1
|
Mei Y, Cao Y, Wang W. Emerging Violet Phosphorus Nanomaterial for Biomedical Applications. Adv Healthc Mater 2025; 14:e2403576. [PMID: 39791284 DOI: 10.1002/adhm.202403576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/07/2024] [Indexed: 01/12/2025]
Abstract
Violet phosphorus (VP) is a phosphorus allotrope first discovered by Hittorf in 1865, which has aroused more attention in the biomedical field in recent years attributed to its gradually discovered unique properties. VP can be further categorized into bulk VP, VP nanosheets (VPNs), and VP quantum dots (VPQDs), and chemical vapor transport (CVT), liquid-phase/mechanical/laser exfoliation, and solvothermal synthesis are the common preparation approaches of bulk VP, VPNs, and VPQDs, respectively. Compared with another phosphorus allotrope (black phosphorus, BP) that is once highly regarded in biomedical applications, VP nanomaterial (namely VPNs and VPQDs) not only exhibits tunable bandgap, moderate on/off current ratio, and good biodegradability, but shows enhanced stability and biosafety as well, allowing it to be a promising candidate for a variety of biomedical applications like antibacterial therapy, anticancer therapy, and biosensing and disease diagnosis. In this review, the classification and the relevant synthesis routes of VP are initially summarized, and the unique properties of VP nanomaterial momentous to its biomedical applications are subsequently expounded. The latest research advances of this emerging nanomaterial in the biomedical field are then introduced in detail, and both the existing challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Yuanyuan Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
| |
Collapse
|
2
|
Bates CA, Vincent MJ, Buerger AN, Santamaria AB, Maier A, Jack M. Investigating the relationship between β-carotene intake from diet and supplements, smoking, and lung cancer risk. Food Chem Toxicol 2024; 194:115104. [PMID: 39522798 DOI: 10.1016/j.fct.2024.115104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
β-carotene is a naturally occurring and safe dietary source of vitamin A that is associated with cancer risk reductions when consumed in typical dietary amounts. However, two clinical trials reported increased incidence of lung cancer and total mortality among heavy smokers taking β-carotene supplements (20 or 30 mg/day). Based on these findings, the Joint FAO/WHO Expert Committee on Food Additives withdrew Acceptable Daily Intake values for β-carotene (0-5 mg/kg bw). We evaluated relevant epidemiological and toxicological literature to assess the biological plausibility of this relationship and identified three mechanisms involving cellular proliferation signaling, a mode of action for cancer promotion. The overall weight of evidence consistently demonstrated typical dietary doses of β-carotene decreased cellular proliferation signaling via these mechanisms, even in the presence of smoke, while co-exposure to smoke and higher, supplemental doses increased cellular proliferation signaling through these same pathways. The production of excessive oxidative β-carotene metabolites via reactions with smoke constituents may be a key event underlying this relationship. Consistent with previous findings, our evaluation indicated consumption of up to 50 mg/day β-carotene does not present safety concerns for the non-smoking general population. Heavy smokers consuming less than 15 mg β-carotene/day are not expected to be at an increased risk of lung cancer.
Collapse
Affiliation(s)
| | | | | | | | - Andrew Maier
- Integral Consulting, Inc., Cincinnati, OH, USA(1)
| | - Maia Jack
- American Beverage Association, Washington DC, USA
| |
Collapse
|
3
|
Ding R, Sang S, Yi J, Xie H, Wang F, Dai A. G6PD is a prognostic biomarker correlated with immune infiltrates in lung adenocarcinoma and pulmonary arterial hypertension. Aging (Albany NY) 2024; 16:466-492. [PMID: 38194707 PMCID: PMC10817399 DOI: 10.18632/aging.205381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) with Pulmonary arterial hypertension (PAH) shows a poor prognosis. Detecting related genes is imperative for prognosis prediction. METHODS The gene expression profiles of LUAD and PAH were acquired from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, respectively. The co-expression modules associated with LUAD and PAH were evaluated using the Weighted Gene Co-Expression Network Analysis (WGCNA). The relationship between key gene expression with immune-cell infiltration and the tumor immune microenvironment (TIME) was evaluated. We confirmed the mRNA and protein levels in vivo and vitro. G6PD knockdown was used to conduct the colony formation assay, transwell invasion assay, and scratch wound assay of A549 cells. EDU staining and CCK8 assay were performed on G6PD knockdown HPASMCs. We identified therapeutic drug molecules and performed molecular docking between the key gene and small drug molecules. RESULTS Three major modules and 52 overlapped genes were recognized in LUAD and PAH. We identified the key gene G6PD, which was significantly upregulated in LUAD and PAH. In addition, we discovered a significant difference in infiltration for most immune cells between high- and low-G6PD expression groups. The mRNA and protein expressions of G6PD were significantly upregulated in LUAD and PAH. G6PD knockdown decreased proliferation, cloning, and migration of A549 cells and cell proliferation in HPASMCs. We screened five potential drug molecules against G6PD and targeted glutaraldehyde by molecular docking. CONCLUSIONS This study reveals that G6PD is an immune-related biomarker and a possible therapeutic target for LUAD and PAH patients.
Collapse
Affiliation(s)
- Rongzhen Ding
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
- Department of Respiratory Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Shuliu Sang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Yi
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
| | - Haiping Xie
- Department of Urinary Surgery, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Feiying Wang
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
| | - Aiguo Dai
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
- Department of Respiratory Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Qu Z, Tian J, Sun J, Shi Y, Yu J, Zhang W, Zhuang C. Diallyl trisulfide inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung cancer via modulating gut microbiota and the PPARγ/NF-κB pathway. Food Funct 2024; 15:158-171. [PMID: 38086660 DOI: 10.1039/d3fo03914e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Smoking is the primary risk factor for developing lung cancer. Chemoprevention could be a promising strategy to reduce the incidence and mortality rates of lung cancer. Recently, we reported that A/J mice exposed to tobacco smoke carcinogens displayed the reshaping of gut microbiota. Additionally, garlic oil was found to effectively inhibit the carcinogenic effects of tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in lung tumorigenesis. Diallyl trisulfide (DATS), which is the predominant compound in garlic oil, exhibits various biological activities. To further explore the chemopreventive action and potential mechanism of DATS on lung tumorigenesis, we established a lung adenocarcinoma model in A/J mice stimulated by NNK. Subsequently, we employed multi-omics combined molecular biology technologies to clarify the mechanism. The results indicated that DATS significantly decreased the number of lung tumors in NNK induced A/J mice. Interestingly, we discovered that DATS could modulate gut microbiota, particularly increasing the abundance of F. rodentium, which has inhibitory effects on tumor growth. Mechanistically, DATS could activate the PPARγ pathway, leading to the negative regulation of the NF-κB signaling pathway and subsequent suppression of NF-κB-mediated inflammatory factors. Collectively, these findings provide support for DATS as a potential novel chemopreventive agent for tobacco carcinogen-induced lung cancer.
