1
|
Li K, Ji X, Tian S, Li J, Tian Y, Ma X, Li H, Zhang H, Chen CT, Gu W. Oxidative stress in asthma pathogenesis: mechanistic insights and implications for airway smooth muscle dysfunction. Cell Tissue Res 2025; 400:17-34. [PMID: 39918765 DOI: 10.1007/s00441-025-03953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 04/04/2025]
Abstract
Airway smooth muscle (ASM) dysfunction is a key factor in the narrowing of airways in asthma patients, characterized by excessive secretion of inflammatory factors, increased mass, and amplified contractile responses. These pathological features are instrumental in the propagation of airway inflammation, structural remodeling, and the escalation of airway hyperresponsiveness (AHR), which are also principal factors underlying the limitations of current therapeutic strategies. In asthmatic ASM, an imbalance between oxidant production and antioxidant defenses culminates in oxidative stress, which is involved in the excessive secretion of inflammatory factors, increased mass, and amplified contractile responses of ASM, and is a critical etiological factor implicated in the dysregulation of ASM function. The molecular pathways through which oxidative stress exerts its effects on ASM in asthma are multifaceted, with the Nrf2/HO-1, MAPK, and PI3K/Akt pathways being particularly noteworthy. These characteristic pathways play a potential role by connecting with different upstream and downstream signaling molecules and are involved in the amplification of ASM inflammatory responses, increased mass, and AHR. This review provides a comprehensive synthesis of the phenotypic expression of ASM dysfunction in asthma, the interplay between oxidants and antioxidants, and the evidence base and molecular underpinnings linking oxidative stress to ASM dysfunction. Given the profound implications of ASM dysfunction on the airflow limitation in asthma and the seminal role of oxidative stress in this process, a deeper exploration of these mechanisms is essential for unraveling the pathogenesis of asthma and may offer novel perspectives for its prophylaxis and management.
Collapse
Affiliation(s)
- Kangxia Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiang Ji
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Shan Tian
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, People's Republic of China
| | - Jian Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Yizhu Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiaoqing Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Huanping Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Hong Zhang
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China
| | - Cai-Tao Chen
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China.
| | - Wei Gu
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China.
| |
Collapse
|
2
|
Zhang D, Sun T, Bao J, Fu J. Implications of DNA damage in chronic lung disease. Front Cell Dev Biol 2024; 12:1436767. [PMID: 39544366 PMCID: PMC11560874 DOI: 10.3389/fcell.2024.1436767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
DNA plays an indispensable role in ensuring the perpetuation of life and safeguarding the genetic stability of living organisms. The emergence of diseases linked to a wide spectrum of responses to DNA damage has garnered increasing attention within the scientific community. There is growing evidence that patterns of DNA damage response in the lungs are associated with the onset, progression, and treatment of chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and bronchopulmonary dysplasia (BPD). Currently, some studies have analyzed the mechanisms by which environmental factors induce lung DNA damage. In this article, we summarize inducible factors of lung DNA damage, current indicators, and methods for diagnosing DNA damage in chronic lung diseases and explore repair mechanisms after DNA damage including nonhomologous end-joining and homology-directed repair end joining pathways. Additionally, drug treatments that may reduce DNA damage or promote repair after it occurs in the lungs are briefly described. In general, more accurate assessment of the degree of lung DNA damage caused by various factors is needed to further elucidate the mechanism of lung DNA damage and repair after damage, so as to search for potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Tanner L, Bergwik J, Bhongir RKV, Pan L, Dong C, Wallner O, Kalderén C, Helleday T, Boldogh I, Adner M, Egesten A. Pharmacological OGG1 inhibition decreases murine allergic airway inflammation. Front Pharmacol 2022; 13:999180. [PMID: 36324676 PMCID: PMC9619105 DOI: 10.3389/fphar.2022.999180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022] Open
Abstract
