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Division of General Internal MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Natasha Palamuttam
- Division of Health Sciences InformaticsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hemalkumar B. Mehta
- Center for Drug Safety and EffectivenessJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| |
Collapse
|
23
|
Johengen EK, Ward KM, Coe AB, Pasternak AL. Assessing the knowledge, perceptions, and practices of primary care clinicians toward pharmacogenetics. JOURNAL OF THE AMERICAN COLLEGE OF CLINICAL PHARMACY 2021; 4:27-32. [PMID: 39830081 PMCID: PMC11741676 DOI: 10.1002/jac5.1341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/18/2020] [Indexed: 11/09/2022]
Abstract
Introduction Pharmacogenetics (PGx) testing is becoming increasingly available to patients and clinicians, but investigations of PGx testing in primary care and the pharmacist's role in educating clinicians have been limited. Objectives The objectives of this study were to: (a) determine the utilization of PGx testing in primary care clinics, (b) identify how clinicians document and act on PGx test results, and (c) determine clinician interest in PGx education or consultation from pharmacists. Methods A 16-item survey was distributed via email. Eligible participants included physicians, physician assistants, nurse practitioners, and pharmacists who work in family medicine, general medicine, geriatric, or pediatric primary care clinics at one academic medical center. Descriptive statistics were used to characterize the frequency of PGx tests ordered in primary care clinics, provider comfort with PGx test interpretation, documentation practices, and interest in PGx education or consultation from pharmacists. Results The overall survey response rate was 15.8% (n = 55). Most respondents were physicians (84%). Nearly 40% of respondents reported having a patient bring PGx test results to a visit, while only 9% reported ordering a PGx test. Documentation practices were variable, and response to PGx results was most commonly no change in therapy (52%). Only two (3.6%) respondents agreed with the statement, "I feel confident in my ability to interpret PGx test results," and the majority reported interest in PGx education. Eighty percent of respondents reported they would be likely or very likely to consult a PGx-trained pharmacist for help interpreting PGx results. Discussion Clinicians in this survey were more likely to have patients bring in results than to order PGx tests, did not feel confident in result interpretation, and expressed interest in working with pharmacists for PGx test interpretation. This research can help guide the development of PGx-focused pharmacy services and education for clinicians who are encountering PGx testing in their practice.
Collapse
Affiliation(s)
| | - Kristen M. Ward
- Michigan Medicine, Ann Arbor, Michigan
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Antoinette B. Coe
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Amy L. Pasternak
- Michigan Medicine, Ann Arbor, Michigan
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| |
Collapse
|
24
|
Malsagova KA, Butkova TV, Kopylov AT, Izotov AA, Potoldykova NV, Enikeev DV, Grigoryan V, Tarasov A, Stepanov AA, Kaysheva AL. Pharmacogenetic Testing: A Tool for Personalized Drug Therapy Optimization. Pharmaceutics 2020; 12:E1240. [PMID: 33352764 PMCID: PMC7765968 DOI: 10.3390/pharmaceutics12121240] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Pharmacogenomics is a study of how the genome background is associated with drug resistance and how therapy strategy can be modified for a certain person to achieve benefit. The pharmacogenomics (PGx) testing becomes of great opportunity for physicians to make the proper decision regarding each non-trivial patient that does not respond to therapy. Although pharmacogenomics has become of growing interest to the healthcare market during the past five to ten years the exact mechanisms linking the genetic polymorphisms and observable responses to drug therapy are not always clear. Therefore, the success of PGx testing depends on the physician's ability to understand the obtained results in a standardized way for each particular patient. The review aims to lead the reader through the general conception of PGx and related issues of PGx testing efficiency, personal data security, and health safety at a current clinical level.
Collapse
Affiliation(s)
- Kristina A. Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (T.V.B.); (A.T.K.); (A.A.I.); (A.A.S.); (A.L.K.)
| | - Tatyana V. Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (T.V.B.); (A.T.K.); (A.A.I.); (A.A.S.); (A.L.K.)
| | - Arthur T. Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (T.V.B.); (A.T.K.); (A.A.I.); (A.A.S.); (A.L.K.)
| | - Alexander A. Izotov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (T.V.B.); (A.T.K.); (A.A.I.); (A.A.S.); (A.L.K.)
| | - Natalia V. Potoldykova
- Institute of Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (N.V.P.); (D.V.E.); (V.G.)
| | - Dmitry V. Enikeev
- Institute of Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (N.V.P.); (D.V.E.); (V.G.)
| | - Vagarshak Grigoryan
- Institute of Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (N.V.P.); (D.V.E.); (V.G.)
