1
|
Reiser R, Brill AK, Nakas CT, Hefti U, Berger D, Perret Hoigné E, Kabitz HJ, Merz TM, Pichler Hefti J. Lung function parameters are associated with acute mountain sickness and are improved at high and extreme altitude. Respir Physiol Neurobiol 2024; 330:104318. [PMID: 39182634 DOI: 10.1016/j.resp.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
At altitude, factors such as decreased barometric pressure, low temperatures, and acclimatization might affect lung function. The effects of exposure and acclimatization to high-altitude on lung function were assessed in 39 subjects by repetitive spirometry up to 6022 m during a high-altitude expedition. Subjects were classified depending on the occurrence of acute mountain sickness (AMS) and summit success to evaluate whether lung function relates to successful climb and risk of developing AMS. Peak expiratory flow (PEF), forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) increased with progressive altitude (max. +20.2 %pred, +9.3 %pred, and +6.7 %pred, all p<0.05). Only PEF improved with acclimatization (BC1 vs. BC2, +7.2 %pred, p=0.044). At altitude FEV1 (p=0.008) and PEF (p<0.001) were lower in the AMS group. The risk of developing AMS was associated with lower baseline PEF (p<0.001) and longitudinal changes in PEF (p=0.008) and FEV1 (p<0.001). Lung function was not related to summit success (7126 m). Improvement in PEF after acclimatization might indicate respiratory muscle adaptation.
Collapse
Affiliation(s)
- Reto Reiser
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Anne-Kathrin Brill
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Christos T Nakas
- Institute of Clinical Chemistry, Inselspital Bern, University Hospital and University of Bern, Switzerland; Laboratory of Biometry, University of Thessaly, Volos, Greece.
| | - Urs Hefti
- Swiss Sportclinic, Bern, Switzerland.
| | - David Berger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Eveline Perret Hoigné
- Department of Pediatrics, Division of Child Neurology, University Children's Hospital Bern, University of Bern, Switzerland.
| | | | - Tobias M Merz
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Cardiovascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand.
| | - Jacqueline Pichler Hefti
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Swiss Sportclinic, Bern, Switzerland.
| |
Collapse
|
2
|
Oeung B, Pham K, Olfert IM, De La Zerda DJ, Gaio E, Powell FL, Heinrich EC. The normal distribution of the hypoxic ventilatory response and methodological impacts: a meta-analysis and computational investigation. J Physiol 2023; 601:4423-4440. [PMID: 37589511 PMCID: PMC10543592 DOI: 10.1113/jp284767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic ventilatory response (HVR) is the increase in breathing in response to reduced arterial oxygen pressure. Over several decades, studies have revealed substantial population-level differences in the magnitude of the HVR as well as significant inter-individual variation. In particular, low HVRs occur frequently in Andean high-altitude native populations. However, our group conducted hundreds of HVR measures over several years and commonly observed low responses in sea-level populations as well. As a result, we aimed to determine the normal HVR distribution, whether low responses were common, and to what extent variation in study protocols influence these findings. We conducted a comprehensive search of the literature and examined the distributions of HVR values across 78 studies that utilized step-down/steady-state or progressive hypoxia methods in untreated, healthy human subjects. Several studies included multiple datasets across different populations or experimental conditions. In the final analysis, 72 datasets reported mean HVR values and 60 datasets provided raw HVR datasets. Of the 60 datasets reporting raw HVR values, 35 (58.3%) were at least moderately positively skewed (skew > 0.5), and 21 (35%) were significantly positively skewed (skew > 1), indicating that lower HVR values are common. The skewness of HVR distributions does not appear to be an artifact of methodology or the unit with which the HVR is reported. Further analysis demonstrated that the use of step-down hypoxia versus progressive hypoxia methods did not have a significant impact on average HVR values, but that isocapnic protocols produced higher HVRs than poikilocapnic protocols. This work provides a reference for expected HVR values and illustrates substantial inter-individual variation in this key reflex. Finally, the prevalence of low HVRs in the general population provides insight into our understanding of blunted HVRs in high-altitude adapted groups. KEY POINTS: The hypoxic ventilatory response (HVR) plays a crucial role in determining an individual's predisposition to hypoxia-related pathologies. There is notable variability in HVR sensitivity across individuals as well as significant population-level differences. We report that the normal distribution of the HVR is positively skewed, with a significant prevalence of low HVR values amongst the general healthy population. We also find no significant impact of the experimental protocol used to induce hypoxia, although HVR is greater with isocapnic versus poikilocapnic methods. These results provide insight into the normal distribution of the HVR, which could be useful in clinical decisions of diseases related to hypoxaemia. Additionally, the low HVR values found within the general population provide insight into the genetic adaptations found in populations residing in high altitudes.
Collapse
Affiliation(s)
- Britney Oeung
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA
| | - Kathy Pham
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA
| | - I. Mark Olfert
- West Virginia University School of Medicine, Department of Physiology & Pharmacology and Division of Exercise Physiology
| | | | - Eduardo Gaio
- School of Medicine, Deakin University, Geelong, Australia
| | - Frank L. Powell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA
| |
Collapse
|
3
|
Salvi P, Grillo A, Brunacci F, Severi F, Montaguti L, Gautier S, Salvi L, Pretolani E, Parati G, Benetos A. Microcirculatory and Rheological Adaptive Mechanisms at High Altitude in European Lowlander Hikers and Nepalese Highlanders. J Clin Med 2023; 12:jcm12082872. [PMID: 37109209 PMCID: PMC10144116 DOI: 10.3390/jcm12082872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Physical activity at high-altitudes is increasingly widespread, both for tourist trekking and for the growing tendency to carry out sports and training activities at high-altitudes. Acute exposure to this hypobaric-hypoxic condition induces several complex adaptive mechanisms involving the cardiovascular, respiratory and endocrine systems. A lack of these adaptive mechanisms in microcirculation may cause the onset of symptoms of acute mountain sickness, a frequent disturbance after acute exposure at high altitudes. The aim of our study was to evaluate the microcirculatory adaptive mechanisms at different altitudes, from 1350 to 5050 m a.s.l., during a scientific expedition in the Himalayas. METHODS The main haematological parameters, blood viscosity and erythrocyte deformability were assessed at different altitudes on eight European lowlanders and on a group of eleven Nepalese highlanders. The microcirculation network was evaluated in vivo by conjunctival and periungual biomicroscopy. RESULTS Europeans showed a progressive and significant reduction of blood filterability and an increase of whole blood viscosity which correlate with the increase of altitude (p < 0.02). In the Nepalese highlanders, haemorheological changes were already present at their residence altitude, 3400 m a.s.l. (p < 0.001 vs. Europeans). With the increase in altitude, a massive interstitial oedema appeared in all participants, associated with erythrocyte aggregation phenomena and slowing of the flow rate in the microcirculation. CONCLUSIONS High altitude causes important and significant microcirculatory adaptations. These changes in microcirculation induced by hypobaric-hypoxic conditions should be considered when planning training and physical activity at altitude.