Background and aim: Allergic asthma is a complex inflammatory disease involving type 2 innate lymphoid cells, type 2 T helper cells, macrophages, and eosinophils. The disease is characterized by wheezing, dyspnea, coughing, chest tightness and variable airflow limitation for which there is no cure and is symptomatically treated with inhaled corticosteroids and β2-agonists. Molecular mechanisms underlying its complex pathogenesis are not fully understood. However, 8-oxoguanine DNA glycosylase-1 (OGG1), a DNA repair protein may play a central role, as OGG1 deficiency decreases both innate and allergic inflammation. Methods: Using a murine ovalbumin (OVA) model of allergic airway inflammation we assessed the utility of an inhibitor of OGG1 (TH5487) in this disease context. Cytokines and chemokines, promoting immune cell recruitment were measured using a 23-multiplex assay and Western blotting. Additionally, immune cell recruitment to bronchi was measured using flow cytometry. Histological analyses and immunofluorescent staining were used to confirm immune cell influx and goblet cell hyperplasia of the airways. A PCR array was used to assess asthma-related genes in murine lung tissue following TH5487 treatment. Finally, airway hyperresponsiveness was determined using in vivo lung function measurement. Results: In this study, administration of TH5487 to mice with OVA-induced allergic airway inflammation significantly decreased goblet cell hyperplasia and mucus production. TH5487 treatment also decreased levels of activated NF-κB and expression of proinflammatory cytokines and chemokines resulting in significantly lower recruitment of eosinophils and other immune cells to the lungs. Gene expression profiling of asthma and allergy-related proteins after TH5487 treatment revealed differences in several important regulators, including down regulation of Tnfrsf4, Arg1, Ccl12 and Ccl11, and upregulation of the negative regulator of type 2 inflammation, Bcl6. Furthermore, the gene Clca1 was upregulated following TH5487 treatment, which should be explored further due to its ambiguous role in allergic asthma. In addition, the OVA-induced airway hyperresponsiveness was significantly reduced by TH5487 treatment. Conclusion: Taken together, the data presented in this study suggest OGG1 as a clinically relevant pharmacological target for the treatment of allergic inflammation.
Collapse
Affiliation(s)
- Lloyd Tanner
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, and Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
- *Correspondence: Lloyd Tanner,
| | - Jesper Bergwik
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, and Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi K. V. Bhongir
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, and Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, United States
| | - Caijuan Dong
- Unit of Experimental Asthma and Allergy Research, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Olov Wallner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Kalderén
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Oxcia AB, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Oxcia AB, Stockholm, Sweden
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, United States
| | - Mikael Adner
- Unit of Experimental Asthma and Allergy Research, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Arne Egesten
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, and Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
4
|
Wang C, Jiang S, Zhang S, Ouyang Z, Wang G, Wang F. Research Progress of Metabolomics in Asthma. Metabolites 2021; 11:567. [PMID: 34564383 PMCID: PMC8466166 DOI: 10.3390/metabo11090567] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Asthma is a highly heterogeneous disease, but the pathogenesis of asthma is still unclear. It is well known that the airway inflammatory immune response is the pathological basis of asthma. Metabolomics is a systems biology method to analyze the difference of low molecular weight metabolites (<1.5 kDa) and explore the relationship between metabolic small molecules and pathophysiological changes of the organisms. The functional interdependence between immune response and metabolic regulation is one of the cores of the body's steady-state regulation, and its dysfunction will lead to a series of metabolic disorders. The signal transduction effect of specific metabolites may affect the occurrence of the airway inflammatory immune response, which may be closely related to the pathogenesis of asthma. Emerging metabolomic analysis may provide insights into the pathogenesis and diagnosis of asthma. The review aims to analyze the changes of metabolites in blood/serum/plasma, urine, lung tissue, and exhaled breath condensate (EBC) samples, and further reveals the potential pathogenesis of asthma according to the disordered metabolic pathways.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Shengyu Jiang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Siyu Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Zhuoer Ouyang