| | - Alexander Tarasov
- Institute of Linguistics and Intercultural Communication, Sechenov University, 119992 Moscow, Russia;
| | - Alexander A. Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (T.V.B.); (A.T.K.); (A.A.I.); (A.A.S.); (A.L.K.)
| | - Anna L. Kaysheva
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (T.V.B.); (A.T.K.); (A.A.I.); (A.A.S.); (A.L.K.)
| |
Collapse
|
25
|
Bousman CA, Bengesser SA, Aitchison KJ, Amare AT, Aschauer H, Baune BT, Asl BB, Bishop JR, Burmeister M, Chaumette B, Chen LS, Cordner ZA, Deckert J, Degenhardt F, DeLisi LE, Folkersen L, Kennedy JL, Klein TE, McClay JL, McMahon FJ, Musil R, Saccone NL, Sangkuhl K, Stowe RM, Tan EC, Tiwari AK, Zai CC, Zai G, Zhang J, Gaedigk A, Müller DJ. Review and Consensus on Pharmacogenomic Testing in
Psychiatry. PHARMACOPSYCHIATRY 2020; 54:5-17. [DOI: 10.1055/a-1288-1061] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractThe implementation of pharmacogenomic (PGx) testing in psychiatry remains modest,
in part due to divergent perceptions of the quality and completeness of the
evidence base and diverse perspectives on the clinical utility of PGx testing
among psychiatrists and other healthcare providers. Recognizing the current lack
of consensus within the field, the International Society of Psychiatric Genetics
assembled a group of experts to conduct a narrative synthesis of the PGx
literature, prescribing guidelines, and product labels related to psychotropic
medications as well as the key considerations and limitations related to the use
of PGx testing in psychiatry. The group concluded that to inform medication
selection and dosing of several commonly-used antidepressant and antipsychotic
medications, current published evidence, prescribing guidelines, and product
labels support the use of PGx testing for 2 cytochrome P450 genes (CYP2D6,
CYP2C19). In addition, the evidence supports testing for human leukocyte
antigen genes when using the mood stabilizers carbamazepine (HLA-A and
HLA-B), oxcarbazepine (HLA-B), and phenytoin (CYP2C9, HLA-B). For
valproate, screening for variants in certain genes (POLG, OTC, CSP1) is
recommended when a mitochondrial disorder or a urea cycle disorder is suspected.
Although barriers to implementing PGx testing remain to be fully resolved, the
current trajectory of discovery and innovation in the field suggests these
barriers will be overcome and testing will become an important tool in
psychiatry.
Collapse
Affiliation(s)
- Chad A. Bousman
- Departments of Medical Genetics, Psychiatry, Physiology &
Pharmacology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of
Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB,
Canada
- Department of Psychiatry, Melbourne Medical School, The University of
Melbourne, Melbourne, VIC, Australia
| | - Susanne A. Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical
University of Graz, Austria
| | - Katherine J. Aitchison
- Departments of Psychiatry, Medical Genetics and the Neuroscience and
Mental Health Institute, University of Alberta, Edmonton, AB,
Canada
| | - Azmeraw T. Amare
- Discipline of Psychiatry, School of Medicine, University of Adelaide,
Adelaide, SA, Australia
- South Australian Health and Medical Research Institute (SAHMRI),
Adelaide, SA, Australia
| | - Harald Aschauer
- Biopsychosocial Corporation (BioPsyC), non-profit association, Vienna,
Austria
| | - Bernhard T. Baune
- Department of Psychiatry and Psychotherapy, University of
Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of
Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University
of Melbourne, Parkville, VIC, Australia
| | - Bahareh Behroozi Asl
- Departments of Psychiatry, Medical Genetics and the Neuroscience and
Mental Health Institute, University of Alberta, Edmonton, AB,
Canada
| | - Jeffrey R. Bishop
- Department of Experimental and Clinical Pharmacology, University of
Minnesota College of Pharmacy and Department of Psychiatry, University of
Minnesota Medical School, Minneapolis, MN, USA
| | - Margit Burmeister
- Michigan Neuroscience Institute and Departments of Computational
Medicine & Bioinformatics, Human Genetics and Psychiatry, The University
of Michigan, Ann Arbor MI, USA
| | - Boris Chaumette
- Institute of Psychiatry and Neuroscience of Paris, GHU Paris
Psychiatrie & Neurosciences, University of Paris, Paris,
France
- Department of Psychiatry, McGill University, Montreal,
Canada
| | - Li-Shiun Chen
- Departments of Psychiatry and Genetics, Washington University School of
Medicine in St. Louis, USA
| | - Zachary A. Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins
University School of Medicine, Baltimore, MD, USA
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of
Mental Health, Würzburg, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine
& University Hospital Bonn, Bonn, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and
Psychotherapy, University Hospital Essen, University of Duisburg-Essen,
Duisburg, Germany
| | - Lynn E. DeLisi
- Department of Psychiatry, Harvard Medical School, Cambridge Health
Alliance, Cambridge, Massachusetts, USA