Collapse
Affiliation(s)
- Paolo Salvi
- Department of Cardiology, IRCCS, Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Andrea Grillo
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy
| | - Fausto Brunacci
- Department of Emergency, Internal Medicine and Cardiology, Internal Medicine, 'M. Bufalini' Hospital, 47521 Cesena, Italy
| | - Francesca Severi
- Department of Emergency, Internal Medicine and Cardiology, Internal Medicine, 'M. Bufalini' Hospital, 47521 Cesena, Italy
| | - Luca Montaguti
- Department of Emergency, Internal Medicine and Cardiology, Internal Medicine, 'M. Bufalini' Hospital, 47521 Cesena, Italy
| | - Sylvie Gautier
- CHRU-Nancy, Pôle "Maladies du Vieillissement, Gérontologie et Soins Palliatifs", Université de Lorraine, 54800 Nancy, France
| | - Lucia Salvi
- Medicina II Cardiovascolare, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Enzo Pretolani
- Department of Emergency, Internal Medicine and Cardiology, Internal Medicine, 'M. Bufalini' Hospital, 47521 Cesena, Italy
| | - Gianfranco Parati
- Department of Cardiology, IRCCS, Istituto Auxologico Italiano, 20149 Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Athanase Benetos
- CHRU-Nancy, Pôle "Maladies du Vieillissement, Gérontologie et Soins Palliatifs", Université de Lorraine, 54800 Nancy, France
- DCAC u1116, INSERM, Université de Lorraine, 54000 Nancy, France
| |
Collapse
|
4
|
Haemodynamic Adaptive Mechanisms at High Altitude: Comparison between European Lowlanders and Nepalese Highlanders. J Clin Med 2022; 11:jcm11133843. [PMID: 35807128 PMCID: PMC9267920 DOI: 10.3390/jcm11133843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Exposure to high altitudes determines several adaptive mechanisms affecting in a complex way the whole cardiovascular, respiratory, endocrine systems because of the hypobaric hypoxic condition. The aim of our study was to evaluate the circulatory adaptive mechanisms at high altitudes, during a scientific expedition in the Himalayas. Methods: Arterial distensibility was assessed measuring carotid-radial and carotid-femoral pulse wave velocity. Tests were carried out at several altitudes, from 1350 to 5050 m above sea level, on 8 lowlander European researchers and 11 highlander Nepalese porters. Results: In Europeans, systolic blood pressure and pulse pressure increased slightly but significantly with altitude (p < 0.05 and p < 0.001, respectively). Norepinephrine showed a significant increase after the lowlanders had spent some time at high altitude (p < 0.001). With increasing altitude, a progressive increase in carotid-radial and carotid-femoral pulse wave velocity values was observed in lowlanders, showing a particularly significant increase (p < 0.001) after staying at high altitude (carotid-radial pulse wave velocity, median value (interquartile range) from 9.2 (7.9−10.0) to 11.2 (10.9−11.8) m/s and carotid-femoral pulse wave velocity from 8.5 (7.9−9.0) to 11.3 (10.9−11.8) m/s). At high altitudes (3400 and 5050 m above sea level), no significant differences were observed between highlanders and lowlanders in hemodynamic parameters (blood pressure, carotid-radial and carotid-femoral pulse wave velocity). Conclusions: The progressive arterial stiffening with altitude observed in European lowlanders could explain the increase in systolic and pulse pressure values observed at high altitudes in this ethnic group. Further studies are needed to evaluate the role of aortic stiffening in the pathogenesis of acute mountain sickness.
Collapse
|
5
|
Narang BJ, Manferdelli G, Millet GP, Debevec T. Respiratory responses to hypoxia during rest and exercise in individuals born pre-term: a state-of-the-art review. Eur J Appl Physiol 2022; 122:1991-2003. [PMID: 35589858 DOI: 10.1007/s00421-022-04965-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
The pre-term birth survival rate has increased considerably in recent decades, and research investigating the long-term effects of premature birth is growing. Moreover, altitude sojourns are increasing in popularity and are often accompanied by various levels of physical activity. Individuals born pre-term appear to exhibit altered acute ventilatory responses to hypoxia, potentially predisposing them to high-altitude illness. These impairments are likely due to the use of perinatal hyperoxia stunting the maturation of carotid body chemoreceptors, but may also be attributed to limited lung diffusion capacity and/or gas exchange inefficiency. Aerobic exercise capacity also appears to be reduced in this population. This may relate to the aforementioned respiratory impairments, or could be due to physiological limitations in pulmonary blood flow or at the exercising muscle (e.g. mitochondrial efficiency). However, surprisingly, the debilitative effects of exercise when performed at altitude do not seem to be exacerbated by premature birth. In fact, it is reasonable to speculate that pre-term birth could protect against the consequences of exercise combined with hypoxia. The mechanisms that underlie this assertion might relate to differences in oxidative stress responses or in cardiopulmonary morphology in pre-term individuals, compared to their full-term counterparts. Further research is required to elucidate the independent effects of neonatal treatment, sex differences and chronic lung disease, and to establish causality in some of the proposed mechanisms that could underlie the differences discussed throughout this review. A more in-depth understanding of the acclimatisation responses to chronic altitude exposures would also help to inform appropriate interventions in this clinical population.
Collapse
Affiliation(s)
- Benjamin J Narang
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia. .,Faculty for Sport, University of Ljubljana, Ljubljana, Slovenia.
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia.,Faculty for Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Small E, Juul N, Pomeranz D, Burns P, Phillips C, Cheffers M, Lipman GS. Predictive Capacity of Pulmonary Function Tests for Acute Mountain Sickness. High Alt Med Biol 2021; 22:193-200. [PMID: 33601996 DOI: 10.1089/ham.2020.0150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Small, Elan, Nicholas Juul, David Pomeranz, Patrick Burns, Caleb Phillips, Mary Cheffers, and Grant S. Lipman. Predictive capacity of pulmonary function tests for acute mountain sickness. High Alt Med Biol. 22: 193-200, 2021. Background: Pulmonary function as measured by spirometry has been investigated at altitude with heterogenous results, though data focused on spirometry and acute mountain sickness (AMS) are limited. The objective of this study was to investigate the capacity of pulmonary function tests (PFTs) to predict the development of AMS. Materials and Methods: This study was a blinded prospective observational study run during a randomized controlled trial comparing acetazolamide, budesonide, and placebo for AMS prevention on White Mountain, CA. Spirometry measurements of forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and peak expiratory flow were taken at a baseline altitude of 1,250 m, and the evening of and morning after ascent to 3,810 m. Measurements were assessed for correlation with AMS. Results: One hundred three participants were analyzed with well-matched baseline demographics and AMS incidence of 75 (73%) and severe AMS of 48 (47%). There were no statistically significant associations between changes in mean spirometry values on ascent to high altitude with incidence of AMS or severe AMS. Lake Louise Questionnaire scores were negatively correlated with FVC (r = -0.31) and FEV1 (r = -0.29) the night of ascent. Baseline PFT had a predictive accuracy of 65%-73% for AMS, with a receiver operating characteristic of 0.51-0.65. Conclusions: Spirometry did not demonstrate statistically significant changes on ascent to high altitude, nor were there significant associations with incidence of AMS or severe AMS. Low-altitude spirometry did not accurately predict development of AMS, and it should not be recommended for risk stratification.