- Department of Cellular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| |
Collapse
|
5
|
Sánchez-Ovando S, Simpson JL, Barker D, Baines KJ, Wark PAB. Transcriptomics of biopsies identifies novel genes and pathways linked to neutrophilic inflammation in severe asthma. Clin Exp Allergy 2021; 51:1279-1294. [PMID: 34245071 DOI: 10.1111/cea.13986] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 06/03/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Severe asthma is a complex disease. Transcriptomic profiling has contributed to understanding the pathogenesis of asthma, especially type-2 inflammation. However, there is still poor understanding of non-type-2 asthma, and consequently, there are limited treatment options. OBJECTIVE The aim of this study was to identify differentially expressed genes (DEGs) and pathways in endobronchial biopsies associated with inflammatory phenotypes of severe asthma. METHODS This cross-sectional study examined endobronchial biopsies from 47 adults with severe asthma (neutrophilic asthma (NA) n = 9, eosinophilic asthma (EA) n = 22 and paucigranulocytic asthma (PGA) n = 16) and 13 healthy controls (HC). RNA was extracted and transcriptomic profiles generated (Illumina Humanref-12 V4) and analysed using GeneSpring GX14.9.1. Pathway identification using Ingenuity Pathway Analysis. RESULTS NA had the most distinct profile, with signature of 60 top-ranked DEGs (FC >±2) including genes associated with innate immunity response, neutrophil degranulation and IL-10 signalling. NA presented enrichment to pathways previously linked to neutrophilic inflammation; dendritic cell maturation, Th1, TREM1, inflammasome, Th17 and p38 MAPK, as well as novel links to neuroinflammation, NFAT and PKCθ signalling. EA presented similar transcriptomic profiles to PGA and HC. Despite the higher proportion of bacterial colonization in NA, no changes were observed in the transcriptomic profiles of severe asthma culture positive compared with severe asthma culture negative. CONCLUSIONS & CLINICAL RELEVANCE NA features a distinct transcriptomic profile with seven pathways enriched in NA compared to EA, PGA and HC. All those with severe asthma had significant enrichment for SUMOylation, basal cell carcinoma signalling and Wnt/β-catenin pathways compared to HC, despite high-dose inhaled corticosteroids. These findings contribute to the understanding of mechanistic pathways in endobronchial biopsies associated with NA and identify potential novel treatment targets for severe asthma.
Collapse
Affiliation(s)
- Stephany Sánchez-Ovando
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| | - Daniel Barker
- Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, University of Newcastle, NSW, Australia.,Respiratory and Sleep Medicine, John Hunter Hospital, NSW, Australia
| |
Collapse
|
6
|
Spacek R, Musilova I, Andrys C, Soucek O, Burckova H, Pavlicek J, Pliskova L, Bolehovska R, Kacerovsky M. Extracellular granzyme A in amniotic fluid is elevated in the presence of sterile intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2020; 35:3244-3253. [PMID: 32912008 DOI: 10.1080/14767058.2020.1817895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION To determine the levels of granzyme A in amniotic fluid in pregnancies complicated by preterm prelabor rupture of membranes (PPROM), based on the presence of microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). METHODS OF STUDY A total of 166 women with singleton pregnancies complicated by PPROM were included. Amniocentesis was performed at the time of admission and assessments of MIAC (using both cultivation and non-cultivation techniques) and IAI (interleukin-6 in amniotic fluid) were performed on all subjects. Based on the presence/absence of MIAC and IAI, the women were further divided into the following subgroups: intra-amniotic infection, sterile IAI, colonization, and absence of both MIAC and IAI. Amniotic fluid granzyme A levels were assessed using ELISA. RESULTS Women with MIAC had lower levels of granzyme A in the amniotic fluid than women without this condition (with MIAC: median 15.9 pg/mL vs. without MIAC: median 19.9 pg/mL, p = .03). Women with sterile IAI had higher amniotic fluid granzyme A levels than women with intra-amniotic infection, colonization and women with the absence of either MIAC or IAI (intra-amniotic infection: median 15.6 pg/mL; sterile IAI: median 31.8 pg/mL; colonization: median 16.9 pg/mL; absence of both MIAC and IAI: median 18.8 pg/mL; p = .02). CONCLUSIONS The presence of sterile IAI was associated with elevated levels of granzyme A in amniotic fluid.