| | - Lasse Folkersen
- Institute of Biological Psychiatry, Capital Region Hospitals,
Copenhagen, Denmark
| | - James L. Kennedy
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford,
California, USA
| | - Joseph L. McClay
- Department of Pharmacotherapy and Outcome Science, Virginia
Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Francis J. McMahon
- Human Genetics Branch, National Institute of Mental Health, Bethesda,
MD, USA
| | - Richard Musil
- Department of Psychiatry and Psychotherapy,
Ludwig-Maximilians-University, Munich, Germany
| | - Nancy L. Saccone
- Departments of Psychiatry and Genetics, Washington University School of
Medicine in St. Louis, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford,
California, USA
| | - Robert M. Stowe
- Departments of Psychiatry and Neurology (Medicine), University of
British Columbia, USA
| | - Ene-Choo Tan
- KK Research Centre, KK Women’s and Children’s Hospital,
Singapore, Singapore
| | - Arun K. Tiwari
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| | - Clement C. Zai
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| | - Gwyneth Zai
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| | - Jianping Zhang
- Department of Psychiatry, Weill Cornell Medical College, New
York-Presbyterian Westchester Division, White Plains, NY, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic
Innovation, Children’s Mercy Kansas City, Kansas City and School of
Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Daniel J Müller
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| |
Collapse
|
26
|
Establishment of a Pharmacogenetics Service Focused on Optimizing Existing Pharmacogenetic Testing at a Large Academic Health Center. J Pers Med 2020; 10:jpm10040154. [PMID: 33023029 PMCID: PMC7711716 DOI: 10.3390/jpm10040154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 01/20/2023] Open
Abstract
Multiple groups have described strategies for clinical implementation of pharmacogenetics (PGx) that often include internal laboratory tests that are specifically developed for their implementation needs. However, many institutions are not able to follow this practice and instead must utilize external laboratories to obtain PGx testing results. As each external laboratory might have different ordering and reporting workflows, consistent reporting and storing of PGx results within the medical record can be a challenge. This might result in patient safety concerns as important PGx information might not be easily identifiable at the point of current or future prescribing. Herein, we describe initial PGx clinical implementation efforts at a large academic medical center, focusing on optimizing three different test ordering workflows and two distinct result reporting strategies. From this, we identified common issues such as variable reporting location and structure of PGx results, as well as duplicate PGx testing. We identified several opportunities to optimize our current processes, including—(1) PGx laboratory stewardship, (2) increasing visibility of PGx tests, and (3) clinician and patient education. Key to the success was the importance of engaging clinician, informatics, and pathology stakeholders, as we developed interventions to improve our PGX implementation processes.
Collapse
|
27
|
Lunenburg CATC, Gasse C. Pharmacogenetics in psychiatric care, a call for uptake of available applications. Psychiatry Res 2020; 292:113336. [PMID: 32739644 DOI: 10.1016/j.psychres.2020.113336] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/27/2022]
Abstract
In this narrative, we evaluate the role of pharmacogenetics in psychiatry from a pragmatic clinical perspective and address current barriers of clinical implementation of pharmacogenetics. Pharmacogenetics has been successfully implemented to improve drug therapy in several clinical areas, but not psychiatry. Yet, psychotropics account for more than one-third of the drugs for which pharmacogenetic guidelines are available and drug therapy in mental disorders is suboptimal with insufficient effectiveness and frequent adverse events. The limited application of pharmacogenetics in psychiatry is influenced by several factors; e.g. the complexity of psychotropic drug metabolism, possibly impeding the clinical understanding of the benefits of pharmacogenetics. Also, recommendations for most psychotropics classify pharmacogenetic testing only as (potentially) beneficial, not as essential, possibly because life-threatening adverse events are often not involved in these drug-gene interactions. Implementing pharmacogenetics in psychiatry could improve the current practice of time-consuming switching of therapies causing undue delays associated with worse outcomes. We expect pharmacogenetics in psychiatry to expedite with panel-based genotyping, including clinically relevant variants, which will address the complex enzymatic metabolism of psychotropic drugs. Until then, we stress that available pharmacogenetic testing should be seen as an integrated companion, not a competitor, in current clinical psychiatric care.