Collapse
Affiliation(s)
- Zhuo Qu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Jiahui Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, 409 Guangrong Road, Tianjin 300134, China
| | - Ying Shi
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Wannian Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunlin Zhuang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
5
|
Ghatak S, Satapathy SR, Sjölander A. DNA Methylation and Gene Expression of the Cysteinyl Leukotriene Receptors as a Prognostic and Metastatic Factor for Colorectal Cancer Patients. Int J Mol Sci 2023; 24:ijms24043409. [PMID: 36834820 PMCID: PMC9963074 DOI: 10.3390/ijms24043409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Colorectal cancer (CRC), one of the leading causes of cancer-related deaths in the western world, is the third most common cancer for both men and women. As a heterogeneous disease, colon cancer (CC) is caused by both genetic and epigenetic changes. The prognosis for CRC is affected by a variety of features, including late diagnosis, lymph node and distant metastasis. The cysteinyl leukotrienes (CysLT), as leukotriene D4 and C4 (LTD4 and LTC4), are synthesized from arachidonic acid via the 5-lipoxygenase pathway, and play an important role in several types of diseases such as inflammation and cancer. Their effects are mediated via the two main G-protein-coupled receptors, CysLT1R and CysLT2R. Multiple studies from our group observed a significant increase in CysLT1R expression in the poor prognosis group, whereas CysLT2R expression was higher in the good prognosis group of CRC patients. Here, we systematically explored and established the role of the CysLTRs, cysteinyl leukotriene receptor 1(CYSLTR1) and cysteinyl leukotriene receptor 2 (CYSLTR2) gene expression and methylation in the progression and metastasis of CRC using three unique in silico cohorts and one clinical CRC cohort. Primary tumor tissues showed significant CYSLTR1 upregulation compared with matched normal tissues, whereas it was the opposite for the CYSLTR2. Univariate Cox proportional-hazards (CoxPH) analysis yielded a high expression of CYSLTR1 and accurately predicted high-risk patients in terms of overall survival (OS; hazard ratio (HR) = 1.87, p = 0.03) and disease-free survival [DFS] Hazard ratio [HR] = 1.54, p = 0.05). Hypomethylation of the CYSLTR1 gene and hypermethylation of the CYSLTR2 gene were found in CRC patients. The M values of the CpG probes for CYSLTR1 are significantly lower in primary tumor and metastasis samples than in matched normal samples, but those for CYSLTR2 are significantly higher. The differentially upregulated genes between tumor and metastatic samples were uniformly expressed in the high-CYSLTR1 group. Two epithelial-mesenchymal transition (EMT) markers, E-cadherin (CDH1) and vimentin (VIM) were significantly downregulated and upregulated in the high-CYSLTR1 group, respectively, but the result was opposite to that of CYSLTR2 expression in CRC. CDH1 expression was high in patients with less methylated CYSLTR1 but low in those with more methylated CYSLTR2. The EMT-associated observations were also validated in CC SW620 cell-derived colonospheres, which showed decreased E-cadherin expression in the LTD4 stimulated cells, but not in the CysLT1R knockdown SW620 cells. The methylation profiles of the CpG probes for CysLTRs significantly predicted lymph node (area under the curve [AUC] = 0.76, p < 0.0001) and distant (AUC = 0.83, p < 0.0001) metastasis. Intriguingly, the CpG probes cg26848126 (HR = 1.51, p = 0.03) for CYSLTR1, and cg16299590 (HR = 2.14, p = 0.03) for CYSLTR2 significantly predicted poor prognosis in terms of OS, whereas the CpG probe cg16886259 for CYSLTR2 significantly predicts a poor prognosis group in terms of DFS (HR = 2.88, p = 0.03). The CYSLTR1 and CYSLTR2 gene expression and methylation results were successfully validated in a CC patient cohort. In this study, we have demonstrated that CysLTRs' methylation and gene expression profile are associated with the progression, prognosis, and metastasis of CRC, which might be used for the assessment of high-risk CRC patients after validating the result in a larger CRC cohort.
Collapse
|
6
|
Elisia I, Yeung M, Kowalski S, Wong J, Rafiei H, Dyer RA, Atkar-Khattra S, Lam S, Krystal G. Omega 3 supplementation reduces C-reactive protein, prostaglandin E 2 and the granulocyte/lymphocyte ratio in heavy smokers: An open-label randomized crossover trial. Front Nutr 2022; 9:1051418. [PMID: 36532545 PMCID: PMC9751896 DOI: 10.3389/fnut.2022.1051418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVES Given the current controversy concerning the efficacy of omega 3 supplements at reducing inflammation, we evaluated the safety and efficacy of omega 3 on reducing inflammation in people with a 6-year lung cancer risk >1.5% and a C reactive protein (CRP) level >2 mg/L in a phase IIa cross-over study. MATERIALS AND METHODS Forty-nine healthy participants ages 55 to 80, who were still smoking or had smoked in the past with ≥30 pack-years smoking history, living in British Columbia, Canada, were randomized in an open-label trial to receive 2.4 g eicosapentaenoic acid (EPA) + 1.2 g docosahexaenoic acid (DHA)/day for 6 months followed by observation for 6 months or observation for 6 months first and then active treatment for the next 6 months. Blood samples were collected over 1 year for measurement of plasma CRP, plasma and red blood cell (RBC) membrane levels of EPA, DHA and other fatty acids, Prostaglandin E2 (PGE2), Leukotriene B4 (LTB4) and an inflammatory marker panel. RESULTS Twenty one participants who began the trial within the active arm completed the trial while 20 participants who started in the control arm completed the study. Taking omega 3 resulted in a significant decrease in plasma CRP and PGE2 but not LTB4 levels. Importantly, the effect size for the primary outcome, CRP values, at the end of the intervention relative to baseline was medium (Cohen's d = 0.56). DHA, but not EPA levels in RBC membranes inversely correlated with PGE2 levels. Omega 3 also led to a significant reduction in granulocytes and an increase in lymphocytes. These high-dose omega 3 supplements were well tolerated, with only minor gastrointestinal symptoms in a subset of participants. CONCLUSION Omega 3 fatty acids taken at 3.6 g/day significantly reduce systemic inflammation with negligible adverse health effects in people who smoke or have smoked and are at high risk of lung cancer.ClinicalTrials.gov, NCT number: NCT03936621.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Michelle Yeung
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Sara Kowalski
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Jennifer Wong
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Hossein Rafiei
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Roger A. Dyer
- Analytical Core for Metabolomics and Nutrition, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sukhinder Atkar-Khattra
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
7
|
Shao L, Zhu Y, Liao B, Wang G, Huang L, Yu L, Bai D. Effects of Curcumin-mediated photodynamic therapy on autophagy and Epithelial-mesenchymal transition of lung cancer cells. Photodiagnosis Photodyn Ther 2022; 38:102849. [PMID: 35390521 DOI: 10.1016/j.pdpdt.2022.102849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND This study aimed to investigated whether Curcumin-mediated PDT suppress EMT in lung cancer cells, and explore the roles of autophagy in the process of regulating EMT. METHODS Lung cancer cell viability was assessed by CCK-8 assay. The expression of epithelial marker and mesenchymal markers, the conversion of LC3-I to LC3-II and the levels of p62 and beclin1 in A549 and SPCA1 cells were measured by Western blotting assay. The Wound healing and Transwell assays were used to detect the migration and invasion abilities of the A549 and SPCA1 cells. Autophagosome formation was detected via observing the colocalization of Lamp-2 with LC3 in A549 cells, and the autophagy ultrastructure was observed by TEM. RESULTS Curcumin-PDT inhibited EMT, migration and invasion and induced autophagy in lung cancer cells. Curcumin-PDT induced autophagy was involved in the process of PDT inhibiting EMT, but it presented a promoting effect of EMT in lung cancer cells. Curcumin-PDT combined with CQ further inhibited EMT, invasion and migration of lung cancer cells. CONCLUSIONS The role of PDT-induced autophagy in the regulation of EMT was determined to be a promoting effect in lung cancer. Therefore, Curcumin-mediated PDT combined with autophagy inhibitor further suppressed EMT of lung cancer cells, and may represent a potential strategy against invasion and migration of lung cancer.
Collapse
Affiliation(s)
- Lan Shao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Ying Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Bo Liao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Gailan Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Liyi Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
8
|
Two cardenolide glycosides from the seed fairs of Asclepias curassavica and their cytotoxic activities. Chin J Nat Med 2022; 20:202-209. [DOI: 10.1016/s1875-5364(21)60098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 11/20/2022]
|
9
|
Unravelling the molecular mechanisms underlying chronic respiratory diseases for the development of novel therapeutics via in vitro experimental models. Eur J Pharmacol 2022; 919:174821. [DOI: 10.1016/j.ejphar.2022.174821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
|
10
|
Zhang L, Qu Z, Song A, Yang J, Yu J, Zhang W, Zhuang C. Garlic oil blocks tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis by inducing phase II drug-metabolizing enzymes. Food Chem Toxicol 2021; 157:112581. [PMID: 34562529 DOI: 10.1016/j.fct.2021.112581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer caused one-quarter of all cancer deaths that was more than other cancers. Chemoprevention is a potential strategy to reducing lung cancer incidence and death, and the effective chemopreventive agents are needed. We investigated the efficacy and mechanism of garlic oil (GO), the garlic product, in the chemoprevention of tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung cancer in A/J mice and MRC-5 cell models in the present study. As a result, it was demonstrated that GO significantly inhibited the NNK-induced lung cancer in vivo and protected MRC-5 cells from NNK-induced cell damage. GO could induce the expressions of the phase II drug-metabolizing enzymes, including NAD(P)H: quinone oxidoreductase 1 (NQO-1), glutathione S-transferase alpha 1 (GSTA1), and antioxidative enzymes heme oxygenase-1 (HO-1). These results supported the potential of GO as a novel candidate agent for the chemoprevention of tobacco carcinogens induced lung cancer.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Aiwei Song
- Montverde Academy Shanghai, 508 South Hanqing Road, Shanghai, 201201, China
| | - Jianhong Yang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
11
|
Fan Y, Su Z, Wei M, Liang H, Jiang Y, Li X, Meng Z, Wang Y, Pan H, Song J, Qiao Y, Zhou Q. Long-term Lung Cancer Risk Associated with Sputum Atypia: A 27-Year Follow-up Study of an Occupational Lung Screening Cohort in Yunnan, China. Cancer Epidemiol Biomarkers Prev 2021; 30:2122-2129. [PMID: 34446474 DOI: 10.1158/1055-9965.epi-21-0339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/12/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sputum cytologic atypia is associated with increased lung cancer risk. However, little is known about the long-term magnitude and temporal trend of this risk. METHODS An extended follow-up was conducted in a prospective screening cohort among occupational tin miners in Yunnan, China. Sputum samples were collected prospectively at baseline and 7 annual screenings since enrollment. The associations between sputum cytologic results from baseline screening, the first 4 consecutive rounds of sputum screening, and lung cancer risk were analyzed by time-varying covariate Cox regression model. RESULTS A moderate or worse cytologic result was associated with a significantly increased lung cancer risk. This relative hazard significantly decreased over time. Compared with negative screening results, the adjusted hazard ratios of baseline-moderate or worse atypia, at least one moderate or worse atypia in the first 4 consecutive screening rounds during the first 10 years of follow-up were 3.11 [95% confidence interval (CI): 2.37-4.07], 3.25 (95% CI: 2.33-4.54) respectively. This association was stronger for persistent atypia (adjusted hazard ratio = 17.55, 95% CI: 8.32-37.03); atypia identified in the recent screening rounds (adjusted HR = 4.14, 95% CI: 2.70-6.35), and those were old in age, had higher level of smoking, occupational radon, and arsenic exposure. In terms of histology, this increased risk was significant for squamous cell carcinoma and small cell lung cancer. CONCLUSIONS Although decreasing over time, an increased lung cancer risk concerning moderate or worse sputum atypia can continue at least for 10 years. IMPACT Sputum atypia might be helpful for identifying high-risk individuals for screening, surveillance, or chemoprevention of lung cancer.