Collapse
Affiliation(s)
- Elan Small
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Nicholas Juul
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | - Patrick Burns
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Caleb Phillips
- Department of Computational Science, University of Colorado, Boulder, Colorado, USA
| | - Mary Cheffers
- Department of Emergency Medicine, Keck School of Medicine, Los Angeles, California, USA
| | - Grant S Lipman
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Tift MS, Alves de Souza RW, Weber J, Heinrich EC, Villafuerte FC, Malhotra A, Otterbein LE, Simonson TS. Adaptive Potential of the Heme Oxygenase/Carbon Monoxide Pathway During Hypoxia. Front Physiol 2020; 11:886. [PMID: 32792988 PMCID: PMC7387684 DOI: 10.3389/fphys.2020.00886] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/30/2020] [Indexed: 01/15/2023] Open
Abstract
Heme oxygenase (HO) enzymes catalyze heme into biliverdin, releasing carbon monoxide (CO) and iron into circulation. These byproducts of heme degradation can have potent cytoprotective effects in the face of stressors such as hypoxia and ischemia-reperfusion events. The potential for exogenous use of CO as a therapeutic agent has received increasing attention throughout the past few decades. Further, HO and CO are noted as putatively adaptive in diving mammals and certain high-altitude human populations that are frequently exposed to hypoxia and/or ischemia-reperfusion events, suggesting that HO and endogenous CO afford an evolutionary advantage for hypoxia tolerance and are critical in cell survival and injury avoidance. Our goal is to describe the importance of examining HO and CO in several systems, the physiological links, and the genetic factors that underlie variation in the HO/CO pathway. Finally, we emphasize the ways in which evolutionary perspectives may enhance our understanding of the HO/CO pathway in the context of diverse clinical settings.
Collapse
Affiliation(s)
- Michael S. Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Rodrigo W. Alves de Souza
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Janick Weber
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, CA, United States
| | - Francisco C. Villafuerte
- Laboratorio de Fisiología Comparada, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, School of Medicine, San Diego, CA, United States
| | - Leo E. Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, School of Medicine, San Diego, CA, United States
| |
Collapse
|
8
|
Muza SR. Wearable physiological sensors and real-time algorithms for detection of acute mountain sickness. J Appl Physiol (1985) 2018; 124:557-563. [DOI: 10.1152/japplphysiol.00367.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This is a minireview of potential wearable physiological sensors and algorithms (process and equations) for detection of acute mountain sickness (AMS). Given the emerging status of this effort, the focus of the review is on the current clinical assessment of AMS, known risk factors (environmental, demographic, and physiological), and current understanding of AMS pathophysiology. Studies that have examined a range of physiological variables to develop AMS prediction and/or detection algorithms are reviewed to provide insight and potential technological roadmaps for future development of real-time physiological sensors and algorithms to detect AMS. Given the lack of signs and nonspecific symptoms associated with AMS, development of wearable physiological sensors and embedded algorithms to predict in the near term or detect established AMS will be challenging. Prior work using [Formula: see text], HR, or HRv has not provided the sensitivity and specificity for useful application to predict or detect AMS. Rather than using spot checks as most prior studies have, wearable systems that continuously measure SpO2 and HR are commercially available. Employing other statistical modeling approaches such as general linear and logistic mixed models or time series analysis to these continuously measured variables is the most promising approach for developing algorithms that are sensitive and specific for physiological prediction or detection of AMS.
Collapse
Affiliation(s)
- Stephen R. Muza
- Strategic Science Management Office, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
9
|
Sheppard RL, Swift JM, Hall A, Mahon RT. The Influence of CO 2 and Exercise on Hypobaric Hypoxia Induced Pulmonary Edema in Rats. Front Physiol 2018. [PMID: 29541032 PMCID: PMC5835685 DOI: 10.3389/fphys.2018.00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction: Individuals with a known susceptibility to high altitude pulmonary edema (HAPE) demonstrate a reduced ventilation response and increased pulmonary vasoconstriction when exposed to hypoxia. It is unknown whether reduced sensitivity to hypercapnia is correlated with increased incidence and/or severity of HAPE, and while acute exercise at altitude is known to exacerbate symptoms the effect of exercise training on HAPE susceptibility is unclear. Purpose: To determine if chronic intermittent hypercapnia and exercise increases the incidence of HAPE in rats. Methods: Male Wistar rats were randomized to sedentary (sed-air), CO2 (sed-CO2,) exercise (ex-air), or exercise + CO2 (ex-CO2) groups. CO2 (3.5%) and treadmill exercise (15 m/min, 10% grade) were conducted on a metabolic treadmill, 1 h/day for 4 weeks. Vascular reactivity to CO2 was assessed after the training period by rheoencephalography (REG). Following the training period, animals were exposed to hypobaric hypoxia (HH) equivalent to 25,000 ft for 24 h. Pulmonary injury was assessed by wet/dry weight ratio, lung vascular permeability, bronchoalveolar lavage (BAL), and histology. Results: HH increased lung wet/dry ratio (HH 5.51 ± 0.29 vs. sham 4.80 ± 0.11, P < 0.05), lung permeability (556 ± 84 u/L vs. 192 ± 29 u/L, P < 0.001), and BAL protein (221 ± 33 μg/ml vs. 114 ± 13 μg/ml, P < 0.001), white blood cell (1.16 ± 0.26 vs. 0.66 ± 0.06, P < 0.05), and platelet (16.4 ± 2.3, vs. 6.0 ± 0.5, P < 0.001) counts in comparison to normobaric normoxia. Vascular reactivity was suppressed by exercise (−53% vs. sham, P < 0.05) and exercise+CO2 (−71% vs. sham, P < 0.05). However, neither exercise nor intermittent hypercapnia altered HH-induced changes in lung wet/dry weight, BAL protein and cellular infiltration, or pulmonary histology. Conclusion: Exercise training attenuates vascular reactivity to CO2 in rats but neither exercise training nor chronic intermittent hypercapnia affect HH- induced pulmonary edema.
Collapse
Affiliation(s)
- Ryan L Sheppard
- Department of Submarine Medicine and Survival Systems Groton, Naval Submarine Medical Research Laboratory, Groton, CT, United States.,Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| | - Joshua M Swift
- Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| | - Aaron Hall
- Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| | - Richard T Mahon
- Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| |
Collapse
|
10
|
Analysis of High-altitude Syndrome and the Underlying Gene Polymorphisms Associated with Acute Mountain Sickness after a Rapid Ascent to High-altitude. Sci Rep 2016; 6:38323. [PMID: 27982053 PMCID: PMC5159877 DOI: 10.1038/srep38323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 11/08/2016] [Indexed: 11/08/2022] Open
Abstract
To investigated the objective indicators and potential genotypes for acute mountain sickness (AMS). 176 male subjects were evaluated for symptoms scores and physiological parameters at 3700 m. EPAS1 gene polymorphisms were explored and verified effects of potential genotypes on pulmonary function by inhaled budesonide. The incidence of AMS was 53.98% (95/176). The individuals who suffered from headache with anxiety and greater changes in heart rate (HR), the forced vital capacity (FVC), and mean flow velocity of basilar artery (Vm-BA), all of which were likely to develop AMS. The rs4953348 polymorphism of EPAS1 gene had a significant correlation with the SaO2 level and AMS, and a significant difference in the AG and GG genotype distribution between the AMS and non-AMS groups. The spirometric parameters were significantly lower, but HR (P = 0.036) and Vm-BA (P = 0.042) significantly higher in the AMS subjects with the G allele than those with the A allele. In summary, changes in HR (≥82 beats/min), FVC (≤4.2 Lt) and Vm-BA (≥43 cm/s) levels may serve as predictors for diagnosing AMS accompanied by high-altitude syndrome. The A allele of rs4953348 is a protective factor for AMS through HR and Vm-BA compensation, while the G allele may contribute to hypoxic pulmonary hypertension in AMS.