Collapse
Affiliation(s)
- Carin A T C Lunenburg
- Department of Affective Disorders, Aarhus University Hospital Psychiatry, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Christiane Gasse
- Department of Affective Disorders, Aarhus University Hospital Psychiatry, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| |
Collapse
|
28
|
Deininger KM, Tsunoda SM, Hirsch JD, Anderson H, Lee YM, McIlvennan CK, Page RL, Tran JN, Aquilante CL. National survey of physicians' perspectives on pharmacogenetic testing in solid organ transplantation. Clin Transplant 2020; 34:e14037. [PMID: 32654213 DOI: 10.1111/ctr.14037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Our objective was to evaluate physicians' perspectives on the clinical utility of pharmacogenetic (PGx) testing in kidney, liver, heart, and lung transplantation (KLHL-Tx). METHODS A 36-question web-based survey was developed and administered to medical and surgical directors of US KLHL-Tx centers. RESULTS There were 82 respondents (10% response rate). The majority were men (78%), non-Hispanic whites (70%), medical directors (72%), and kidney transplant physicians (35%). Although 78% of respondents reported having some PGx education, most reported lack of confidence in their PGx knowledge and ability to apply a PGx test. Participants reported mixed views about the clinical utility of PGx testing-most agreed with the efficacy of PGx testing, but not the benefits relative to the risks or standard of care. While 55% reported that testing was available at their institution, only 38% ordered a PGx test in the past year, most commonly thiopurine-S-methyltransferase. Physician-reported barriers to PGx implementation included uncertainty about the clinical value of PGx testing and patient financial burden. CONCLUSION Together, our findings suggest prospective PGx research and pilot implementation programs are needed to elucidate the clinical utility and value of PGx in KLHL-Tx. These initiatives should include educational efforts to inform the use of PGx testing.
Collapse
Affiliation(s)
- Kimberly M Deininger
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Shirley M Tsunoda
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Jan D Hirsch
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Heather Anderson
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Yee Ming Lee
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Colleen K McIlvennan
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, University of Colorado School of Medicine, Aurora, CO, USA.,Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robert L Page
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Jacinda N Tran
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Christina L Aquilante
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| |
Collapse
|
29
|
Maruf AA, Fan M, Arnold PD, Müller DJ, Aitchison KJ, Bousman CA. Pharmacogenetic Testing Options Relevant to Psychiatry in Canada: Options de tests pharmacogénétiques pertinents en psychiatrie au Canada. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2020; 65:521-530. [PMID: 32064906 PMCID: PMC7492886 DOI: 10.1177/0706743720904820] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To identify and assess pharmacogenetic testing options relevant to psychiatry in Canada. METHOD Searches of published literature, websites, and Standard Council of Canada's Laboratory Directory were conducted to identify pharmacogenetic tests available in Canada. Identified tests were assessed on 8 key questions related to analytical validity, accessibility, test ordering, delivery of test results, turnaround time, cost, clinical trial evidence, and gene/allele content. RESULTS A total of 13 pharmacogenetic tests relevant to psychiatry in Canada were identified. All tests were highly accessible, and most were conducted in accredited laboratories. Both direct-to-consumer and clinician-gated testing were identified, with turnaround times and cost ranging from 2 to 40 days and CAD$199 to CAD$2310, respectively. Two tests were supported by randomized controlled trials. All tests met minimum gene and allele panel recommendations for psychiatry, but no 2 panels were identical. No test was unequivocally superior to all other tests. CONCLUSIONS Pharmacogenetic testing in Canada is readily available but highly variable in terms of ordering procedures, delivery of results, turnaround times, cost, and gene/allele content. As such, it is important for psychiatrists and other health-care providers to understand the differences between the available tests to ensure appropriate selection and implementation within their practice.
Collapse
Affiliation(s)
- Abdullah Al Maruf
- The Mathison Centre for Mental Health Research & Education,
Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,
Alberta, Canada
- Department of Psychiatry, University of Calgary, Alberta,
Canada
| | - Mikayla Fan
- Cumming School of Medicine, University of Calgary, Alberta,
Canada
| | - Paul D. Arnold
- The Mathison Centre for Mental Health Research & Education,
Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,
Alberta, Canada
- Department of Psychiatry, University of Calgary, Alberta,
Canada
- Department of Medical Genetics, University of Calgary, Alberta,
Canada
| | - Daniel J. Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health
Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario,
Canada
- Department of Psychiatry, University of Toronto, Ontario,
Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, Alberta,
Canada
- Department of Medical Genetics, University of Alberta, Edmonton,
Alberta, Canada
| | - Chad A. Bousman
- The Mathison Centre for Mental Health Research & Education,
Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,
Alberta, Canada
- Department of Psychiatry, University of Calgary, Alberta,
Canada
- Department of Medical Genetics, University of Calgary, Alberta,
Canada
- Department of Physiology and Pharmacology, University of Calgary,
Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of
Calgary, Alberta, Canada
- Chad A. Bousman, MPH, PhD, Department of
Medical Genetics, University of Calgary, 270 HMRB, 3330 Hospital Drive NW,
Calgary, Alberta, Canada T2N 4N1.