Collapse
Affiliation(s)
- Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Medical University General Hospital, Tianjin, China
| | - Zheng Su
- Department of Cancer Epidemiology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengna Wei
- Breast Cancer Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hao Liang
- Lung Cancer Center, Lung Cancer Institute, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yong Jiang
- Department of Cancer Epidemiology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongli Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinzhao Song
- Department of Mechanical Engineering & Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Youlin Qiao
- Department of Cancer Epidemiology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Center of Global Health, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Medical University General Hospital, Tianjin, China. .,Lung Cancer Center, Lung Cancer Institute, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Frille A, Costantini A, Sreter KB. Associations of aspirin, statins and metformin with lung cancer risk and related mortality. Breathe (Sheff) 2021; 17:200325. [PMID: 34295419 PMCID: PMC8291908 DOI: 10.1183/20734735.0325-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Given the poor survival of lung cancer patients and the promising observations herein, future studies (RCTs) should further investigate both time- and dose-dependent effects of combination therapies across all categories of prevention of lung cancer. https://bit.ly/3hlYTtY.
Collapse
Affiliation(s)
- Armin Frille
- Dept of Respiratory Medicine, University of Leipzig, Leipzig, Germany
| | - Adrien Costantini
- Dept of Respiratory Diseases and Thoracic Oncology, APHP-Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Katherina B Sreter
- Dept of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre "Sestre Milosrdnice", Zagreb, Croatia
| |
Collapse
|
13
|
Sławińska-Brych A, Mizerska-Kowalska M, Król SK, Stepulak A, Zdzisińska B. Xanthohumol Impairs the PMA-Driven Invasive Behaviour of Lung Cancer Cell Line A549 and Exerts Anti-EMT Action. Cells 2021; 10:cells10061484. [PMID: 34204745 PMCID: PMC8231538 DOI: 10.3390/cells10061484] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Xanthohumol (XN), the main prenylated flavonoid from hop cones, has been recently reported to exert significant proapoptotic, anti-proliferative, and growth inhibitory effects against lung cancer in both in vitro and in vivo studies. However, its anti-metastatic potential towards this malignancy is still unrevealed. Previously, we indicated that the human lung adenocarcinoma A549 cell line was sensitive to XN treatment. Therefore, using the same tumour cell model, we have studied the influence of XN on the phorbol-12-myristate-13-acetate (PMA)-induced cell migration and invasion. The effects of XN on the expression/activity of pro-invasive MMP-9 and MMP-2 and the expression of MMP inhibitors, i.e., TIMP-1 and TIMP-2 (anti-angiogenic factors), were evaluated. Additionally, the influence of XN on the production of the key pro-angiogenic cytokine, i.e., VEGF, and the release of TGF-β, which is both a pro-angiogenic cytokine and an epithelial-mesenchymal transition (EMT) stimulator, was studied. Furthermore, the influence of XN on the expression of EMT-associated proteins such as E-cadherin and α-E-catenin (epithelial markers), vimentin and N-cadherin (mesenchymal markers), and Snail-1 (transcriptional repressor of E-cadherin) was studied. To elucidate the molecular mechanism underpinning the XN-mediated inhibition of metastatic progression in PMA-activated cells, the phosphorylation levels of AKT, FAK, and ERK1/2 kinases, which are signalling molecules involved in EMT program activation, were assayed. The results showed that XN in non-cytotoxic concentrations impaired the PMA-driven migratory and invasive capacity of A549 cells by decreasing the level of expression of MMP-9 and concomitantly increasing the expression of the TIMP-1 protein, i.e., a specific blocker of pro-MMP-9 activation. Moreover, XN decreased the PMA-induced production of VEGF and TGF-β. Furthermore, the XN-treatment counteracted the PMA-induced EMT of the A549 cells by the upregulation of E-cadherin and α-E-catenin and the downregulation of N-cadherin, vimentin, and Snail-1 expression. The proposed mechanism underlying the anti-invasive XN activity involved the inhibition of the ERK/MAPK pathway and suppression of FAK and PI3/AKT signalling. Our results suggesting migrastatic properties of XN against lung cancer cells require further verification in in vivo assays.
Collapse
Affiliation(s)
- Adrianna Sławińska-Brych
- Department of Cell Biology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
- Correspondence: ; Tel.: +48-81-537-59-04
| | - Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| | - Sylwia Katarzyna Król
- Laboratory of Neuro-oncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland;
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| |
Collapse
|
14
|
Bars-Cortina D, Sakhawat A, Piñol-Felis C, Motilva MJ. Chemopreventive effects of anthocyanins on colorectal and breast cancer: A review. Semin Cancer Biol 2021; 81:241-258. [DOI: 10.1016/j.semcancer.2020.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
|
15
|
Wiśniewski K, Jozwik M, Wojtkiewicz J. Cancer Prevention by Natural Products Introduced into the Diet-Selected Cyclitols. Int J Mol Sci 2020; 21:E8988. [PMID: 33256104 PMCID: PMC7729485 DOI: 10.3390/ijms21238988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer is now the second leading cause of death worldwide. It is estimated that every year, approximately 9.6 million people die of oncologic diseases. The most common origins of malignancy are the lungs, breasts, and colorectum. Even though in recent years, many new drugs and therapeutic options have been introduced, there are still no safe, effective chemopreventive agents. Cyclitols seem poised to improve this situation. There is a body of evidence that suggests that their supplementation can decrease the incidence of colorectal cancer, lower the risk of metastasis occurrence, lower the proliferation index, induce apoptosis in malignant cells, enhance natural killer (NK) cell activity, protect cells from free radical damage, and induce positive molecular changes, as well as reduce the side effects of anticancer treatments such as chemotherapy or surgery. Cyclitol supplementation appears to be both safe and well-tolerated. This review focuses on presenting, in a comprehensive way, the currently available knowledge regarding the use of cyclitols in the treatment of different malignancies, particularly in lung, breast, colorectal, and prostate cancers.
Collapse
Affiliation(s)
- Karol Wiśniewski
- Department Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum University of Warmia and Mazury, 10-561 Olsztyn, Poland;
| | - Joanna Wojtkiewicz
- Department Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| |
Collapse
|
16
|
Kutschan S, Freuding M, Keinki C, Huebner J. Recommendations on complementary and alternative medicine within S3 guidelines in oncology: systematic quality assessment of underlying methodology. J Cancer Res Clin Oncol 2020; 146:2419-2425. [PMID: 32394053 PMCID: PMC7382657 DOI: 10.1007/s00432-020-03238-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/25/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Complementary and alternative medicine (CAM) is used by about half of all patients with cancer. Guidelines are an important tool to introduce evidence-based medicine into routine cancer care. The aim of our study was to assess methodology of the statements and recommendations concerning CAM. METHODS A systematic assessment of all S3 guidelines published until November 2018 was done. Methodology of all statements and recommendations concerning CAM which were declared as evidence-based was evaluated with respect to international standards. According to the AMSTAR-2 instrument search strategy including filters, searched databases, restrictions to the research question and description of the included studies were examined. In case of adaptations from other guidelines, all underlying guidelines were examined as well. RESULTS After examining 212 guidelines, 82 evidence-based statements and recommendations regarding CAM could be identified. Four were derived by adaptation, 78 by a de-novo search. Only 11 of 78 (14%) fulfilled all assessment criteria. In 18 (19%) cases no information on search strategy was attainable in any document affiliated to the guideline, in 35 (45%) cases information on search strategy was superficial and in 54 (78%) cases the referred evidence was not presented in adequate detail. CONCLUSIONS Concerning CAM statements and recommendations within S3 guidelines quality of evidence processing has several shortcomings. Guideline adaptions often lack transparency and traceability.