Collapse
|
11
|
Gupta RK, Himashree G, Singh K, Soree P, Desiraju K, Agrawal A, Ghosh D, Dass D, Reddy PK, Panjwani U, Singh SB. Elevated pulmonary artery pressure and brain natriuretic peptide in high altitude pulmonary edema susceptible non-mountaineers. Sci Rep 2016; 6:21357. [PMID: 26892302 PMCID: PMC4759542 DOI: 10.1038/srep21357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 01/13/2016] [Indexed: 02/04/2023] Open
Abstract
Exaggerated pulmonary pressor response to hypoxia is a pathgonomic feature observed in high altitude pulmonary edema (HAPE) susceptible mountaineers. It was investigated whether measurement of basal pulmonary artery pressure (Ppa) and brain natriuretic peptide (BNP) could improve identification of HAPE susceptible subjects in a non-mountaineer population. We studied BNP levels, baseline hemodynamics and the response to hypoxia (FIo2 = 0.12 for 30 min duration at sea level) in 11 HAPE resistant (no past history of HAPE, Control) and 11 HAPE susceptible (past history of HAPE, HAPE-S) subjects. Baseline Ppa (19.31 ± 3.63 vs 15.68 ± 2.79 mm Hg, p < 0.05) and plasma BNP levels (52.39 ± 32.9 vs 15.05 ± 9.6 pg/ml, p < 0.05) were high and stroke volume was less (p < 0.05) in HAPE-S subjects compared to control. Acute hypoxia produced an exaggerated increase in heart rate (p < 0.05), mean arterial pressure (p < 0.05) and Ppa (28.2 ± 5.8 vs 19.33 ± 3.74 mm Hg, p < 0.05) and fall in peripheral oxygen saturation (p < 0.05) in HAPE-S compared to control. Receiver operating characteristic (ROC) curves showed that Ppa response to acute hypoxia was the best variable to identify HAPE susceptibility (AUC 0.92) but BNP levels provided comparable information (AUC 0.85). BNP levels are easy to determine and may represent an important marker for the determination of HAPE susceptibility.
Collapse
Affiliation(s)
- Rajinder K. Gupta
- Defence Institute of Physiology and Allied Sciences. Timarpur, Delhi-110054, India
| | - G. Himashree
- Defence Institute of Physiology and Allied Sciences. Timarpur, Delhi-110054, India
| | - Krishan Singh
- Defence Institute of Physiology and Allied Sciences. Timarpur, Delhi-110054, India
| | - Poonam Soree
- Defence Institute of Physiology and Allied Sciences. Timarpur, Delhi-110054, India
| | - Koundinya Desiraju
- CSIR Institute of Genomics and Integrated Biology, Mall Road, Delhi 110007, India
| | - Anurag Agrawal
- CSIR Institute of Genomics and Integrated Biology, Mall Road, Delhi 110007, India
| | - Dishari Ghosh
- Defence Institute of Physiology and Allied Sciences. Timarpur, Delhi-110054, India
| | - Deepak Dass
- Defence Institute of Physiology and Allied Sciences. Timarpur, Delhi-110054, India
| | - Prassana K. Reddy
- Defence Institute of Physiology and Allied Sciences. Timarpur, Delhi-110054, India
| | - Usha Panjwani
- Defence Institute of Physiology and Allied Sciences. Timarpur, Delhi-110054, India
| | - Shashi Bala Singh
- Defence Institute of Physiology and Allied Sciences. Timarpur, Delhi-110054, India
| |
Collapse
|
12
|
Figueroa JA, Mansoor JK, Allen RP, Davis CE, Walby WF, Aksenov AA, Zhao W, Lewis WR, Schelegle ES. Exhaled volatile organic compounds in individuals with a history of high altitude pulmonary edema and varying hypoxia-induced responses. J Breath Res 2015; 9:026004. [DOI: 10.1088/1752-7155/9/2/026004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Abstract
Hypoxic pulmonary vasoconstriction (HPV) continues to fascinate cardiopulmonary physiologists and clinicians since its definitive description in 1946. Hypoxic vasoconstriction exists in all vertebrate gas exchanging organs. This fundamental response of the pulmonary vasculature in air breathing animals has relevance to successful fetal transition to air breathing at birth and as a mechanism of ventilation-perfusion matching in health and disease. It is a complex process intrinsic to the vascular smooth muscle, but with in vivo modulation by a host of factors including the vascular endothelium, erythrocytes, pulmonary innervation, circulating hormones and acid-base status to name only a few. This review will provide a broad overview of HPV and its mechansms and discuss the advantages and disadvantages of HPV in normal physiology, disease and high altitude.
Collapse
Affiliation(s)
- Erik R Swenson
- Department of Medicine, University of Washington, VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| |
Collapse
|
14
|
Richalet JP, Larmignat P, Poitrine E, Letournel M, Canouï-Poitrine F. Physiological Risk Factors for Severe High-Altitude Illness. Am J Respir Crit Care Med 2012; 185:192-8. [DOI: 10.1164/rccm.201108-1396oc] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
15
|
Preacclimatization in hypoxic chambers for high altitude sojourns. Sleep Breath 2009; 14:187-91. [DOI: 10.1007/s11325-009-0307-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/16/2009] [Indexed: 01/20/2023]
|
16
|
Loeppky JA, Icenogle MV, Charlton GA, Conn CA, Maes D, Riboni K, Gates L, Melo MFV, Roach RC. Hypoxemia and acute mountain sickness: which comes first? High Alt Med Biol 2009; 9:271-9. [PMID: 19115910 DOI: 10.1089/ham.2008.1035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hypoxemia is usually associated with acute mountain sickness (AMS), but most studies have varied in time and magnitude of altitude exposure, exercise, diet, environmental conditions, and severity of pulmonary edema. We wished to determine whether hypoxemia occurred early in subjects who developed subsequent AMS while resting at a simulated altitude of 426 mmHg (approximately 16,000 ft or 4880 m). Exposures of 51 men and women were carried out for 8 to 12 h. AMS was determined by Lake Louise (LL) and AMS-C scores near the end of exposure, with spirometry and gas exchange measured the day before (C) and after 1 (A1), 6 (A6), and last (A12) h at simulated altitude and arterial blood at C, A1, and A12. Responses of 16 subjects having the lowest AMS scores (nonAMS: mean LL=1.0, range=0-2.5) were compared with the 16 having the highest scores (+AMS: mean LL=7.4, range=5-11). Total and alveolar ventilation responses to altitude were not different between groups. +AMS had significantly lower PaO2 (4.6 mmHg) and SaO2 (4.8%) at A1 and 3.3 mmHg and 3.1% at A12. Spirometry changes were similar at A1, but at A6 and A12 reduced vital capacity (VC) and increased breathing frequency suggested interstitial pulmonary edema in +AMS. The early hypoxemia in +AMS appears to be the result of diffusion impairment or venous admixture, perhaps due to a unique autonomic response affecting pulmonary perfusion. Early hypoxemia may be useful to predict AMS susceptibility.