| |
Collapse
|
30
|
Chan SL, Liew HZW, Nguyen F, Thumboo J, Chow WC, Sung C. Prescription patterns of outpatients and the potential of multiplexed pharmacogenomic testing. Br J Clin Pharmacol 2020; 87:886-894. [PMID: 32559336 DOI: 10.1111/bcp.14439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Pre-emptive pharmacogenomic (PGx) testing is potentially an efficient approach to improve drug safety and efficacy but the target population to test is unclear. OBJECTIVES We aim to describe the prescription pattern of PGx drugs among adult medical outpatients. METHODS We estimated the 5-year cumulative incidence (CI) for receiving three groups of PGx drugs using competing risks analysis: (i) all PGx drugs, (ii) PGx drugs with guidelines and (iii) PGx drugs with serious clinical effects. Comparisons of CIs were also done by patient characteristics using Gray's test. RESULTS The 5-year CIs of receiving any new PGx drug, PGx drug with guidelines and serious clinical effects were 42.6%, 37.3% and 13.7%, respectively. The 5-year CI of receiving any new PGx drug was higher for patients >40 years old (43.6% vs ≤40 years old 36.0%, P < 2.2 × 10-22 ), Malays and Indians (50.3% and 49.8% vs Chinese 31.1%, P < 2.2 × 10-22 ), those who attended one of the following four specialties at the index visit compared to other specialties (infectious diseases [46.2% vs 42.6%, P = 2.9 × 10-4 ], psychiatry [48.3% vs 42.3%, P = 7.4 × 10-13 ], renal [49.8% vs 40.9%, P < 2.2 × 10-22 ], and rheumatology and immunology [54.8% vs 41.7%, P < 2.2 × 10-22 ]) and those prescribed ≥5 drugs at index visit (51.7% vs 0-4 drugs 41.7%, P < 2.2 × 10-22 ). CONCLUSIONS Medical outpatients have a substantial probability of benefiting from pre-emptive PGx testing and this is higher in certain subgroups of patients.
Collapse
Affiliation(s)
- Sze Ling Chan
- Health Services Research Centre, SingHealth, Singapore
| | | | | | - Julian Thumboo
- Department of Rheumatology and Immunology and Health Services Research Unit, Singapore General Hospital, Singapore
| | - Wan Cheng Chow
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore
| | - Cynthia Sung
- Health Services and Systems Research, Duke-NUS Medical School, Singapore
| |
Collapse
|
31
|
Nagy M, Lynch M, Kamal S, Mohamed S, Hadad A, Abouelnaga S, Aquilante CL. Assessment of healthcare professionals' knowledge, attitudes, and perceived challenges of clinical pharmacogenetic testing in Egypt. Per Med 2020; 17:251-260. [PMID: 32589096 DOI: 10.2217/pme-2019-0163] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aim: We evaluated healthcare practitioners' perspectives regarding clinical pharmacogenetics in Cairo, Egypt. Materials & methods: We administered a paper-based survey to pharmacists and physicians practicing at Children's Cancer Hospital Egypt. The survey assessed practitioners' knowledge, attitudes, and perspectives about pharmacogenetic testing. Results: The study included 184 respondents (67.9% pharmacists; 32.1% physicians. Overall, the pharmacogenetic knowledge was low (mean = 41.7%) but attitudes toward pharmacogenetic testing and its potential clinical application were generally positive. Pharmacists responded more favorably than physicians to statements attributing the responsibility of applying pharmacogenetics in the clinical setting to their profession. However, several challenges were identified; the most common being: lack of pharmacogenetic knowledge and skill, lack of pharmacogenetic testing devices, and limited funding. Conclusion: Future efforts to promote pharmacogenetic implementation should focus on foundational education, practical training, and exploration of potential funding sources.