Collapse
Affiliation(s)
- Sabine Kutschan
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Maren Freuding
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Christian Keinki
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jutta Huebner
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
17
|
Lücke E, Ganzert C, Föllner S, Wäsche A, Jechorek D, Schoeder V, Walles T, Genseke P, Schreiber J. [Operability and Pathological Response of Non-Small Cell Lung Cancer (NSCLC) after Neoadjuvant Therapy with Immune Checkpoint Inhibition]. Pneumologie 2020; 74:766-772. [PMID: 32820489 DOI: 10.1055/a-1199-2029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The blockade of immune escape mechanisms (e. g. PD1 /PD-L1) using immune checkpoint inhibition (ICI) can significantly prolong survival and induce remission in patients with advanced non-small cell lung cancer (NSCLC). Less is known about neoadjuvant ICI in patients with resectable (UICC stage III) or oligometastatic (UICC stage IVa) NSCLC. METHODS Tissue biopsies from patients with advanced or oligometastatic NSCLC were screened for PD-L1 expression. In case of PD-L1-expression > 50 %, ECOG status of 0 or 1 and expected operability, patients received ICI. After about four weeks, patients underwent thoracic surgical resection. In all patients, a complete staging, including PET-CT, cMRI, and endobronchial ultrasound, was performed. The tolerability, the radiological and the histopathological tumor response as well as the surgical and oncological outcomes were analyzed. FINDINGS Four patients (2 male, 2 female, age 56 - 78 years, n = 3 adenocarcinoma, n = 1 squamous cell carcinoma) with local advanced tumors received ICI before surgical resection. In three cases the mediastinal lymph nodes were positive. One patient had a single cerebral metastasis which was treated with radiotherapy. All four patients underwent therapy with two to six cycles of ICI (3 × pembrolizumab, 1 × atezolizumab) without any complication, and ICI did not delay the time of surgical resection. According to iRECIST, three patients showed partial response (PR), one patient had stable disease (SD). All tumors were completely resected. The thoracic surgical procedures proved to be technically unproblematic despite inflammatory changes. There were neither treatment-related deaths nor perioperative complications. In the resectates, complete pathological response (CPR, regression grade III ) and regression grade IIb were detected twice. The average time of follow-up was 12 (1 - 24) months. Patients with PPR developed distant metastasis after six months or a local recurrence after four months. The CPR patient is relapse free to date. CONCLUSION In selected patients, neoadjuvant therapy with ICI is well tolerated and can induce a complete remission of the tumor. Treatment with ICI has no negative impact on the surgical procedure. Prognosis seems to be promising in CPR and limited in PPR.
Collapse
Affiliation(s)
- E Lücke
- Klinik für Pneumologie, Otto-von-Guericke-Universität Magdeburg, Magdeburg
| | - C Ganzert
- Klinik für Pneumologie, Otto-von-Guericke-Universität Magdeburg, Magdeburg
| | - S Föllner
- Klinik für Pneumologie, Otto-von-Guericke-Universität Magdeburg, Magdeburg
| | - A Wäsche
- Klinik für Pneumologie, Otto-von-Guericke-Universität Magdeburg, Magdeburg
| | - D Jechorek
- Institut für Pathologie, Otto-von-Guericke-Universität Magdeburg, Magdeburg
| | - V Schoeder
- Institut für Pathologie, Otto-von-Guericke-Universität Magdeburg, Magdeburg
| | - T Walles
- Klinik für Herz- und Thoraxchirurgie, Abteilung Thoraxchirurgie, Otto-von-Guericke-Universität Magdeburg, Magdeburg
| | - P Genseke
- Klinik für Radiologie und Nuklearmedizin, Otto-von-Guericke-Universität Magdeburg, Magdeburg
| | - J Schreiber
- Klinik für Pneumologie, Otto-von-Guericke-Universität Magdeburg, Magdeburg
| |
Collapse
|
18
|
|
19
|
Prevention and Early Detection for NSCLC: Advances in Thoracic Oncology 2018. J Thorac Oncol 2019; 14:1513-1527. [DOI: 10.1016/j.jtho.2019.06.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
|
20
|
Lou Y, Guo Z, Zhu Y, Kong M, Zhang R, Lu L, Wu F, Liu Z, Wu J. Houttuynia cordata Thunb. and its bioactive compound 2-undecanone significantly suppress benzo(a)pyrene-induced lung tumorigenesis by activating the Nrf2-HO-1/NQO-1 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:242. [PMID: 31174565 PMCID: PMC6556055 DOI: 10.1186/s13046-019-1255-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
Abstract
Background Lung cancer remains the most common cause of cancer-related deaths, with a high incidence and mortality in both sexes worldwide. Chemoprevention has been the most effective strategy for lung cancer prevention. Thus, exploring novel and effective candidate agents with low toxicity for chemoprevention is essential and urgent. Houttuynia cordata Thunb. (Saururaceae) (H. cordata), which is a widely used herbal medicine and is also popularly consumed as a healthy vegetable, exhibits anti-inflammatory, antioxidant and antitumor activity. However, the chemopreventive effect of H. cordata against benzo(a)pyrene (B[a]P)-initiated lung tumorigenesis and the underlying mechanism remain unclear. Methods A B[a]P-stimulated lung adenocarcinoma animal model in A/J mice in vivo and a normal lung cell model (BEAS.2B) in vitro were established to investigate the chemopreventive effects of H. cordata and its bioactive compound 2-undecanone against lung tumorigenesis and to clarify the underlying mechanisms. Results H. cordata and 2-undecanone significantly suppressed B[a]P-induced lung tumorigenesis without causing obvious systemic toxicity in mice in vivo. Moreover, H. cordata and 2-undecanone effectively decreased B[a]P-induced intracellular reactive oxygen species (ROS) overproduction and further notably protected BEAS.2B cells from B[a]P-induced DNA damage and inflammation by significantly inhibiting phosphorylated H2A.X overexpression and interleukin-1β secretion. In addition, H. cordata and 2-undecanone markedly activated the Nrf2 pathway to induce the expression of the antioxidative enzymes heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO-1). Nrf2 silencing by transfection with Nrf2 siRNA markedly decreased the expression of HO-1 and NQO-1 to diminish the reductions in B[a]P-induced ROS overproduction, DNA damage and inflammation mediated by H. cordata and 2-undecanone. Conclusions H. cordata and 2-undecanone could effectively activate the Nrf2-HO-1/NQO-1 signaling pathway to counteract intracellular ROS generation, thereby attenuating DNA damage and inflammation induced by B[a]P stimulation and playing a role in the chemoprevention of B[a]P-induced lung tumorigenesis. These findings provide new insight into the pharmacological action of H. cordata and indicate that H. cordata is a novel candidate agent for the chemoprevention of lung cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1255-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanmei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Zhenzhen Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yuanfeng Zhu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Muyan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Rongrong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China
| | - Feichi Wu
- Hunan Zhengqing Pharmaceutical Group Limited, Huaihua, 418005, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China.