Collapse
Affiliation(s)
- Jack A Loeppky
- Cardiology Section, VA Medical Center, Albuquerque, New Mexico 87108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
UNLABELLED Acute mountain sickness (AMS) develops when rapidly ascending to high altitudes. However, some mountaineers will suffer from AMS even at 2,000 m and others not until 5,000 m. The awareness of the individual susceptibility for AMS would be helpful for preventive strategies. Thus, the main purpose of this paper is the comparison of existing studies dealing with the prediction of AMS susceptibility and to draw conclusions on presently most valuable tests. DATA SOURCE A PubMed search has been performed, and preliminary observations from our laboratory have been included. The cautious conclusion derived from the reviewed 16 studies is that values of arterial oxygen saturation (SaO(2)), determined 20-30 min after exposure to simulated hypoxia equivalent to 2,300-4,200 m, seem to be the most useful predictors of AMS susceptibility (>80% correct prediction). Because the sympathetic activation during acute exposure to hypoxia may well contribute to the AMS development, parameters like heart rate variability or blood lactate could even enhance this predictability. The ventilatory response to hypoxia is easily trainable by pre-exposures to hypoxia but considers only part of the complex acclimatization process.
Collapse
|
18
|
|
19
|
Lovering AT, Romer LM, Haverkamp HC, Hokanson JS, Eldridge MW. Excessive Gas Exchange Impairment during Exercise in A Subject with A History of Bronchopulmonary Dysplasia And High Altitude Pulmonary Edema. High Alt Med Biol 2007; 8:62-7. [PMID: 17394419 DOI: 10.1089/ham.2006.0816] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A 27-year-old male subject (V(O2 max)), 92% predicted) with a history of bronchopulmonary dysplasia (BPD) and a clinically documented case of high altitude pulmonary edema (HAPE) was examined at rest and during exercise. Pulmonary function testing revealed a normal forced vital capacity (FVC, 98.1% predicted) and diffusion capacity for carbon monoxide (D(L(CO)), 91.2% predicted), but significant airway obstruction at rest [forced expiratory volume in 1 sec (FEV(1)), 66.5% predicted; forced expiratory flow at 50% of vital capacity (FEF(50)), 34.3% predicted; and FEV(1) /FVC 56.5%] that was not reversible with an inhaled bronchodilator. Gas exchange worsened from rest to exercise, with the alveolar to arterial P(O2) difference (AaD(O2)) increasing from 0 at rest to 41 mmHg at maximal normoxic exercise (VO(2) = 41.4 mL/kg/min) and from 11 to 31 mmHg at maximal hypoxic exercise (VO(2) = 21.9 mL/kg/min). Arterial P(O2) decreased to 67.8 and 29.9 mmHg at maximal normoxic and hypoxic exercise, respectively. These data indicate that our subject with a history of BPD is prone to a greater degree of exercise-induced arterial hypoxemia for a given VO(2) and F(I(O2)) than healthy age-matched controls, which may increase the subject's susceptibility to high altitude illness.
Collapse
Affiliation(s)
- Andrew T Lovering
- University of Wisconsin School of Medicine and Public Health, Department of Population Health Sciences, John Rankin Laboratory of Pulmonary Medicine, Madison, Wisconsin 53706-1532, USA.
| | | | | | | | | |
Collapse
|
20
|
Compte-Torrero L, Botella de Maglia J, de Diego-Damiá A, Gómez-Pérez L, Ramírez-Galleymore P, Perpiñá-Tordera M. Changes in Spirometric Parameters and Arterial Oxygen Saturation During a Mountain Ascent to Over 3000 Meters. ACTA ACUST UNITED AC 2005; 41:547-52. [PMID: 16266667 DOI: 10.1016/s1579-2129(06)60281-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To ascertain whether climbing a mountain over 3000 meters high produces any alterations in ventilation, whether such alterations are modified by acclimatization, and whether they correlate with changes in arterial oxygen saturation (SaO2) or the development of acute mountain sickness (AMS). SUBJECTS AND METHODS The following parameters were measured in 8 unacclimatized mountaineers who climbed Aneto (3404 m) and spent 3 days at the summit: forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), airway response to inhaled terbutaline, SaO2, and the symptoms of AMS. RESULTS At the summit, mean (SD) FEV1 declined by 12.3% (5.7%) and mean FVC by 7.6% (6.7%) while the ratio of FEV1 to FVC remained normal. The means for both parameters were higher on the following day. No airway response to bronchodilator treatment was observed. The restriction disappeared entirely on descent. At the peak, SaO2 increased progressively as the climbers became acclimatized. During the ascent, FEV1 correlated with SaO2 (r=0.79). One participant who suffered from AMS had a ratio of FEV1 to FVC less than 70% and the worst SaO2 during the 3 days on the summit. Obstruction preceded the AMS symptoms, did not respond to bronchodilator treatment, and disappeared when the climber descended. CONCLUSIONS The mountaineers who climbed over 3000 meters presented restriction that correlated with hypoxemia. This restriction did not respond to bronchodilator treatment, improved with acclimatization, and disappeared on descent. One person with AMS presented obstruction that did not respond to terbutaline and disappeared on descent.
Collapse
Affiliation(s)
- L Compte-Torrero
- Servicio de Neumología, Hospital Universitario La Fe, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Compte-Torrero L, Botella de Maglia J, de Diego-Damiá A, Gómez-Pérez L, Ramírez-Galleymore P, Perpiñá-Tordera M. Cambios espirométricos y en la saturación arterial de oxígeno durante la ascensión a una montaña de más de 3.000 metros. Arch Bronconeumol 2005. [DOI: 10.1157/13079838] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Liu Y, Liu H, Kim BO, Gattone VH, Li J, Nath A, Blum J, He JJ. CD4-independent infection of astrocytes by human immunodeficiency virus type 1: requirement for the human mannose receptor. J Virol 2004; 78:4120-33. [PMID: 15047828 PMCID: PMC374297 DOI: 10.1128/jvi.78.8.4120-4133.2004] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection occurs in the central nervous system and causes a variety of neurobehavioral and neuropathological disorders. Both microglia, the residential macrophages in the brain, and astrocytes are susceptible to HIV-1 infection. Unlike microglia that express and utilize CD4 and chemokine coreceptors CCR5 and CCR3 for HIV-1 infection, astrocytes fail to express CD4. Astrocytes express several chemokine coreceptors; however, the involvement of these receptors in astrocyte HIV-1 infection appears to be insignificant. In the present study using an expression cloning strategy, the cDNA for the human mannose receptor (hMR) was found to be essential for CD4-independent HIV-1 infectivity. Ectopic expression of functional hMR rendered U87.MG astrocytic cells susceptible to HIV-1 infection, whereas anti-hMR serum and hMR-specific siRNA blocked HIV-1 infection in human primary astrocytes. In agreement with these findings, hMR bound to HIV-1 virions via the abundant and highly mannosylated sugar moieties of HIV-1 envelope glycoprotein gp120 in a Ca(2+)-dependent fashion. Moreover, hMR-mediated HIV-1 infection was dependent upon endocytic trafficking as assessed by transmission electron microscopy, as well as inhibition of viral entry by endosomo- and lysosomotropic drugs. Taken together, these results demonstrate the direct involvement of hMR in HIV-1 infection of astrocytes and suggest that HIV-1 interaction with hMR plays an important role in HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Hao Liu
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Byung Oh Kim
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Vincent H. Gattone
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Jinliang Li
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Avindra Nath
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Janice Blum
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Johnny J. He
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
- Corresponding author. Mailing address: Department of Microbiology and Immunology, Indiana University School of Medicine, R2 302, 950 W. Walnut St., Indianapolis, IN 46202. Phone: (317) 274-7525. Fax: (317) 274-7592. E-mail:
| |
Collapse
|
23
|
Usui C, Inoue Y, Kimura M, Kirino E, Nagaoka S, Abe M, Nagata T, Arai H. Irreversible Subcortical Dementia Following High Altitude Illness. High Alt Med Biol 2004; 5:77-81. [PMID: 15072719 DOI: 10.1089/152702904322963717] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In this report, we present the cases of two 63-year-old women who developed high altitude cerebral edema complicated by the occurrence of permanent neuropsychiatric sequelae. They shared a similar clinical course, in that both developed disturbance of consciousness shortly after their arrival at Cuzco, Peru (3500 m), and both developed persistent neuropsychiatric symptoms after resolution of the acute illness. Interestingly, in case 2 there was a 1-month lucid interval between remission of high altitude illness and occurrence of the irreversible neuropsychiatric sequelae. Brain computerized tomography in case 1 and brain magnetic resonance imaging in case 2 disclosed lesions in the globus pallidus bilaterally, suggesting that the neuropsychiatric symptoms in these patients were manifestations of subcortical dementia. The development of high altitude illness was considered to be attributable to mild restrictive lung impairment in case 1 and to a deficient ventilatory response to hypoxia in case 2. It must therefore be borne in mind that irreversible subcortical dementia may be associated with high altitude cerebral edema.