Collapse
Affiliation(s)
- Richard Spacek
- Department of Obstetrics and Gynecology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Ivana Musilova
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soucek
- Department of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Hana Burckova
- Department of Neonatology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jan Pavlicek
- Department of Pediatrics and Prenatal Cardiology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Lenka Pliskova
- Faculty of Medicine, Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Radka Bolehovska
- Faculty of Medicine, Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
van Daalen KR, Reijneveld JF, Bovenschen N. Modulation of Inflammation by Extracellular Granzyme A. Front Immunol 2020; 11:931. [PMID: 32508827 PMCID: PMC7248576 DOI: 10.3389/fimmu.2020.00931] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Granzyme A (GrA) has long been recognized as one of the key players in the induction of cell death of neoplastic, foreign or infected cells after granule delivery by cytotoxic cells. While the cytotoxic potential of GrA is controversial in current literature, accumulating evidence now indicates roles for extracellular GrA in modulating inflammation and inflammatory diseases. This paper aims to explore the literature presenting current knowledge on GrA as an extracellular modulator of inflammation by summarizing (i) the presence and role of extracellular GrA in several inflammatory diseases, and (ii) the potential molecular mechanisms of extracellular GrA in augmenting inflammation.
Collapse
Affiliation(s)
- Kim R. van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | | | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
8
|
Relationship between neutrophil-lymphocyte ratio and short-term prognosis in the chronic obstructive pulmonary patients with acute exacerbation. Biosci Rep 2019; 39:BSR20190675. [PMID: 31015366 PMCID: PMC6522720 DOI: 10.1042/bsr20190675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 01/23/2023] Open
Abstract
We retrospectively collected data from a large sample size of population and explore the relationship between neutrophil–lymphocyte ratio (NLR) and adverse outcomes, and assessed the clinical prognostic utility of NLR in patients with chronic obstructive pulmonary patients with acute exacerbation (AECOPD). We reviewed 3 years medical case records, 622 patients were identified including 48 died and 574 alive. Compared with alive group, the died group had significantly elevated neutrophils, lymphocyte, and NLR level (P<0.001). The high-sensitive C-protein level of died group was also higher compared with alive group (7.48 ± 4.2 vs 1.26 ± 0.56, vs P<0.001). The univariate logistic regression indicated that elevated NLR level was associated with the increased of adverse outcome (odds ratio [OR] = 4.59, 95% CI: 2.27–8.94, P<0.001). After adjusted potential confounding factors, the elevated NLR level was still associated with adverse outcomes in the chronic obstructive pulmonary patients with acute exacerbation (OR = 2.05, 95% CI: 1.21–3.48, P=0.008). The area under the receiver operating characteristic curve for death at 90 days was 0.742 (95% CI: 0.554–0.881). NLR cutoff of >4.19 had a sensitivity of 71.4% and specificity of 74.2%. Our results suggested that NLR, as a rapid, inexpensive and easily obtained blood routine index was associated with short-term adverse outcomes in patients with AECOPD. The elevated NLR predicted the increased the risk of 90-day mortality in patients with AECOPD.
Collapse
|
9
|
Aguilera-Aguirre L, Hao W, Pan L, Li X, Saavedra-Molina A, Bacsi A, Radak Z, Sur S, Brasier AR, Ba X, Boldogh I. Pollen-induced oxidative DNA damage response regulates miRNAs controlling allergic inflammation. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1058-L1068. [PMID: 28798252 PMCID: PMC5814700 DOI: 10.1152/ajplung.00141.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
A mucosal oxidative burst is a hallmark response to pollen exposure that promotes allergic inflammatory responses. Reactive species constituents of oxidative stress signal via the modification of cellular molecules including nucleic acids. One of the most abundant forms of oxidative genomic base damage is 8-oxo-7,8-dihydroguanine (8-oxoG), which is removed from DNA by 8-oxoguanine DNA glycosylase 1 (OGG1). OGG1 in complex with 8-oxoG acts as a GDP-GTP exchange factor and induces acute inflammation; however, the mechanism(s) by which OGG1 signaling regulates allergic airway inflammation is not known. Here, we postulate that the OGG1 signaling pathway differentially altered the levels of small regulatory RNAs and increased the expression of T helper 2 (Th2) cytokines in ragweed pollen extract (RWPE)-challenged lungs. To determine this, the lungs of sensitized mice expressing or lacking OGG1 were challenged with RWPE and/or with OGG1's excision product 8-oxoG. The responses in lungs were assessed by next-generation sequencing, as well as various molecular and histological approaches. The results showed that RWPE challenge induced oxidative burst and damage to DNA and activated OGG1 signaling, resulting in the differential expression of 84 micro-RNAs (miRNAs), which then exacerbated antigen-driven allergic inflammation and histological changes in the lungs. The exogenous administration of the downregulated let-7b-p3 mimetic or inhibitors of upregulated miR-23a or miR-27a decreased eosinophil recruitment and mucus and collagen production via controlling the expression of IL-4, IL-5, and IL-13. Together, these data demonstrate the roles of OGG1 signaling in the regulation of antigen-driven allergic immune responses via differential expression of miRNAs upstream of Th2 cytokines and eosinophils.
