1
|
Chen Y, Wang J, Jin CX, Wu H, He W, Wu ZX, Wang ZT, Hong YZ, Yang ZH, Yang S, Song FB, Luo J, Sun JL. Study on the potential impact of sustained high temperatures during non-breeding season on largemouth bass. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101501. [PMID: 40184882 DOI: 10.1016/j.cbd.2025.101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
With the growing scale of largemouth bass breeding, the demand for seedlings is increasing. As global temperatures rise, it is crucial to study the effects of high temperature their regulatory mechanisms in largemouth bass. In this study, we simulated a high water temperature (28 °C) in the non-breeding season in aquaculture ponds for 28 days to examine the growth, reproduction, metabolism, apoptosis, and methylation markers in largemouth bass; transcriptome analysis was also performed. The results showed no significant difference in body weight between male and female largemouth bass. However, the high-temperature exposed females had reduced growth hormone (GH) and estradiol (E2) levels and elevated cortisol levels. They also showed upregulated expression of AR, cyp19a, igf, fshβ, and lhβ in ovarian tissue. Transcriptomic comparisons between temperature treatments revealed 963 differentially expressed genes in females and 700 in males. Both the ECM receptor interaction and PPAR signaling pathways were significantly enriched. High-temperature enhanced the lipid metabolism process through the PPAR signaling pathway. High temperatures increased oxidative stress in females, which corresponded with increases in SOD, CAT, and GSH-Px, likely to counteract the excess reactive oxygen species. Moreover, endoplasmic reticulum stress was activated, indicated by increases in IRE1 and ATF6, leading to the upregulation of apoptosis-related genes and ovarian cell apoptosis. At high temperature, 5-MC%, demethylase, and methyltransferase were not different in females, while 5-MC% and methyltransferase were higher and demethylase was lower in males. In summary, sustained high temperature affected ovarian development by altering the expression of hormone and gonad related genes and inducing endoplasmic reticulum stress leading to ovarian cell apoptosis. However, low demethylase activity and high genome-wide methylation in the test is suggested that high temperatures may affect testis development via methylation, potentially impacting offspring production.
Collapse
Affiliation(s)
- Yue Chen
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641112, China
| | - Chun Xiu Jin
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Wei He
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Zi Xian Wu
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Zi Tong Wang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Yi Zhou Hong
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Zi Hang Yang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fei Biao Song
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jian Luo
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| | - Jun Long Sun
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Jing Y, Zhang T, Hu F, Liu G, Sun M. Single and combined effects of phenanthrene and cadmium on oxidative stress and detoxification related biomarkers in clams (Meretrix meretrix). Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110050. [PMID: 39378974 DOI: 10.1016/j.cbpc.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Biomarkers concerning antioxidant reactions and detoxification metabolics were evaluated in Meretrix meretrix exposed to cadmium (Cd, 10 μg/L) and phenanthrene (PHE, 100 μg/L) individually and in combination (10 μg/L Cd + 100 μg/L PHE) for 7 days. The accumulation of Cd and PHE measured in the digestive gland, gill, mantle, and axe foot of the clam showed significant increase in combination treatment and it was higher than the single Cd or single PHE treatment. The activities of oxidative stress-related enzymes, the expression of Cu/Zn SOD, and the content of MDA increased after Cd and PHE exposure in the digestive gland and gill at most cases. In the digestive gland, CAT gene expression was significantly induced in Cd-single group and significantly inhibited in PHE-single group and Cd-PHE mixed group at both day 3 and day 7; in the gill, CAT gene expression was significantly inhibited in all groups at day 3 and except for Cd-single group at day 7. MT expression was significantly induced in Cd-single and Cd-PHE mixed groups at day 7, while hsp70 expression was significantly inhibited in PHE-single and Cd-PHE mixed groups at day 7. The results indicated that SOD, CAT, GST, MDA, Cu/Zn SOD, CAT, MT and hsp70 were sensitive to cadmium and PHE in a water environment, and can be used as indicators of marine heavy metal pollution.