| | - Jinjun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
21
|
Lee YM, Kim SJ, Lee JH, Ha E. Inhaled corticosteroids in COPD and the risk of lung cancer. Int J Cancer 2018; 143:2311-2318. [DOI: 10.1002/ijc.31632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 04/23/2018] [Accepted: 05/22/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Yu Min Lee
- Department of Occupational and Environmental Medicine, College of Medicine; Ewha Womans University; Seoul Korea
| | - Soo Jung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine; Ewha Womans University; Seoul Republic of Korea
| | - Jin Hwa Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine; Ewha Womans University; Seoul Republic of Korea
| | - Eunhee Ha
- Department of Occupational and Environmental Medicine, College of Medicine; Ewha Womans University; Seoul Korea
| |
Collapse
|
22
|
He S, Ou R, Wang W, Ji L, Gao H, Zhu Y, Liu X, Zheng H, Liu Z, Wu P, Lu L. Camptosorus sibiricus rupr aqueous extract prevents lung tumorigenesis via dual effects against ROS and DNA damage. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:44-56. [PMID: 29258855 DOI: 10.1016/j.jep.2017.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Camptosorus sibiricus Rupr (CSR) is a widely used herbal medicine with antivasculitis, antitrauma, and antitumor effects. However, the effect of CSR aqueous extract on B[a]P-initiated tumorigenesis and the underlying mechanism remain unclear. Moreover, the compounds in CSR aqueous extract need to be identified and structurally characterized. AIM OF THE STUDY We aim to investigate the chemopreventive effect of CSR and the underlying molecular mechanism. MATERIALS AND METHODS A B[a]P-stimulated normal cell model (BEAS.2B) and lung adenocarcinoma animal model were established on A/J mice. In B[a]P-treated BEAS.2B cells, the protective effects of CSR aqueous extract on B[a]P-induced DNA damage and ROS production were evaluated through flow cytometry, Western blot, real-time quantitative PCR, single-cell gel electrophoresis, and immunofluorescence. Moreover, a model of B[a]P-initiated lung adenocarcinoma was established on A/J mice to determine the chemopreventive effect of CSR in vivo. The underlying mechanism was analyzed via immunohistochemistry and microscopy. Furthermore, the new compounds in CSR aqueous extract were isolated and structurally characterized using IR, HR-ESI-MS, and 1D and 2D NMR spectroscopy. RESULTS CSR effectively suppressed ROS production by re-activating Nrf2-mediated reductases HO-1 and NQO-1. Simultaneously, CSR attenuated the DNA damage of BEAS.2B cells in the presence of B[a]P. Moreover, CSR at 1.5 and 3 g/kg significantly suppressed tumorigenesis with tumor inhibition ratios of 36.65% and 65.80%, respectively. The tumor volume, tumor size, and multiplicity of B[a]P-induced lung adenocarcinoma were effectively decreased by CSR in vivo. After extracting and identifying the compounds in CSR aqueous extract, three new triterpene saponins were isolated and characterized structurally. CONCLUSIONS CSR aqueous extract prevents lung tumorigenesis by exerting dual effects against ROS and DNA damage, suggesting that CSR is a novel and effective agent for B[a]P-induced carcinogenesis. Moreover, by isolating and structurally characterizing three new triterpene saponins, our study further standardized the quality of CSR aqueous extract, which could widen CSR clinical applications.
Collapse
Affiliation(s)
- Shugui He
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Rilan Ou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Wensheng Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Liyan Ji
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Hui Gao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Yuanfeng Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Xiaomin Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Hongming Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Peng Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China.
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| |
Collapse
|
23
|
Gottschlich A, Endres S, Kobold S. Can we use interleukin-1β blockade for lung cancer treatment? Transl Lung Cancer Res 2018; 7:S160-S164. [PMID: 29780710 DOI: 10.21037/tlcr.2018.03.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Adrian Gottschlich
- Center for Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Endres
- Center for Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Kobold
- Center for Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
24
|
CHL1 gene polymorphisms increase lung cancer susceptibility. Oncotarget 2018; 9:13545-13550. [PMID: 29568376 PMCID: PMC5862597 DOI: 10.18632/oncotarget.24057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/16/2017] [Indexed: 01/12/2023] Open
Abstract
Lung cancer represents a complex and malignant cancer. Close Homologue of L1 (CHL1) gene plays a crucial role in the progress of cancer. The aim of this study is to explore the association between CHL1 rs425366 polymorphism and lung cancer susceptibility in northeast of China. A hospital-based case-control study was carried out to collect relative characteristics. Logistic regression analysis was conducted to analyze the relationship between single nucleotide polymorphisms and lung cancer susceptibility. The results suggested that there was statistically significant difference between GT genotype and TT genotype of rs425366 and lung cancer susceptibility. In stratified analysis, TT genotype of rs425366 may increase the risk of lung adenocarcinoma. We also found that non-smoking individuals carrying T allele were more likely to develop lung cancer. Overall, our study may indicate that CHL1 gene may increase lung cancer susceptibility in northeast of China.
Collapse
|
25
|
Tong Y, Liu Y, Zheng H, Zheng L, Liu W, Wu J, Ou R, Zhang G, Li F, Hu M, Liu Z, Lu L. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget 2017; 7:31413-28. [PMID: 27119499 PMCID: PMC5058767 DOI: 10.18632/oncotarget.8920] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/02/2016] [Indexed: 11/25/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most prevalent malignancy worldwide given its high incidence, considerable mortality, and poor prognosis. The anti-malaria compounds artemisinin (ART), dihydroartemisinin (DHA), and artesunate (ARTS) reportedly have anti-cancer potential, although the underlying mechanisms remain unclear. In this work, we used flow cytometry to show that ART, DHA, and ARTS could inhibit the proliferation of A549 and H1299 cells by arresting cell cycle in G1 phase. Meanwhile, tumor malignancy including migration, invasion, cancer stem cells, and epithelial-mesenchymal transition were also significantly suppressed by these compounds. Furthermore, ART, DHA, and ARTS remarkably decreased tumor growth in vivo. By using IWP-2, the inhibitor of Wnt/β-catenin pathway, and Wnt5a siRNA, we found that ART, DHA, and ARTS could render tumor inhibition partially dependent on Wnt/β-catenin inactivation. These compounds could strikingly decrease the protein level of Wnt5-a/b and simultaneously increase those of NKD2 and Axin2, ultimately resulting in β-catenin downregulation. In summary, our findings revealed that ART, DHA, and ARTS could suppress lung-tumor progression by inhibiting Wnt/β-catenin pathway, thereby suggesting a novel target for ART, DHA, and ARTS in cancer treatment.
Collapse
Affiliation(s)
- Yunli Tong
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuting Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Hongming Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liang Zheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Wenqin Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jinjun Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Rilan Ou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Guiyu Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Fangyuan Li
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ming Hu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, 77030, USA
| | - Zhongqiu Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
26
|
Novel Molecular Targets for Chemoprevention in Malignancies of the Head and Neck. Cancers (Basel) 2017; 9:cancers9090113. [PMID: 28858212 PMCID: PMC5615328 DOI: 10.3390/cancers9090113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022] Open
Abstract
Cancers of the head and neck region are among the leading causes of cancer-related mortalities worldwide. Oral leukoplakia and erythroplakia are identified as precursor lesions to malignancy. Patients cured of an initial primary head and neck cancer are also susceptible to developing second primary tumors due to cancerization of their mucosal field. Multi-step acquisition of genetic mutations leading to tumorigenesis and development of invasive cancer has been previously described. Recently, whole exome sequencing of tumor specimens has helped to identify driver mutations in this disease. For these reasons, chemoprevention or the use of systemic or biologic agents to prevent carcinogenesis is an attractive concept in head and neck cancers. Nonetheless, despite extensive clinical research in this field over the past couple decades, no standard of care option has emerged. This review article reports on targeted interventions that have been attempted in clinical trials to date, and focuses on novel molecular pathways and drugs in development that are worthy of being tested for this indication as part of future endeavors.
Collapse
|
27
|
Kadakia KC, Matusz-Fisher AG, Kim ES. Chemoprevention Trials. REFERENCE MODULE IN BIOMEDICAL SCIENCES 2017. [DOI: 10.1016/b978-0-12-801238-3.96067-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Kim HS, Kacew S, Lee BM. Genetic and epigenetic cancer chemoprevention on molecular targets during multistage carcinogenesis. Arch Toxicol 2016; 90:2389-2404. [PMID: 27538406 DOI: 10.1007/s00204-016-1813-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
Abstract
The main goal of cancer chemoprevention is to prevent or halt the progression of carcinogenesis with the administration of synthetic or natural compounds. Fundamental chemopreventive strategies include inhibition of genetic damage, anti-proliferation/cell cycle regulation, and induction of apoptosis and anti-inflammatory processes, which may be critical for carcinogenesis intervention. Recently, a new paradigm for identifying chemopreventive agents has been implemented. It focuses on defining new biomarkers that can be used to evaluate chemopreventive efficacy based on multistage carcinogenesis. The functional roles of chemopreventive agents are associated with the modulation of nuclear factor kappa B, nuclear factor erythroid 2-related factor, p53, AMPK/mTOR, phosphatidylinositol 3-kinase, epidermal growth factor receptor, cyclooxygenase-2, chemokine (C-X-C motif) receptor 2, and sphingosine-1-phosphate. This paper summarizes the genetic and epigenetic effects of chemopreventive agents on the expression of cancer-related target genes mediated by epigenetic alterations, such as DNA methylation and histone modifications. This review will provide unique and effective strategies for reducing cancer and aging-related diseases in humans.