Collapse
Affiliation(s)
- Mohamed Nagy
- Children's Cancer Hospital Egypt, 57357, Cairo, Egypt
| | - Meghan Lynch
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy & Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Sherif Kamal
- Children's Cancer Hospital Egypt, 57357, Cairo, Egypt
| | - Sarah Mohamed
- Children's Cancer Hospital Egypt, 57357, Cairo, Egypt
| | - Alaa Hadad
- Children's Cancer Hospital Egypt, 57357, Cairo, Egypt
| | | | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy & Pharmaceutical Sciences, Aurora, CO 80045, USA
| |
Collapse
|
32
|
Anderson DW, Bousman CA, Chapman K. Engaging in building the educational support needed to deliver precision health in Canada. Healthc Manage Forum 2020; 33:135-139. [PMID: 31797694 DOI: 10.1177/0840470419890632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Canadian healthcare facilities are poised to benefit from the tools of precision health. To do so effectively, however, it is crucial that we align changes in how healthcare professionals are educated in order to ensure they have the skills, knowledge, and training to fully engage with its tools. Here, we propose that the design, development, and delivery of novel educational programs focused on precision health should be prioritized for healthcare professionals, and we suggest some essential curricular considerations to that end. Additionally, it is crucial to see engagement on the part of health leaders, who will ultimately be most responsible for managing the changing needs of frontline staff as the tools of precision health become increasingly available. By engaging directly with educators in establishing new programs for precision health, we can ensure that its promise is fully for healthcare facilities, practitioners, and patients.
Collapse
Affiliation(s)
- Dave W Anderson
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Chad A Bousman
- Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
33
|
Smith DM, Peshkin BN, Springfield TB, Brown RP, Hwang E, Kmiecik S, Shapiro R, Eldadah Z, Lundergan C, McAlduff J, Levin B, Swain SM. Pharmacogenetics in Practice: Estimating the Clinical Actionability of Pharmacogenetic Testing in Perioperative and Ambulatory Settings. Clin Transl Sci 2020; 13:618-627. [PMID: 31961467 PMCID: PMC7214646 DOI: 10.1111/cts.12748] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/17/2019] [Indexed: 01/04/2023] Open
Abstract
Most literature describing pharmacogenetic implementations are within academic medical centers and use single-gene tests. Our objective was to describe the results and lessons learned from a multisite pharmacogenetic pilot that utilized panel-based testing in academic and nonacademic settings. This was a retrospective analysis of 667 patients from a pilot in 4 perioperative and 5 outpatient cardiology clinics. Recommendations related to 12 genes and 65 drugs were classified as actionable or not actionable. They were ascertained from Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines and US Food and Drug Administration (FDA) labeling. Patients displayed a high prevalence of actionable results (88%, 99%) and use of medications (28%, 46%) with FDA or CPIC recommendations, respectively. Sixteen percent of patients had an actionable result for a current medication per CPIC compared with 5% per FDA labeling. A systematic approach by a health system may be beneficial given the quantity and diversity of patients affected.
Collapse
Affiliation(s)
- D. Max Smith
- MedStar HealthColumbiaMarylandUSA
- Georgetown University Medical CenterWashingtonDCUSA
| | | | | | | | | | | | | | - Zayd Eldadah
- MedStar Washington Hospital CenterWashingtonDCUSA
| | | | | | | | - Sandra M. Swain
- MedStar HealthColumbiaMarylandUSA
- Georgetown University Medical CenterWashingtonDCUSA
| |
Collapse
|
34
|
Haga SB. Pharmacogenomic Testing In Pediatrics: Navigating The Ethical, Social, And Legal Challenges. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:273-285. [PMID: 31686893 PMCID: PMC6800463 DOI: 10.2147/pgpm.s179172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Abstract
For the past several years, the implementation of pharmacogenetic (PGx) testing has become widespread in several centers and clinical practice settings. PGx testing may be ordered at the point-of-care when treatment is needed or in advance of treatment for future use. The potential benefits of PGx testing are not limited to adult patients, as children are increasingly using medications more often and at earlier ages. This review provides some background on the use of PGx testing in children as well as mothers (prenatally and post-natally) and discusses the challenges, benefits, and the ethical, legal, and social implications of providing PGx testing to children.
Collapse
Affiliation(s)
- Susanne B Haga
- Department of Medicine, Division of General Internal Medicine, Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, 27708, USA
| |
Collapse
|
35
|
Weitzel KW, Duong BQ, Arwood MJ, Owusu-Obeng A, Abul-Husn NS, Bernhardt BA, Decker B, Denny JC, Dietrich E, Gums J, Madden EB, Pollin TI, Wu RR, Haga SB, Horowitz CR. A stepwise approach to implementing pharmacogenetic testing in the primary care setting. Pharmacogenomics 2019; 20:1103-1112. [PMID: 31588877 PMCID: PMC6854439 DOI: 10.2217/pgs-2019-0053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/29/2019] [Indexed: 01/12/2023] Open
Abstract
Pharmacogenetic testing can help identify primary care patients at increased risk for medication toxicity, poor response or treatment failure and inform drug therapy. While testing availability is increasing, providers are unprepared to routinely use pharmacogenetic testing for clinical decision-making. Practice-based resources are needed to overcome implementation barriers for pharmacogenetic testing in primary care.The NHGRI's IGNITE I Network (Implementing GeNomics In pracTicE; www.ignite-genomics.org) explored practice models, challenges and implementation barriers for clinical pharmacogenomics. Based on these experiences, we present a stepwise approach pharmacogenetic testing in primary care: patient identification; pharmacogenetic test ordering; interpretation and application of test results, and patient education. We present clinical factors to consider, test-ordering processes and resources, and provide guidance to apply test results and counsel patients. Practice-based resources such as this stepwise approach to clinical decision-making are important resources to equip primary care providers to use pharmacogenetic testing.