Collapse
Affiliation(s)
| | - Wenging Hao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Xiaoxue Li
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Alfredo Saavedra-Molina
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Zsolt Radak
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Sanjiv Sur
- Division of Endocrinology and Division of Allergy and Immunology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas; and
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Allan R Brasier
- Division of Endocrinology and Division of Allergy and Immunology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas; and
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Xueqing Ba
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas;
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
10
|
Topic A, Francuski D, Nikolic A, Milosevic K, Jovicic S, Markovic B, Djukic M, Radojkovic D. The Role of Oxidative Stress in the Clinical Manifestations of Childhood Asthma. Fetal Pediatr Pathol 2017; 36:294-303. [PMID: 28481134 DOI: 10.1080/15513815.2017.1315199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The significance of oxidative stress in pathogenesis of childhood asthma was recognized, but its role in the clinical manifestations of disease is still unclear. MATERIALS AND METHODS The study was conducted in 96 asthmatic children. The urinary biomarker of oxidative stress, 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG/creatinine) was determined by using HPLC-MS/MS. ELISA was performed to measure myeloperoxidase (MPO) and Cu,Zn- superoxide dismutase (Cu,Zn-SOD) in serum. RESULTS Logistic regression analysis revealed that female gender, tobacco smoke exposure, and increased 8-oxodG/creatinine were associated with risk for intermittent asthma, while the positive allergy test and increased Cu,Zn-SOD were associated with eczema in asthmatic children. Higher MPO (p = 0.033), and percent of granulocytes (p = 0.030) were found in severe persistent asthma in comparison to intermittent or mild persistent asthma. CONCLUSION The main findings that TSE-induced oxidative stress is a risk for intermittent asthma and eczema may be clinically significant for the disease prevention and therapeutic improvements.
Collapse
Affiliation(s)
- Aleksandra Topic
- a Department of Medical Biochemistry, Faculty of Pharmacy , University of Belgrade , Belgrade , Serbia
| | - Djordje Francuski
- b Institute of Molecular Genetics and Genetic Engineering , University of Belgrade , Belgrade , Serbia
| | - Aleksandra Nikolic
- b Institute of Molecular Genetics and Genetic Engineering , University of Belgrade , Belgrade , Serbia
| | - Katarina Milosevic
- c Department of Pulmonology and Allergology , University Children's Hospital , Belgrade , Serbia
| | - Snezana Jovicic
- a Department of Medical Biochemistry, Faculty of Pharmacy , University of Belgrade , Belgrade , Serbia.,d Center for Medical Biochemistry, Clinical Centre of Serbia , Belgrade , Serbia
| | - Bojan Markovic
- e Department of Pharmaceutical Chemistry, Faculty of Pharmacy , University of Belgrade , Belgrade , Serbia
| | - Mirjana Djukic
- f Department of Toxicology, Faculty of Pharmacy , University of Belgrade , Belgrade , Serbia
| | - Dragica Radojkovic
- b Institute of Molecular Genetics and Genetic Engineering , University of Belgrade , Belgrade , Serbia
| |
Collapse
|
11
|
Corlateanu A, Covantev S, Mathioudakis AG, Botnaru V, Siafakas N. Ashtma-Chronic obstructive pulmonary disease overlap syndrome (ACOS): current evidence and future research directions. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s40749-017-0025-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Belanger KK, Ameredes BT, Boldogh I, Aguilera-Aguirre L. The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma. Mediators Inflamm 2016; 2016:3762561. [PMID: 27524866 PMCID: PMC4976190 DOI: 10.1155/2016/3762561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Asthma is characterized by reversible airway narrowing, shortness of breath, wheezing, coughing, and other symptoms driven by chronic inflammatory processes, commonly triggered by allergens. In 90% of asthmatics, most of these symptoms can also be triggered by intense physical activities and severely exacerbated by environmental factors. This condition is known as exercise-induced asthma (EIA). Current theories explaining EIA pathogenesis involve osmotic and/or thermal alterations in the airways caused by changes in respiratory airflow during exercise. These changes, along with existing airway inflammatory conditions, are associated with increased cellular levels of reactive oxygen species (ROS) affecting important biomolecules including DNA, although the underlying molecular mechanisms have not been completely elucidated. One of the most abundant oxidative DNA lesions is 8-oxoguanine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase 1 (OGG1) during the base excision repair (BER) pathway. Whole-genome expression analyses suggest a cellular response to OGG1-BER, involving genes that may have a role in the pathophysiology of EIA leading to mast cell degranulation, airway hyperresponsiveness, and bronchoconstriction. Accordingly, this review discusses a potential new hypothesis in which OGG1-BER-induced gene expression is associated with EIA symptoms.