Collapse
Affiliation(s)
- Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi-Do, 440-746, Republic of Korea
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | - Byung Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi-Do, 440-746, Republic of Korea.
| |
Collapse
|
29
|
Lam S, Mandrekar SJ, Gesthalter Y, Allen Ziegler KL, Seisler DK, Midthun DE, Mao JT, Aubry MC, McWilliams A, Sin DD, Shaipanich T, Liu G, Johnson E, Bild A, Lenburg ME, Ionescu DN, Mayo J, Yi JE, Tazelaar H, Harmsen WS, Smith J, Spira AE, Beane J, Limburg PJ, Szabo E. A Randomized Phase IIb Trial of myo-Inositol in Smokers with Bronchial Dysplasia. Cancer Prev Res (Phila) 2016; 9:906-914. [PMID: 27658890 DOI: 10.1158/1940-6207.capr-15-0254] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/19/2016] [Accepted: 09/14/2016] [Indexed: 02/03/2023]
Abstract
Previous preclinical studies and a phase I clinical trial suggested that myo-inositol may be a safe and effective lung cancer chemopreventive agent. We conducted a randomized, double blind, placebo-controlled phase IIb study to determine the chemopreventive effects of myo-inositol in smokers with bronchial dysplasia. Smokers with ≥1 site of dysplasia identified by autofluorescence bronchoscopy-directed biopsy were randomly assigned to receive oral placebo or myo-inositol, 9 g once a day for 2 weeks, and then twice a day for 6 months. The primary endpoint was change in dysplasia rate after 6 months of intervention on a per-participant basis. Other trial endpoints reported herein include Ki-67 labeling index, blood and bronchoalveolar lavage fluid (BAL) levels of proinflammatory, oxidant/antioxidant biomarkers, and an airway epithelial gene expression signature for PI3K activity. Seventy-four (n = 38 myo-inositol and n = 36 placebo) participants with a baseline and 6-month bronchoscopy were included in all efficacy analyses. The complete response and the progressive disease rates were 26.3% versus 13.9% and 47.4% versus 33.3%, respectively, in the myo-inositol and placebo arms (P = 0.76). Compared with placebo, myo-inositol intervention significantly reduced IL6 levels in BAL over 6 months (P = 0.03). Among those with a complete response in the myo-inositol arm, there was a significant decrease in a gene expression signature reflective of PI3K activation within the cytologically normal bronchial airway epithelium (P = 0.002). The heterogeneous response to myo-inositol suggests a targeted therapy approach based on molecular alterations is needed in future clinical trials to determine the efficacy of myo-inositol as a chemopreventive agent. Cancer Prev Res; 9(12); 906-14. ©2016 AACR.
Collapse
Affiliation(s)
- Stephen Lam
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | - Jenny T Mao
- New Mexico Veteran's Health Care System, Albuquerque, New Mexico
| | | | | | - Don D Sin
- St. Paul's Hospital, Vancouver, British Columbia, Canada
| | | | - Gang Liu
- Boston University Medical Center, Boston, Massachusetts
| | - Evan Johnson
- Boston University Medical Center, Boston, Massachusetts
| | | | | | - Diana N Ionescu
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - John Mayo
- Vancouver General Hospital, Vancouver, British Columbia
| | | | | | | | - Judith Smith
- Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, Maryland
| | - Avrum E Spira
- Boston University Medical Center, Boston, Massachusetts
| | | | | | - Eva Szabo
- Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, Maryland
| | | |
Collapse
|
30
|
Cysteinyl Leukotriene Receptor Antagonists Decrease Cancer Risk in Asthma Patients. Sci Rep 2016; 6:23979. [PMID: 27052782 PMCID: PMC4823742 DOI: 10.1038/srep23979] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/17/2016] [Indexed: 01/18/2023] Open
Abstract
Previous in vitro and in vivo studies have demonstrated the potential of using cysteinyl leukotriene receptor antagonists (LTRAs) for chemoprevention, but this has not been investigated in any clinical setting. We therefore investigated the chemopreventive effect of LTRAs in a nationwide population-based study. From the Taiwan National Health Insurance Research Database, we enrolled adults with newly-diagnosed asthma between 2001 and 2011. Among these patients, each LTRA user was matched with five randomly-selected LTRA non-users by sex, age, asthma diagnostic year and modified Charlson Comorbidity Index score. We considered the development of cancer as the outcome. Totally, 4185 LTRA users and 20925 LTRA non-users were identified. LTRA users had a significantly lower cancer incidence rate than LTRA non-users did. Multivariable Cox regression analyses adjusting for baseline characteristics and comorbidities showed LTRA use was an independent protecting factor (hazard ratio = 0.31 [95% CI: 0.24–0.39]), and cancer risk decreased progressively with higher cumulative dose of LTRAs. In conclusion, this study revealed that the LTRA use decreased cancer risk in a dose-dependent manner in asthma patients. The chemopreventive effect of LTRAs deserves further study.
Collapse
|
31
|
Kadara H, Scheet P, Wistuba II, Spira AE. Early Events in the Molecular Pathogenesis of Lung Cancer. Cancer Prev Res (Phila) 2016; 9:518-27. [PMID: 27006378 DOI: 10.1158/1940-6207.capr-15-0400] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/01/2016] [Indexed: 11/16/2022]
Abstract
The majority of cancer-related deaths in the United States and worldwide are attributed to lung cancer. There are more than 90 million smokers in the United States who represent a significant population at elevated risk for lung malignancy. In other epithelial tumors, it has been shown that if neoplastic lesions can be detected and treated at their intraepithelial stage, patient prognosis is significantly improved. Thus, new strategies to detect and treat lung preinvasive lesions are urgently needed in order to decrease the overwhelming public health burden of lung cancer. Limiting these advances is a poor knowledge of the earliest events that underlie lung cancer development and that would constitute markers and targets for early detection and prevention. This review summarizes the state of knowledge of human lung cancer pathogenesis and the molecular pathology of premalignant lung lesions, with a focus on the molecular premalignant field that associates with lung cancer development. Lastly, we highlight new approaches and models to study genome-wide alterations in human lung premalignancy in order to facilitate the discovery of new markers for early detection and prevention of this fatal disease. Cancer Prev Res; 9(7); 518-27. ©2016 AACR.
Collapse
Affiliation(s)
- Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. The University of Texas Graduate School of Biomedical Sciences, Houston, Texas.
| | - Paul Scheet
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas. Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Avrum E Spira
- Section of Computational Biomedicine, Boston University School of Medicine, Boston University, Boston, Massachusetts
| |
Collapse
|
32
|
De Flora S, Ganchev G, Iltcheva M, La Maestra S, Micale RT, Steele VE, Balansky R. Pharmacological Modulation of Lung Carcinogenesis in Smokers: Preclinical and Clinical Evidence. Trends Pharmacol Sci 2015; 37:120-142. [PMID: 26726119 DOI: 10.1016/j.tips.2015.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022]
Abstract
Many drugs in common use possess pleiotropic properties that make them capable of interfering with carcinogenesis mechanisms. We discuss here the ability of pharmacological agents to mitigate the pulmonary carcinogenicity of mainstream cigarette smoke. The evaluated agents include anti-inflammatory drugs (budesonide, celecoxib, aspirin, naproxen, licofelone), antidiabetic drugs (metformin, pioglitazone), antineoplastic agents (lapatinib, bexarotene, vorinostat), and other drugs and supplements (phenethyl isothiocyanate, myo-inositol, N-acetylcysteine, ascorbic acid, berry extracts). These drugs have been evaluated in mouse models mimicking interventions either in current smokers or in ex-smokers, or in prenatal chemoprevention. They display a broad spectrum of activities by attenuating either smoke-induced preneoplastic lesions or benign tumors and/or malignant tumors. Together with epidemiological data, these findings provide useful information to predict the potential effects of pharmacological agents in smokers.
Collapse
Affiliation(s)
- Silvio De Flora
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.
| | | | | | | | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Vernon E Steele
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20892, USA
| | - Roumen Balansky
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; National Center of Oncology, Sofia 1756, Bulgaria
| |
Collapse
|
33
|
Slatore CG, Horeweg N, Jett JR, Midthun DE, Powell CA, Wiener RS, Wisnivesky JP, Gould MK. An Official American Thoracic Society Research Statement: A Research Framework for Pulmonary Nodule Evaluation and Management. Am J Respir Crit Care Med 2015; 192:500-14. [PMID: 26278796 DOI: 10.1164/rccm.201506-1082st] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pulmonary nodules are frequently detected during diagnostic chest imaging and as a result of lung cancer screening. Current guidelines for their evaluation are largely based on low-quality evidence, and patients and clinicians could benefit from more research in this area. METHODS In this research statement from the American Thoracic Society, a multidisciplinary group of clinicians, researchers, and patient advocates reviewed available evidence for pulmonary nodule evaluation, characterized six focus areas to direct future research efforts, and identified fundamental gaps in knowledge and strategies to address them. We did not use formal mechanisms to prioritize one research area over another or to achieve consensus. RESULTS There was widespread agreement that novel tests (including novel imaging tests and biopsy techniques, biomarkers, and prognostic models) may improve diagnostic accuracy for identifying cancerous nodules. Before they are used in clinical practice, however, better evidence is needed to show that they improve more distal outcomes of importance to patients. In addition, the pace of research and the quality of clinical care would be improved by the development of registries that link demographic and nodule characteristics with patient-level outcomes. Methods to share data from registries are also necessary. CONCLUSIONS This statement may help researchers to develop impactful and innovative research projects and enable funders to better judge research proposals. We hope that it will accelerate the pace and increase the efficiency of discovery to improve the quality of care for patients with pulmonary nodules.