Collapse
Affiliation(s)
- Kristin Wiisanen Weitzel
- Department of Pharmacotherapy & Translational Research, University of Florida, Gainesville, FL 32608, USA
| | - Benjamin Q Duong
- Department of Pharmacy, Nemours/Alfred I DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Meghan J Arwood
- Department of Pharmacotherapy & Translational Research, University of Florida, Gainesville, FL 32608, USA
| | - Aniwaa Owusu-Obeng
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Noura S Abul-Husn
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barbara A Bernhardt
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Decker
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joshua C Denny
- Department of Medicine & Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eric Dietrich
- Department of Pharmacotherapy & Translational Research, University of Florida, Gainesville, FL 32608, USA
| | - John Gums
- Department of Pharmacotherapy & Translational Research, University of Florida, Gainesville, FL 32608, USA
| | - Ebony B Madden
- National Human Genome Research Institute, Division of Genomic Medicine, Bethesda, MD 20892, USA
| | - Toni I Pollin
- Department of Medicine & Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rebekah Ryanne Wu
- Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Susanne B Haga
- Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Carol R Horowitz
- Department of Health Policy & Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
36
|
Haga SB. Managing Increased Accessibility to Pharmacogenomic Data. Clin Pharmacol Ther 2019; 106:922-924. [PMID: 31482575 DOI: 10.1002/cpt.1602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/12/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Susanne B Haga
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
37
|
Haga SB, Moaddeb J. Pharmacogenomics courses in pharmacy school curricula. Pharmacogenomics 2019; 20:625-630. [PMID: 31250728 PMCID: PMC6912845 DOI: 10.2217/pgs-2019-0024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Aim: The appropriate use and integration of pharmacogenetic (PGx) testing will pivot on provider preparation and training. Pharmacists have been recognized as one of the key providers in the delivery of PGx testing and as such, professional organizations have recommended inclusion of PGx content in pharmacy curricula. Methods: We reviewed the curriculum of 132 US pharmacy schools for information about PGx courses. Results: A total of 70 core curriculum courses were identified. 55 (42%) pharmacy schools included at least one PGx course as part of the core curriculum, and ten (8%) schools that offered a PGx course elective. Conclusion: While many pharmacy schools have responded to the accreditation standards to include PGx, less than half of the schools have developed a standalone course.
Collapse
Affiliation(s)
- Susanne B Haga
- Department of Medicine, Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, 304 Research Drive, Durham, NC 27708, USA
| | - Jivan Moaddeb
- Department of Medicine, Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, 304 Research Drive, Durham, NC 27708, USA
| |
Collapse
|
38
|
Abstract
Pharmacogenomics, a key part of precision medicine, has the potential to tailor drug therapy with the high safety margins and optimized response. Before the Human Genome Project in 2003, articles on pharmacogenomics were limited. The last 15 years have seen significant growth in the field, with gene variant discoveries that play essential roles in individuals' drug response. Dermatology has started to take advantage of this information. This overview shows how pharmacogenomic databases have expanded in the treatment of skin diseases and provides a list of current dermatologic drugs with their FDA-approved biomarkers and clinical implementation.