Collapse
Affiliation(s)
- KarryAnne K. Belanger
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bill T. Ameredes
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Molecular Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Environmental Health and Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Sealy Center for Molecular Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Environmental Health and Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
13
|
German P, Saenz D, Szaniszlo P, Aguilera-Aguirre L, Pan L, Hegde ML, Bacsi A, Hajas G, Radak Z, Ba X, Mitra S, Papaconstantinou J, Boldogh I. 8-Oxoguanine DNA glycosylase1-driven DNA repair-A paradoxical role in lung aging. Mech Ageing Dev 2016; 161:51-65. [PMID: 27343030 DOI: 10.1016/j.mad.2016.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
Abstract
Age-associated changes in lung structure and function are some of the most important predictors of overall health, cognitive activities and longevity. Common to all aging cells is an increase in oxidatively modified DNA bases, primarily 8-oxo-7,8-dihydroguanine (8-oxoG). It is repaired via DNA base excision repair pathway driven by 8-oxoguanine DNA glycosylase-1 (OGG1-BER), whose role in aging has been the focus of many studies. This study hypothesizes that signaling and consequent gene expression during cellular response to OGG1-BER "wires" senescence/aging processes. To test OGG1-BER was mimicked by repeatedly exposing diploid lung fibroblasts cells and airways of mice to 8-oxoG base. Results showed that repeated exposures led to G1 cell cycle arrest and pre-matured senescence of cultured cells in which over 1000 genes were differentially expressed -86% of them been identical to those in naturally senesced cells. Gene ontology analysis of gene expression displayed biological processes driven by small GTPases, phosphoinositide 3-kinase and mitogen activated kinase cascades both in cultured cells and lungs. These results together, points to a new paradigm about the role of DNA damage and repair by OGG1 in aging and age-associated disease processes.
Collapse
Affiliation(s)
- Peter German
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - David Saenz
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Peter Szaniszlo
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Gyorgy Hajas
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Zsolt Radak
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Xueqing Ba
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Sankar Mitra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - John Papaconstantinou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
14
|
Oxidative Stress Markers in Sputum. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2930434. [PMID: 26885248 PMCID: PMC4738959 DOI: 10.1155/2016/2930434] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 01/12/2023]
Abstract
Although oxidative stress is thought to play a pivotal role in the pathogenesis of inflammatory airway diseases, its assessment in clinical practice remains elusive. In recent years, it has been conceptualized that oxidative stress markers in sputum should be employed to monitor oxidative processes in patients with asthma, chronic obstructive pulmonary disease (COPD), or cystic fibrosis (CF). In this review, the use of sputum-based oxidative markers was explored and potential clinical applications were considered. Among lipid peroxidation-derived products, 8-isoprostane and malondialdehyde have been the most frequently investigated, while nitrosothiols and nitrotyrosine may serve as markers of nitrosative stress. Several studies have showed higher levels of these products in patients with asthma, COPD, or CF compared to healthy subjects. Marker concentrations could be further increased during exacerbations and decreased along with recovery of these diseases. Measurement of oxidized guanine species and antioxidant enzymes in the sputum could be other approaches for assessing oxidative stress in pulmonary patients. Collectively, even though there are promising findings in this field, further clinical studies using more established detection techniques are needed to clearly show the benefit of these measurements in the follow-up of patients with inflammatory airway diseases.