Collapse
Affiliation(s)
- Yuanyuan Jing
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Tianwen Zhang
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Fanguang Hu
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Guangbin Liu
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Ming Sun
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China.
| |
Collapse
|
3
|
Yang Q, Lu Y. Heat Shock Protein 70 Genes Are Involved in the Thermal Tolerance of Hippodamia variegata. INSECTS 2024; 15:678. [PMID: 39336646 PMCID: PMC11431981 DOI: 10.3390/insects15090678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024]
Abstract
Previous studies have shown that the survival and reproduction of Hippodamia variegata are increasingly harmed by progressive increases in temperature (from 32 °C to 35 °C and 38 °C). In this study, transcriptome sequencing analysis was performed on H. variegata, after being exposed to different temperatures (from 32 to 38 °C) for 24 h, using high-throughput sequencing technology. We found the largest number of differentially expressed genes (DEGs) in the 35 °C vs. 32 °C group (1151) followed by the 38 °C vs. 32 °C group (1054) and then the 38 °C vs. 35 °C group (901), indicating that H. variegata expressed the largest number of newly mobilized genes under medium-high temperature (35 °C). Gene functional analysis showed that a large number of DEGs were involved in "Catalytic activity", "Oxidoreductase activity", "Metabolic pathways", and "Longevity regulating pathway-multiple species" gene groups. We randomly selected nine DEGs for validation using qRT-PCR. The results of qRT-PCR were consistent with the transcriptome data, confirming their reliability. Finally, the RNAi results showed that adult survival, longevity, and fecundity were lower in the group in which gene expression of the heat shock proteins (Hsp70-01 and Hsp68) was suppressed than in the control group (injection ds-GFP) at all the experimental temperatures (32, 35, and 38 °C). Our results indicate the important role of the heat shock proteins (Hsp70-01 and Hsp68) in resistance to high-temperature stress in H. variegata and provide a molecular basis for analyzing its thermotolerance mechanism.
Collapse
Affiliation(s)
- Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Doctoral Work Laboratory, Department of Agricultural and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou 061001, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
4
|
Arredondo-Espinoza R, Ibarra AM, Roberts SB, Sicard-González MT, Escobedo-Fregoso C. Transcriptome profile in heat resilient Pacific oyster Crassostrea gigas families under thermal challenge. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101089. [PMID: 37269757 DOI: 10.1016/j.cbd.2023.101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/05/2023]
Abstract
Since the introduction of the Pacific oyster Crassostrea gigas in Baja California Sur, Mexico, its culture has faced environmental challenges, specifically increasing temperatures that result in high mortalities. The inter-tidal zone seawater temperature during a year at the Baja California Peninsula broadly ranges from 7 °C to 39 °C. Therefore, to understand how oysters respond to heat stress during daily temperature oscillations, heat-resistant (RR, father, and mother resistant) and heat-susceptible (SS, both parents susceptible) phenotypes families from a C. gigas breeding program were exposed to a thermal challenge. Based on a laboratory-simulated daily oscillatory thermal challenge (26 to 34 °C) for 30 days, RR phenotype presented differences compared to SS phenotype since the beginning (day 0) of the thermal challenge. Gene expression analyses revealed 1822 differentially expressed up-regulated transcripts in RR, related to functions of metabolic processes, biological regulation, and response to stimulus and signaling. At the end of the experiment (day 30), 2660 differentially expressed up-regulated transcripts were identified in RR. Functional analysis of the genes expressed indicates responses of regulation of biological processes and response to a stimulus. Additionally, 340 genes were differentially expressed among RR vs. SS from the beginning to the end of the thermal challenge, where 170 genes were up-regulated, and 170 were down-regulated. These transcriptomic profiles represent the first report to identify gene expression markers associated with RR phenotypes for the Pacific oyster to the future broodstock selection.