Collapse
|
34
|
Maresso KC, Tsai KY, Brown PH, Szabo E, Lippman S, Hawk ET. Molecular cancer prevention: Current status and future directions. CA Cancer J Clin 2015; 65:345-83. [PMID: 26284997 PMCID: PMC4820069 DOI: 10.3322/caac.21287] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 12/20/2022] Open
Abstract
The heterogeneity and complexity of advanced cancers strongly support the rationale for an enhanced focus on molecular prevention as a priority strategy to reduce the burden of cancer. Molecular prevention encompasses traditional chemopreventive agents as well as vaccinations and therapeutic approaches to cancer-predisposing conditions. Despite challenges to the field, we now have refined insights into cancer etiology and early pathogenesis; successful risk assessment and new risk models; agents with broad preventive efficacy (eg, aspirin) in common chronic diseases, including cancer; and a successful track record of more than 10 agents approved by the US Food and Drug Administration for the treatment of precancerous lesions or cancer risk reduction. The development of molecular preventive agents does not differ significantly from the development of therapies for advanced cancers, yet it has unique challenges and special considerations given that it most often involves healthy or asymptomatic individuals. Agents, biomarkers, cohorts, overall design, and endpoints are key determinants of molecular preventive trials, as with therapeutic trials, although distinctions exist for each within the preventive setting. Progress in the development and evolution of molecular preventive agents has been steadier in some organ systems, such as breast and skin, than in others. In order for molecular prevention to be fully realized as an effective strategy, several challenges to the field must be addressed. Here, the authors provide a brief overview of the context for and special considerations of molecular prevention along with a discussion of the results from major randomized controlled trials.
Collapse
Affiliation(s)
- Karen Colbert Maresso
- Program Manager, Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kenneth Y Tsai
- Assistant Professor, Department of Dermatology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Powel H Brown
- Chair, Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eva Szabo
- Chair, Lung and Upper Aerodigestive Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Scott Lippman
- Director, Moores Cancer Center, University of California, San Diego, San Diego, CA
| | - Ernest T Hawk
- Vice President and Division Head, Boone Pickens Distinguished Chair for Early Prevention of Cancer, Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
35
|
Sheth SH, Johnson DE, Kensler TW, Bauman JE. Chemoprevention targets for tobacco-related head and neck cancer: past lessons and future directions. Oral Oncol 2015; 51:557-64. [PMID: 25868717 DOI: 10.1016/j.oraloncology.2015.02.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 01/21/2015] [Accepted: 02/25/2015] [Indexed: 11/26/2022]
Abstract
Progress toward identifying an effective chemopreventive agent to reduce the incidence of head and neck squamous cell carcinoma (HNSCC) has been limited by poor efficacy and intolerable toxicity profiles. In this review, we summarize the biological basis of HNSCC chemoprevention, and outline challenges associated with identifying appropriate high-risk HNSCC populations for chemoprevention studies. We discuss findings and lessons learned from clinical trials that have investigated micronutrient and molecular targeting interventions. Finally, we introduce the concept of green chemoprevention, interventions based upon whole plant foods or simple extracts that may represent a safe and cost-conscious option for the next generation of studies. As our scientific understanding of HNSCC reaches new levels, the field is poised to develop chemoprevention studies based on rigorous biological validation with accessibility to all affected individuals regardless of socioeconomic barriers.
Collapse
Affiliation(s)
| | - Daniel E Johnson
- Department of Medicine, University of Pittsburgh, United States; Departments of Pharmacology and Chemical Biology, University of Pittsburgh, United States
| | - Thomas W Kensler
- Departments of Pharmacology and Chemical Biology, University of Pittsburgh, United States
| | - Julie E Bauman
- Department of Medicine, University of Pittsburgh, United States.
| |
Collapse
|
36
|
Criner GJ, Bourbeau J, Diekemper RL, Ouellette DR, Goodridge D, Hernandez P, Curren K, Balter MS, Bhutani M, Camp PG, Celli BR, Dechman G, Dransfield MT, Fiel SB, Foreman MG, Hanania NA, Ireland BK, Marchetti N, Marciniuk DD, Mularski RA, Ornelas J, Road JD, Stickland MK. Prevention of acute exacerbations of COPD: American College of Chest Physicians and Canadian Thoracic Society Guideline. Chest 2015; 147:894-942. [PMID: 25321320 PMCID: PMC4388124 DOI: 10.1378/chest.14-1676] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/17/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND COPD is a major cause of morbidity and mortality in the United States as well as throughout the rest of the world. An exacerbation of COPD (periodic escalations of symptoms of cough, dyspnea, and sputum production) is a major contributor to worsening lung function, impairment in quality of life, need for urgent care or hospitalization, and cost of care in COPD. Research conducted over the past decade has contributed much to our current understanding of the pathogenesis and treatment of COPD. Additionally, an evolving literature has accumulated about the prevention of acute exacerbations. METHODS In recognition of the importance of preventing exacerbations in patients with COPD, the American College of Chest Physicians (CHEST) and Canadian Thoracic Society (CTS) joint evidence-based guideline (AECOPD Guideline) was developed to provide a practical, clinically useful document to describe the current state of knowledge regarding the prevention of acute exacerbations according to major categories of prevention therapies. Three key clinical questions developed using the PICO (population, intervention, comparator, and outcome) format addressed the prevention of acute exacerbations of COPD: nonpharmacologic therapies, inhaled therapies, and oral therapies. We used recognized document evaluation tools to assess and choose the most appropriate studies and to extract meaningful data and grade the level of evidence to support the recommendations in each PICO question in a balanced and unbiased fashion. RESULTS The AECOPD Guideline is unique not only for its topic, the prevention of acute exacerbations of COPD, but also for the first-in-kind partnership between two of the largest thoracic societies in North America. The CHEST Guidelines Oversight Committee in partnership with the CTS COPD Clinical Assembly launched this project with the objective that a systematic review and critical evaluation of the published literature by clinical experts and researchers in the field of COPD would lead to a series of recommendations to assist clinicians in their management of the patient with COPD. CONCLUSIONS This guideline is unique because it provides an up-to-date, rigorous, evidence-based analysis of current randomized controlled trial data regarding the prevention of COPD exacerbations.
Collapse
Affiliation(s)
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada
| | | | | | - Donna Goodridge
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul Hernandez
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Kristen Curren
- School of Physiotherapy, Dalhousie University, Halifax, NS, Canada
| | | | - Mohit Bhutani
- Division of Respirology, University of Toronto, Toronto, ON, Canada
| | - Pat G Camp
- University of Alberta, Edmonton, AB, Canada
| | - Bartolome R Celli
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Gail Dechman
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Mark T Dransfield
- University of Alabama at Birmingham and Birmingham VA Medical Center, Birmingham, AL
| | | | | | | | | | | | - Darcy D Marciniuk
- Division of Respirology, Critical Care and Sleep Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | - Jeremy D Road
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
37
|
Clamon G. Chemoprevention and Screening for Lung Cancer: Changing Our Focus to Former Smokers. Clin Lung Cancer 2015; 16:1-5. [DOI: 10.1016/j.cllc.2014.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/26/2022]
|
38
|
Massion PP, Walker RC. Indeterminate pulmonary nodules: risk for having or for developing lung cancer? Cancer Prev Res (Phila) 2014; 7:1173-8. [PMID: 25348855 DOI: 10.1158/1940-6207.capr-14-0364] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This perspective discusses the report by Pinsky and colleagues, which addresses whether noncalcified pulmonary nodules identified on CT screening carry short- and long-term risk for lung cancer. We are facing challenges related to distinguishing a large majority of benign nodules from malignant ones and among those a majority of aggressive from indolent cancers. Key questions in determining individual probabilities of disease, given their history, findings on CT, and upcoming biomarkers of risk, remain most challenging. Reducing the false positives associated with current low-dose computed tomography practices and identification of individuals who need therapy and at what time during tumor surveillance could reduce costs and morbidities associated with unnecessary interventions.