Collapse
Affiliation(s)
- Chie Usui
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bärtsch P, Swenson ER, Paul A, Jülg B, Hohenhaus E. Hypoxic ventilatory response, ventilation, gas exchange, and fluid balance in acute mountain sickness. High Alt Med Biol 2003; 3:361-76. [PMID: 12631422 DOI: 10.1089/15270290260512846] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To examine whether sea-level hypoxic ventilatory responses (HVR) predict acute mountain sickness (AMS) and document temporal changes in ventilation, HVR, gas exchange, and fluid balance, we measured these parameters at low altitude (100 m) and daily during 3 days at high altitude (4559 m). At low altitude, there were no significant differences in rest or exercise isocapnic HVR, poikilocapnic HVR at rest, and hypercapnic ventilatory response between 12 subjects without significant AMS and 11 subjects who fell sick. No low altitude ventilatory responses correlated with AMS or fluid balance at high altitude. On day 1, isocapnic HVR was significantly lower in the AMS group [0.86 +/- 0.43 (SD) vs. 1.43 +/- 0.63 L/min/% Sa(O2), p < 0.05). AMS was associated with higher AaD(O2), lower Pa(O2), and Sa(O2), while Pa(CO2) was not different between subjects with and without AMS. Both groups showed equivalent reductions in urine volume, sodium output, and gain in body weight on day 1 while climbing to 4559 m, but on day 2 only subjects without AMS had diuresis, natriuresis, and weight loss. We conclude that (1) susceptibility to AMS, fluid balance, and ventilation at high altitude cannot be predicted by low altitude HVR testing and (2) that the failure to increase HVR on arrival at high altitude and impaired gas exchange, possibly due to interstitial edema, may account for the more severe hypoxemia in AMS.
Collapse
Affiliation(s)
- Peter Bärtsch
- Department of Internal Medicine, Division of Sports Medicine, Medical University Clinic, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
25
|
Schirlo C, Pavlicek V, Jacomet A, Gibbs JSR, Koller E, Oelz O, Seebauer M, Kohl J. Characteristics of the ventilatory response in subjects susceptible to high altitude pulmonary edema during acute and prolonged hypoxia. High Alt Med Biol 2003; 3:267-76. [PMID: 12396880 DOI: 10.1089/152702902320604241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The present study compares the changes in ventilation in response to sustained hypobaric hypoxia and acute normobaric hypoxia between subjects susceptible to high altitude pulmonary edema (HAPE-S) and control subjects (C-S). Seven HAPE-S and five C-S were exposed to simulated high altitude of 4000 m for 23 h in a hypobaric chamber. Resting minute ventilation (V(E)), tidal volume (V(T)), and respiratory frequency (f(R)), as well as the end-tidal partial pressures of oxygen (P(ET(O2))) and carbon dioxide (P(ET(CO2))) were measured in all subjects sitting in a standardized position. Six measurement periods were recorded: ZH1 at 450 m at Zurich level, HA1 on attaining 3600 m altitude, HA2 after 20 min at 4000 m, HA3 after 21 h and HA4 after 23 h at 4000 m altitude, and ZH2 immediately after recompression to Zurich level. At ZH1 and HA3, the measurements were first done in lying, then in sitting, and afterwards in standing. Peripheral arterial oxygen saturation (Sa(O2)) was continuously recorded. All respiratory parameters were also measured during exercise lasting 30 min, the work load being 50% of maximal oxygen consumption (V(O2max)) at Zurich level and 26% of the Zurich V(O2max) at 4000 m. V(E), P(ET(O2)) and P(ET(CO2)) did not significantly differ between HAPE-S and C-S at rest and during exercise periods at Zurich level and at high altitude. However, Sa(O2) was significantly lower in HAPE-S than in C-S at rest and during exercise at 4000 m. Breathing through the mouthpiece during ventilation measurements increased significantly the Sa(O2) in HAPE-S in posture tests at HA3. This effect was most pronounced in the supine posture, in which HAPE-S had the lowest Sa(O2) values. These data provide evidence that (1) gas exchange might be impaired on the level of ventilation-perfusion mismatch or due to diffusion limitation in HAPE-S during the first 23 h of exposure to a simulated altitude of 4000 m, and (2) contrary to C-S, the Sa(O2) in HAPE-S is significantly affected by body position and by mouthpiece breathing.
Collapse
|
26
|
Hanaoka M, Droma Y, Hotta J, Matsuzawa Y, Kobayashi T, Kubo K, Ota M. Polymorphisms of the tyrosine hydroxylase gene in subjects susceptible to high-altitude pulmonary edema. Chest 2003; 123:54-8. [PMID: 12527603 DOI: 10.1378/chest.123.1.54] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVES A blunted hypoxic ventilatory response (HVR) has been observed in some sufferers of high-altitude pulmonary edema (HAPE), and was proposed as a potential mechanism in its pathogenesis. Tyrosine hydroxylase (TH) is a rate-limiting enzyme in the carotid body responding to hypoxia to synthesize dopamine neurotransmitter to heighten ventilation. The association of constitutional susceptibility to HAPE regarding the blunted HVR aspect with polymorphisms of the TH gene was examined. DESIGN A cross-sectional case control study. SETTING Shinshu University Hospital, Matsumoto, Japan. PARTICIPANTS Forty-three subjects with a history of HAPE (HAPE group) and 51 healthy climbers without a history of HAPE (control group). MEASUREMENTS The (TCAT)n tetranucleotide microsatellite repeats within intron 1 and Met81Val variant in exon 2 of the TH gene were investigated by polymerase chain reaction following either direct sequencing or restriction fragment length polymorphism. The HVR in 21 subjects among the HAPE group was also measured. RESULTS No significant frequency differences could be found in terms of either of the two polymorphisms between the HAPE and control groups. Meanwhile, no relationships were observed between the HVR values of HAPE subjects and the individual alleles in both polymorphisms of the TH gene. CONCLUSION The genetic susceptibility of HAPE, specifically the blunted HVR in HAPE, is probably not associated with the mutations of the TH gene, implying that these two polymorphisms may not be a sufficient genetic marker for predicting a predisposition to the susceptibility to HAPE.