Collapse
|
15
|
8-Oxoguanine DNA glycosylase-1-driven DNA base excision repair: role in asthma pathogenesis. Curr Opin Allergy Clin Immunol 2015; 15:89-97. [PMID: 25486379 DOI: 10.1097/aci.0000000000000135] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW To provide both an overview and evidence of the potential cause of oxidative DNA base damage and repair signaling in chronic inflammation and histological changes associated with asthma. RECENT FINDINGS Asthma is initiated/maintained by immunological, genetic/epigenetic, and environmental factors. It is a world-wide health problem, as current therapies suppress symptoms rather than prevent/reverse the disease, largely due to gaps in understanding its molecular mechanisms. Inflammation, oxidative stress, and DNA damage are inseparable phenomena, but their molecular roles in asthma pathogenesis are unclear. It was found that among oxidatively modified DNA bases, 8-oxoguanine (8-oxoG) is one of the most abundant, and its levels in DNA and body fluids are considered a biomarker of ongoing asthmatic processes. Free 8-oxoG forms a complex with 8-oxoG DNA glycosylase-1 and activates RAS-family GTPases that induce gene expression to mobilize innate and adaptive immune systems, along with genes regulating airway hyperplasia, hyper-responsiveness, and lung remodeling in atopic and nonatopic asthma. SUMMARY DNA's integrity must be maintained to prevent mutation, so its continuous repair and downstream signaling 'fuel' chronic inflammatory processes in asthma and form the basic mechanism whose elucidation will allow the development of new drug targets for the prevention/reversal of lung diseases.
Collapse
|
16
|
Annoni R, Silva LFF, Nussbaumer-Ochsner Y, van Schadewijk A, Mauad T, Hiemstra PS, Rabe KF. Increased expression of granzymes A and B in fatal asthma. Eur Respir J 2015; 45:1485-8. [DOI: 10.1183/09031936.00213814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/11/2015] [Indexed: 11/05/2022]
|
17
|
Nadeem A, Siddiqui N, Alharbi NO, Alharbi MM. Airway and systemic oxidant-antioxidant dysregulation in asthma: A possible scenario of oxidants spill over from lung into blood. Pulm Pharmacol Ther 2014; 29:31-40. [DOI: 10.1016/j.pupt.2014.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/10/2014] [Accepted: 06/02/2014] [Indexed: 02/07/2023]
|
18
|
The role of 8-oxoguanine DNA glycosylase-1 in inflammation. Int J Mol Sci 2014; 15:16975-97. [PMID: 25250913 PMCID: PMC4200771 DOI: 10.3390/ijms150916975] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022] Open
Abstract
Many, if not all, environmental pollutants/chemicals and infectious agents increase intracellular levels of reactive oxygen species (ROS) at the site of exposure. ROS not only function as intracellular signaling entities, but also induce damage to cellular molecules including DNA. Among the several dozen ROS-induced DNA base lesions generated in the genome, 8-oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant because of guanine’s lowest redox potential among DNA bases. In mammalian cells, 8-oxoG is repaired by the 8-oxoguanine DNA glycosylase-1 (OGG1)-initiated DNA base excision repair pathway (OGG1–BER). Accumulation of 8-oxoG in DNA has traditionally been associated with mutagenesis, as well as various human diseases and aging processes, while the free 8-oxoG base in body fluids is one of the best biomarkers of ongoing pathophysiological processes. In this review, we discuss the biological significance of the 8-oxoG base and particularly the role of OGG1–BER in the activation of small GTPases and changes in gene expression, including those that regulate pro-inflammatory chemokines/cytokines and cause inflammation.
Collapse
|
19
|
Inflammation and immune response in COPD: where do we stand? Mediators Inflamm 2013; 2013:413735. [PMID: 23956502 PMCID: PMC3728539 DOI: 10.1155/2013/413735] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/02/2013] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs) to release “danger signal”. These signals act as ligands to Toll-like receptors (TLRs), triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs). Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.
Collapse
|