Collapse
Affiliation(s)
- Pierre P Massion
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee. Thoracic Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee. Veterans Affairs Medical Center, Nashville, Tennessee.
| | - Ronald C Walker
- Thoracic Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee. Veterans Affairs Medical Center, Nashville, Tennessee. Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
39
|
Yeo CD, Kim JW, Ha JH, Kim SJ, Lee SH, Kim IK, Kim YK. Chemopreventive effect of phosphodieasterase-4 inhibition in benzo(a)pyrene-induced murine lung cancer model. Exp Lung Res 2014; 40:500-6. [DOI: 10.3109/01902148.2014.950769] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Howells LM, Mahale J, Sale S, McVeigh L, Steward WP, Thomas A, Brown K. Translating curcumin to the clinic for lung cancer prevention: evaluation of the preclinical evidence for its utility in primary, secondary, and tertiary prevention strategies. J Pharmacol Exp Ther 2014; 350:483-94. [PMID: 24939419 DOI: 10.1124/jpet.114.216333] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Lung cancer is responsible for over one million deaths worldwide each year. Smoking cessation for lung cancer prevention remains key, but it is increasingly acknowledged that prevention strategies also need to focus on high-risk groups, including ex-smokers, and patients who have undergone resection of a primary tumor. Models for chemoprevention of lung cancer often present conflicting results, making rational design of lung cancer chemoprevention trials challenging. There has been much focus on use of dietary bioactive compounds in lung cancer prevention strategies, primarily due to their favorable toxicity profile and long history of use within the human populace. One such compound is curcumin, derived from the spice turmeric. This review summarizes and stratifies preclinical evidence for chemopreventive efficacy of curcumin in models of lung cancer, and adjudges the weight of evidence for use of curcumin in lung cancer chemoprevention strategies.
Collapse
Affiliation(s)
- Lynne M Howells
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Jagdish Mahale
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Stewart Sale
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Laura McVeigh
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - William P Steward
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Anne Thomas
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Karen Brown
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| |
Collapse
|
41
|
|
42
|
Tarrazo-Antelo AM, Ruano-Ravina A, Abal Arca J, Barros-Dios JM. Fruit and vegetable consumption and lung cancer risk: a case-control study in Galicia, Spain. Nutr Cancer 2014; 66:1030-7. [PMID: 25085257 DOI: 10.1080/01635581.2014.936951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung cancer has multiple risk factors and tobacco is the main one. Diet plays a role, but no clear effect has been consistently observed for different fruit and vegetable consumption. We aim to assess the association between fruit and vegetable consumption and lung cancer risk through a hospital-based case-control study in Spanish population. We recruited incident lung cancer cases in 2 Spanish hospitals from 2004 to 2008. Controls were individuals attending hospital for trivial surgery. Cases and controls were older than 30 and did not have a neoplasic history. We collected information on lifestyle with special emphases on tobacco and dietary habits. We included 371 cases and 496 controls. We found no protective effect for overall fruit consumption. For green leafy vegetables, the odds ratio (OR) was 0.92 [95% confidence interval (CI) = 0.32-2.69), and for other vegetables the OR was 0.77 (95% CI = 0.40-1.48) for the categories compared. We observed a reduced risk for broccoli and pumpkin intake. Although fruit consumption does not seem to be associated with a lower lung cancer risk, only the frequent consumption of specific green leafy vegetables and other vegetables might be associated with a reduced risk of lung cancer.
Collapse
Affiliation(s)
- Ana Marina Tarrazo-Antelo
- a Service of Preventive Medicine , University Hospital Complex of Santiago de Compostela , Santiago de Compostela , Spain
| | | | | | | |
Collapse
|
43
|
Zarogoulidis P, Pataka A, Terzi E, Hohenforst-Schmidt W, Machairiotis N, Huang H, Tsakiridis K, Katsikogiannis N, Kougioumtzi I, Mpakas A, Zarogoulidis K. Intensive care unit and lung cancer: when should we intubate? J Thorac Dis 2014; 5 Suppl 4:S407-12. [PMID: 24102014 DOI: 10.3978/j.issn.2072-1439.2013.08.15] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 12/20/2022]
Abstract
Lung cancer still remains the leading cause of cancer death among males. Several new methodologies are being used in the everyday practise for diagnosis and staging. Novel targeted therapies are being used and others are being investigated. However; early diagnosis still remains the cornerstone for efficient treatment and disease management. Lung cancer patients requires in many situations intensive care unit (ICU) admission, either due to the necessity for supportive care until efficient disease symptom control (respiratory distress due to malignant pleural effusion) or disease adverse effect management (massive pulmonary embolism). In any case guidelines indicating the patient that has to be intubated have not yet been issued. In the current review we will present current data and finally present an algorithm based on the current published information for lung cancer patients that will probably benefit from admission to the ICU.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liclican EL, Walser TC, Hazra S, Krysan K, Park SJ, Pagano PC, Gardner BK, Larsen JE, Minna JD, Dubinett SM. Loss of miR125a expression in a model of K-ras-dependent pulmonary premalignancy. Cancer Prev Res (Phila) 2014; 7:845-55. [PMID: 24913817 DOI: 10.1158/1940-6207.capr-14-0063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the molecular pathogenesis of lung cancer is necessary to identify biomarkers/targets specific to individual airway molecular profiles and to identify options for targeted chemoprevention. Herein, we identify mechanisms by which loss of microRNA (miRNA)125a-3p (miR125a) contributes to the malignant potential of human bronchial epithelial cells (HBEC) harboring an activating point mutation of the K-ras proto-oncogene (HBEC K-ras). Among other miRNAs, we identified significant miR125a loss in HBEC K-ras lines and determined that miR125a is regulated by the PEA3 transcription factor. PEA3 is upregulated in HBEC K-ras cells, and genetic knockdown of PEA3 restores miR125a expression. From a panel of inflammatory/angiogenic factors, we identified increased CXCL1 and vascular endothelial growth factor (VEGF) production by HBEC K-ras cells and determined that miR125a overexpression significantly reduces K-ras-mediated production of these tumorigenic factors. miR125a overexpression also abrogates increased proliferation of HBEC K-ras cells and suppresses anchorage-independent growth (AIG) of HBEC K-ras/P53 cells, the latter of which is CXCL1-dependent. Finally, pioglitazone increases levels of miR125a in HBEC K-ras cells via PEA3 downregulation. In addition, pioglitazone and miR125a overexpression elicit similar phenotypic responses, including suppression of both proliferation and VEGF production. Our findings implicate miR125a loss in lung carcinogenesis and lay the groundwork for future studies to determine whether miR125a is a possible biomarker for lung carcinogenesis and/or a chemoprevention target. Moreover, our studies illustrate that pharmacologic augmentation of miR125a in K-ras-mutated pulmonary epithelium effectively abrogates several deleterious downstream events associated with the mutation.
Collapse
Affiliation(s)
- Elvira L Liclican
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Tonya C Walser
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Saswati Hazra
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Kostyantyn Krysan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Stacy J Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Paul C Pagano
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA
| | - Brian K Gardner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Jill E Larsen
- Departments of Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Departments of Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Pathology and Laboratory Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA; Jonsson Comprehensive Cancer Center; VA Greater Los Angeles Health Care Center, Los Angeles, California; and
| |
Collapse
|
45
|
Dubinett SM, Spira A. Challenge and Opportunity of Targeted Lung Cancer Chemoprevention. J Clin Oncol 2013; 31:4169-71. [DOI: 10.1200/jco.2013.51.2400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Steven M. Dubinett
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Avrum Spira
- Boston University School of Medicine, Boston, MA
| |
Collapse
|
46
|
Deng GE, Rausch SM, Jones LW, Gulati A, Kumar NB, Greenlee H, Pietanza MC, Cassileth BR. Complementary therapies and integrative medicine in lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013; 143:e420S-e436S. [PMID: 23649450 DOI: 10.1378/chest.12-2364] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Physicians are often asked about complementary therapies by patients with cancer, and data show that the interest in and use of these therapies among patients with cancer is common. Therefore, it is important to assess the current evidence base on the benefits and risks of complementary therapies (modalities not historically used in modern Western medicine). METHODS A systematic literature review was carried out and recommendations were made according to the American College of Chest Physicians Evidence-Based Clinical Practice Guidelines development methodology. RESULTS A large number of randomized controlled trials, systematic reviews, and meta-analyses, as well as a number of prospective cohort studies, met the predetermined inclusion criteria. These trials addressed many different issues pertaining to patients with lung cancer, such as symptoms of anxiety, mood disturbance, pain, quality of life, and treatment-related side effects. The available data cover a variety of interventions, including acupuncture, nutrition, mind-body therapies, exercise, and massage. The body of evidence supports a series of recommendations. An evidenced-based approach to modern cancer care should integrate complementary therapies with standard cancer therapies such as surgery, radiation, chemotherapy, and best supportive care measures. CONCLUSIONS Several complementary therapy modalities can be helpful in improving the overall care of patients with lung cancer.
Collapse
Affiliation(s)
- Gary E Deng
- Memorial Sloan-Kettering Cancer Center, New York, NY.
| | - Sarah M Rausch
- University of Florida College of Medicine, Jacksonville, FL
| | | | | | - Nagi B Kumar
- Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | | |
Collapse
|