Collapse
Affiliation(s)
- Masayuki Hanaoka
- First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Compte Torrero L, Real Soriano RM, Botella De Maglia J, de Diego Damiá A, Macián Gisbert V, Perpiñá Tordera M. [Respiratory changes during ascension to 8,000 meters mountain]. Med Clin (Barc) 2002; 118:47-52. [PMID: 11809143 DOI: 10.1016/s0025-7753(02)72277-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Our goal was to determine whether spirometric alterations occur during expeditions to 8,000-metre peaks, and whether these are modified by acclimatization or are related to acute mountain sickness, to arterial oxygen saturation (SaO2) or to muscular deterioration due to chronic hypoxic exposure. SUBJECTS AND METHOD Forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), inspiratory (MIP) and expiratory (MEP) maximal static pressures, grip strength in both hands, and SaO2 at rest and exercise were measured in eight subjects during an expedition to Gasherbrum II (8,035 m). RESULTS Upon arrival at the base camp (5,200 m), both FVC and FEV1 decreased, with no changes in the FEV1/FVC ratio. FVC did not improve after a brief pressurisation in a portable hyperbaric chamber. A month later, FVC in the base camp returned to normal values. FVC fall correlated with both the severity of acute mountain sickness and weight loss. Resting SaO2 improved with acclimatisation and correlated with the previous hypoxic ventilatory response, both before and after acclimatisation. Acclimatisation led to a decrease in the exercise-induced SaO2 fall. Stay at a high altitude lowered body weight and grip strength, although MIP and MEP remained unchanged. CONCLUSIONS We observed a restrictive alteration was corrected by with acclimatisation. This phenomenon seems to be related to a subclinical high-altitude pulmonary oedema rather than to an increase in the pulmonary vascular volume. Despite the high-altitude muscular deterioration, respiratory muscle weakness was not
Collapse
Affiliation(s)
- Luis Compte Torrero
- Servicio de Neumología. Expedición Cinc Segles de la Universitat de València al Gasherbrum II, Spain.
| | | | | | | | | | | |
Collapse
|
28
|
Pollard AJ, Niermeyer S, Barry P, Bärtsch P, Berghold F, Bishop RA, Clarke C, Dhillon S, Dietz TE, Durmowicz A, Durrer B, Eldridge M, Hackett P, Jean D, Kriemler S, Litch JA, Murdoch D, Nickol A, Richalet JP, Roach R, Shlim DR, Wiget U, Yaron M, Zubieta-Castillo G, Zubieta-Calleja GR. Children at high altitude: an international consensus statement by an ad hoc committee of the International Society for Mountain Medicine, March 12, 2001. High Alt Med Biol 2002; 2:389-403. [PMID: 11682018 DOI: 10.1089/15270290152608561] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Sightings. High Alt Med Biol 2001. [DOI: 10.1089/152702901753397036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
30
|
Bärtsch P, Grünig E, Hohenhaus E, Dehnert C. Assessment of high altitude tolerance in healthy individuals. High Alt Med Biol 2001; 2:287-96. [PMID: 11443008 DOI: 10.1089/152702901750265378] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The most reliable prediction of high altitude tolerance can be derived from the clinical history of previous comparable exposures. Unfortunately, there are no reliable tests for prediction prior to first-time ascents. Although susceptibility to AMS is usually associated with a low hypoxic ventilatory response (HVR), there is too much overlap with the range of normal values, which precludes measuring HVR or O(2) saturation during brief hypoxia for reliable identification of susceptibility to AMS. A low HVR and an exaggerated rise in pulmonary artery pressure with (prolonged) hypoxia, or exercise in normoxia, are markers of susceptibility to high altitude pulmonary edema (HAPE). These tests can not be recommended for routinely determining high altitude tolerance because the prevalence of susceptibility to HAPE is low and because specificity and sensitivity of these tests are not sufficiently established. On the other hand, HAPE may be avoided in susceptible individuals by ascent rates of 300 m per day above an altitude of 2000 m. Since prediction of risk of mountain sickness is difficult, it is important during the physician consultation prior to ascent to consider the altitude profile, the type of ascent, the performance capacity, the history of previous exposures, and the medical infrastructure of the area.
Collapse
Affiliation(s)
- P Bärtsch
- Department of Internal Medicine, Division VII (Sports Medicine), Medical University Clinic Heidelberg, Germany.
| | | | | | | |
Collapse
|
31
|
Abstract
OBJECTIVE Children with Down syndrome (DS) are living longer and are increasingly participating in recreational activities. When a child with DS was diagnosed with high-altitude pulmonary edema (HAPE), this study was undertaken to determine whether and under what circumstances children with DS develop HAPE. DESIGN A retrospective review of the medical records of Children's Hospital, Denver, Colorado was performed for children with a discharge diagnosis of HAPE. Diagnostic criteria for HAPE included the presence of crackles or frothy sputum production on examination, hypoxemia, chest radiograph findings consistent with pulmonary edema, and rapid clinical improvement after descent or oxygen therapy. RESULTS A total of 52 patients with HAPE were found of whom 6 also had DS. The age range of the children with DS was 2 to 14 years. HAPE developed at altitudes ranging from 1738 to 3252 m. Four children developed HAPE within 24 hours of arrival to altitude. Three children had chronic pulmonary hypertension, and 4 had either an existing cardiac defect with left-to-right shunt or previously had a defect with left-to-right shunt that had been repaired. One child had Eisenmenger syndrome with chronic right-to-left shunting of blood. Five children had preexisting illnesses before travel to altitude. CONCLUSION Children with DS often have medical problems such as chronic pulmonary hypertension, frequent infections, and pulmonary vascular overperfusion and injury from existing or previous cardiac defects. These problems all may be viewed as risk factors for HAPE and thus result in the rapid development of HAPE at low altitudes. Care should be taken when traveling to even moderate altitudes with children with DS.
Collapse
Affiliation(s)
- A G Durmowicz
- Division of Pediatric Pulmonology, University of Utah Health Science Center and Primary Children's Medical Center, Salt Lake City, Utah 84132, USA.
| |
Collapse
|
32
|
Carpenter TC, Niermeyer S, Durmowicz AG. Altitude-related illness in children. CURRENT PROBLEMS IN PEDIATRICS 1998; 28:181-98. [PMID: 9699083 DOI: 10.1016/s0045-9380(98)80066-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- T C Carpenter
- Section of Pediatric Critical Care, University of Colorado Health Sciences Center, Denver, USA
| | | | | |
Collapse
|
33
|
Arieli R, Reuveni A, Melnikov V. Effect of hypothermia on the survival of the immature pig in a confined atmosphere. J Basic Clin Physiol Pharmacol 1997; 8:91-111. [PMID: 9363572 DOI: 10.1515/jbcpp.1997.8.1-2.91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The rat has an optimal body temperature (TB = 20 degrees C) for hypoxic survival in a confined space. The general applicability of this finding and the influence of body size was studied in immature pigs (27 kg). The pig consumed oxygen in a sealed chamber until it reached the terminal state. We measured blood pressure, inspired O2 and CO2, minute ventilation, ECG, ambient and body temperatures, and PO2, PCO2, O2-content and pH in arterial and venous blood. Four different cooling procedures produced a terminal TB of 26 +/- 3.1 degrees C, 30.1 +/- 2.9 degrees C, 30.0 +/- 2.8 degrees C and 22.6 +/- 2.1 degrees C and a terminal PIO2 of 28.0 +/- 10.2 torr, 30.8 +/- 7.6 torr, 31.5 +/- 5.6 torr and 41.7 +/- 15.4 torr respectively (mean +/- SD). Oxygen consumption, minute ventilation and cardiac output increased from baseline values of 0.5 l.h-1.kg-1, 10 l.min-1, and 6 l.min-1 respectively at the start of cold exposure, and declined moderately as a function of PIO2 below 60 torr. With respect to the relation between terminal body temperature and terminal PIO2 (but not PaO2), we found an optimal body temperature (26 degrees C) at which the animal can survive to the lowest PIO2. Using the allometric approach, i.e. linear extrapolation of temperature as a function of logarithm body mass, the optimal body temperature for man would be 27.5 degrees C. The advantage of hypothermia in the hypoxic survival of the whole animal is its effect on the reduction of the inspired-arterial O2 difference.