Collapse
Affiliation(s)
- Le Hanh Dung Do
- a Pham Ngoc Thach University of Medicine , Ho Chi Minh city , Vietnam
| | - Howard Maibach
- b Department of Dermatology, School of Medicine , University of California , San Francisco , CA , USA
| |
Collapse
|
39
|
Bousman CA, Zierhut H, Müller DJ. Navigating the Labyrinth of Pharmacogenetic Testing: A Guide to Test Selection. Clin Pharmacol Ther 2019; 106:309-312. [DOI: 10.1002/cpt.1432] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/05/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Chad A. Bousman
- Departments of Medical Genetics, Psychiatry, Physiology & PharmacologyUniversity of Calgary Calgary Alberta Canada
- Alberta Children's Hospital Research Institute Calgary Alberta Canada
- Mathison Centre for Mental Health Research and EducationHotchkiss Brain InstituteCumming School of MedicineUniversity of Calgary Calgary Alberta Canada
| | - Heather Zierhut
- Department of Genetics, Cell Biology, and DevelopmentUniversity of Minnesota Minneapolis Minnesota USA
| | - Daniel J. Müller
- Pharmacogenetics Research ClinicCampbell Family Mental Health Research InstituteCentre for Addiction and Mental Health Toronto Ontario Canada
- Department of PsychiatryUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
40
|
Hack LM, Fries GR, Eyre HA, Bousman CA, Singh AB, Quevedo J, John VP, Baune BT, Dunlop BW. Moving pharmacoepigenetics tools for depression toward clinical use. J Affect Disord 2019; 249:336-346. [PMID: 30802699 PMCID: PMC6763314 DOI: 10.1016/j.jad.2019.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of disability worldwide, and over half of patients do not achieve symptom remission following an initial antidepressant course. Despite evidence implicating a strong genetic basis for the pathophysiology of MDD, there are no adequately validated biomarkers of treatment response routinely used in clinical practice. Pharmacoepigenetics is an emerging field that has the potential to combine both genetic and environmental information into treatment selection and further the goal of precision psychiatry. However, this field is in its infancy compared to the more established pharmacogenetics approaches. METHODS We prepared a narrative review using literature searches of studies in English pertaining to pharmacoepigenetics and treatment of depressive disorders conducted in PubMed, Google Scholar, PsychINFO, and Ovid Medicine from inception through January 2019. We reviewed studies of DNA methylation and histone modifications in both humans and animal models of depression. RESULTS Emerging evidence from human and animal work suggests a key role for epigenetic marks, including DNA methylation and histone modifications, in the prediction of antidepressant response. The challenges of heterogeneity of patient characteristics and loci studied as well as lack of replication that have impacted the field of pharmacogenetics also pose challenges to the development of pharmacoepigenetic tools. Additionally, given the tissue specific nature of epigenetic marks as well as their susceptibility to change in response to environmental factors and aging, pharmacoepigenetic tools face additional challenges to their development. LIMITATIONS This is a narrative and not systematic review of the literature on the pharmacoepigenetics of antidepressant response. We highlight key studies pertaining to pharmacoepigenetics and treatment of depressive disorders in humans and depressive-like behaviors in animal models, regardless of sample size or methodology. While we discuss DNA methylation and histone modifications, we do not cover microRNAs, which have been reviewed elsewhere recently. CONCLUSIONS Utilization of genome-wide approaches and reproducible epigenetic assays, careful selection of the tissue assessed, and integration of genetic and clinical information into pharmacoepigenetic tools will improve the likelihood of developing clinically useful tests.
Collapse
Affiliation(s)
- Laura M Hack
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Palo Alto, CA 94305, USA; Sierra Pacific Mental Illness Research Education and Clinical Centers, VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Gabriel R Fries
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Harris A Eyre
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Palo Alto, CA 94305, USA; Innovation Institute, Texas Medical Center, Houston, TX, USA; IMPACT SRC, School of Medicine, Deakin University, Geelong, Victoria, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Chad A Bousman
- Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Ajeet B Singh
- IMPACT SRC, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Joao Quevedo
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Vineeth P John
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Bernhard T Baune
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
41
|
Towards the integration of pharmacogenetics in psychiatry: a minimum, evidence-based genetic testing panel. Curr Opin Psychiatry 2019; 32:7-15. [PMID: 30299306 DOI: 10.1097/yco.0000000000000465] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The implementation of pharmacogenetic testing in psychiatry is underway but is not yet standard protocol. Barriers to pharmacogenetics becoming standard practice are the lack of translation of evidence-based recommendations and standardization of genetic testing panels. As for the latter, there are currently no regulatory standards related to the gene and allele content of testing panels used to derive medication selection and dosing advice. To address these barriers, we summarize the current gene-drug interaction knowledgebase and proposed a minimum gene and allele set for pharmacogenetic testing in psychiatry. RECENT FINDINGS The Pharmacogenomics Knowledgebase has cataloged 448 gene-drug interactions relevant to psychiatry based on the current scientific literature, drug labels, and pharmacogenetic-based implementation guidelines. A majority of these interactions involved two cytochrome P450 enzymes (CYP2D6 and CYP2C19) and antidepressant medications, however, CYP2C9, HLA-A, and HLA-B are relevant to mood stabilizers/anticonvulsants. SUMMARY On the basis of evidence base, we proposed a minimum gene and allele set for pharmacogenetic testing in psychiatry that includes 16 variant alleles within five genes (CYP2C9, CYP2C19, CYP2D6, HLA-A, HLA-B). The intent is to assist clinicians in judging the gene and allele content of pharmacogenetic tests and to facilitate pharmacogenetic testing as a standard protocol and companion tool for psychotropic medication selection and dosing.
Collapse
|