Collapse
Affiliation(s)
- R Arieli
- Israel Naval Medical Institute, IDF Medical Corps, Haifa, Israel
| | | | | |
Collapse
|
34
|
Hashimoto F, McWilliams B, Qualls C. Pulmonary ventilatory function decreases in proportion to increasing altitude. Wilderness Environ Med 1997; 8:214-7. [PMID: 11990165 DOI: 10.1580/1080-6032(1997)008[0214:pvfdip]2.3.co;2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The objective of this study was to examine how pulmonary ventilatory function, including response to bronchodilation, is related to altitude during high-altitude trekking. This cohort experiment consisted of multiple spirometric tests before and after bronchodilation in participants at baseline (1624 m) and at different altitudes (3404-4896 m) during a 2-week trek. The setting was in the Himalayas. Eleven men (ages 22-68 years) and eight women (ages 19-42 years) participated. Interventions were at altitudes of 1624 m to 5265 m; albuterol was administered via Rotahaler. Forced vital capacity (FVC) decreased by an average of 3.8% [95% confidence interval (CI) 1.6 to 6.0] per 1000-m altitude increment. Forced expiratory volume in 1 second (FEV1.0) decreased 3.7% (95% CI 1.9 to 5.5) per each 1000-m altitude increment. Maximal midexpiratory flow rate (FEF25-75%) decreased by 3.6% (95% CI 0.9 to 6.3) per each 1000-m altitude increment. Small, postalbuterol flow increases were present at baseline and at altitude. Ventilatory function returned quickly toward baseline upon descent. One trekker developed cough, dyspnea at rest, extreme weakness, rales, tachycardia, and oxygen desaturation to 71%. His ventilatory measurements did not differ significantly (p > 0.32) from the group means. We concluded that changes in some pulmonary ventilatory parameters (FVC, FEV1.0, and FEF25-75%) were proportional to the magnitude of altitude during a high-altitude trek. These were tolerated well and do not seem to relate to acute mountain sickness. A bronchodilator effect was not increased at altitude.
Collapse
Affiliation(s)
- F Hashimoto
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque 87131, USA
| | | | | |
Collapse
|
35
|
Ge RL, Matsuzawa Y, Takeoka M, Kubo K, Sekiguchi M, Kobayashi T. Low pulmonary diffusing capacity in subjects with acute mountain sickness. Chest 1997; 111:58-64. [PMID: 8995993 DOI: 10.1378/chest.111.1.58] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This study was conducted to investigate whether the changes in the pulmonary diffusing capacity found in individuals with acute mountain sickness (AMS) reflect the early stage of high-altitude pulmonary edema (HAPE). We measured the pulmonary diffusion capacity for carbon monoxide (DCO) by the single-breath method, arterialized capillary blood gas, and spirometry in a group of 32 healthy subjects (24 men, eight women) at an altitude of 2,260 m and after ascent to 4,700 m. Twelve subjects (10 men, two women) had symptoms of AMS (AMS group) by the second day after arrival at 4,700 m, but none had clinical signs of pulmonary or cerebral edema. In the non-AMS group, almost all subjects exhibited an increase in DCO at 2,260 to 4,700 m (delta DCO, 10.7 +/- 1.25 mL/min/mm Hg), while the degree of increase in DCO in the AMS group (n = 12) was significantly lower (delta DCO, 1.26 +/- 1.74 mL/min/mm Hg) than that of the non-AMS group (p < 0.01). In four of the 12 subjects with AMS who had a high AMS score, DCO decreased from 38.4 +/- 4.5 to 33.2 +/- 5.3 mL/min/mm Hg (delta DCO, -5.84 +/- 1.1 mL/min/mm Hg). The AMS group showed significantly lower vital capacity, forced expiratory flow during the middle half of FVC, PaO2, and a greater alveolar-arterial oxygen pressure difference at 4,700 m compared with the non-AMS group. DCO showed a significant negative correlation with AMS score (r = -0.885) and a positive correlation with PaO2 (r = 0.757) at 4,700 m. These results suggest that the decreased pulmonary diffusing capacity in subjects with AMS reflects the presence of pulmonary gas exchange abnormality, which is probably due to subclinical interstitial edema of the lung.
Collapse
Affiliation(s)
- R L Ge
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Kaminsky DA, Jones K, Schoene RB, Voelkel NF. Urinary leukotriene E4 levels in high-altitude pulmonary edema. A possible role for inflammation. Chest 1996; 110:939-45. [PMID: 8874249 DOI: 10.1378/chest.110.4.939] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
STUDY OBJECTIVES Inflammation may contribute to the pathogenesis of high-altitude pulmonary edema (HAPE). This study was designed to determine whether a marker of inflammation, urinary leukotriene E4 (LTE4), is elevated in patients with HAPE. DESIGN We conducted a case-control study to collect clinical data and urine samples from HAPE patients and healthy control subjects at moderate altitude (> or = 2727 m), and follow-up urine samples from HAPE patients following their return to low altitude (< or = 1,600 m). SETTING Five medical clinics in Summit County, Colorado. PATIENTS Questionnaire data were evaluated in 71 HAPE patients and 36 control subjects. Urinary LTE4 levels were determined from a random subset of 38 HAPE patients and 10 control subjects presenting at moderate altitude, and on 5 HAPE patients who had returned to low altitude. MEASUREMENTS AND RESULTS Using an enzyme immunoassay technique, urinary LTE4 levels were found to be significantly higher in HAPE patients (123 [16 to 468] pg/mg creatinine, geometric mean [range]) than in control subjects (69 [38 to 135]), p = 0.02. Following return to low altitude, urinary LTE4 levels fell significantly from 122 (41.8 to 309) to 53.6 (27.6 to 104) pg/mg creatinine (p = 0.05). Urinary LTE4 levels were not related to age, sex, time at altitude, physical condition or habitual exercise, recent use of alcohol or nonsteroidal anti-inflammatory drugs (NSAIDs), or oxygen saturation. Clinical factors associated with HAPE included male sex, regular exercise, and recent use of NSAIDs. CONCLUSIONS We conclude that urinary LTE4 levels are elevated in patients with HAPE, supporting the view that HAPE involves inflammatory mechanisms.
Collapse
Affiliation(s)
- D A Kaminsky
- Pulmonary Disease and Critical Care Medicine Unit, University of Vermont College of Medicine, Burlington 05405, USA
| | | | | | | |
Collapse
|
37
|
|
38
|
Abstract
The primary physiologic disturbance at high altitude is hypoxemia, which leads to a cascade of secondary changes in each step of the oxygen-transport chain. The author, in this review, focuses on the alterations in ventilatory control and alveolar-capillary gas exchange at high altitude and discusses the clinical pulmonary complications associated with these alterations, as well as their prevention and management.
Collapse
Affiliation(s)
- C C Hsia
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas 75235-9034
| |
Collapse
|