Collapse
Affiliation(s)
- Roberto Arredondo-Espinoza
- Centro de Investigaciones Biológicas del Noroeste S.C. (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Ana M Ibarra
- Centro de Investigaciones Biológicas del Noroeste S.C. (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA. https://twitter.com/sr320
| | - Maria Teresa Sicard-González
- Centro de Investigaciones Biológicas del Noroeste S.C. (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Cristina Escobedo-Fregoso
- Consejo Nacional de Ciencia y Tecnología-Centro de Investigaciones Biológicas del Noroeste S.C. (CONACYT-CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico.
| |
Collapse
|
5
|
Karray S, Marchand J, Geffard A, Rebai T, Denis F, Chénais B, Hamza-Chaffai A. Metal Contamination and Biomarkers in Cerastoderma glaucum: A Multi-level Approach. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:484-503. [PMID: 37119272 DOI: 10.1007/s00244-023-00999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
In this study, we focused on evaluating the responses of the cockle, Cerastoderma glaucum to in situ exposures to metals at three sites in the Gulf of Gabes in the coastal zone of Tunisia differing in levels of metal contamination. Firstly, we examined the general physiological state of the organisms. Secondly, we evaluated the bioaccumulation of several metals (Cd, Cu, Zn, Ni) in the cockles. Thirdly, we focused on evaluating histologically changes in gametogenesis and sexual maturity of the organisms. Finally, we determined the expression of seven key genes encoding enzymes or proteins involved in responses to different types of environmental stressors. Results showed a decrease in the general physiological status of the cockles, including a reduced condition index, sex ratios skewed to females (70% and 80% females in the intermediate and the contaminated site, respectively) and greater mortalities in tests under anoxic conditions (i.e., stress on stress test) in cockles collected from the most contaminated site (LT50 = 2.88 days) compared to the cockles from the intermediate site (LT50 = 5 days) and the less contaminated site (LT50 = 6 days). Results for metal bioaccumulation showed that the levels of Cd, Cu, Zn and Ni in cockles were consistent with the contaminant gradient, with the highest levels in cockles from the most contaminated site (1.04; 4.92; 52.76 and 13.81 µg/g dw, respectively), followed by those from the intermediate site (0.34; 2.94; 36.94; 17.40 µg/g dw, respectively) and then the less contaminated site (0.065; 1.27; 21.62 and 5.40 µg/g dw, respectively). Results from the gametogenesis and maturity index showed few differences in the reproductive cycle of cockles collected from the three study sites. There were different patterns of gene expression that were divided into three groups in terms of responses: (1) expression of genes involved in metal detoxification, ATP Binding Cassette Subfamily B Member 1 (ABCB1) and metallothionein MT) and genes for superoxide dismutases (i.e., Mn SOD and CuZn SOD), which did not show any difference in their levels of expression; (2) heat shock protein 70 (HSP70) gene expression, which decreased in cockles according to the pollution gradient, and (3) expression of catalase (CAT) and cytochrome oxidase subunit 1 (COI) genes was threefold and 1000-fold higher in cockles from intermediate and most contaminated sites compared to the less contaminated site. Therefore, changes in overall physiological condition, sex ratios and expression of HSP70, CAT and COI genes may be appropriate biomarkers for in situ studies of the impacts of metals in cockles. However, these biomarkers should be coupled to proteomics studies.
Collapse
Affiliation(s)
- Sahar Karray
- Université du Maine - Le Mans, EA 2460 Mer Molécules Santé, Institut Universitaire Mer et Littoral - FR3473 CNRS, 72085, Le Mans Cedex, France.
- Laboratoire d'Ecotoxicologie Marine et Environnementale, Université de Sfax, Sfax, Tunisia.
| | - Justine Marchand
- Université du Maine - Le Mans, EA 2460 Mer Molécules Santé, Institut Universitaire Mer et Littoral - FR3473 CNRS, 72085, Le Mans Cedex, France
| | - Alain Geffard
- Université de Reims-Champagne Ardenne, EA 4689 Interactions Animal Environnement, BP 1039, 51687, Reims Cedex 2, France
| | - Tarek Rebai
- Laboratoire d'histologie à la faculté de médecine de Sfax, Université de Sfax, Sfax, Tunisia
| | - Françoise Denis
- Université du Maine - Le Mans, EA 2460 Mer Molécules Santé, Institut Universitaire Mer et Littoral - FR3473 CNRS, 72085, Le Mans Cedex, France
- UMR 7208 CNRS-MNHN-IRD-UPMC Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA), Concarneau, France
| | - Benoît Chénais
- Université du Maine - Le Mans, EA 2460 Mer Molécules Santé, Institut Universitaire Mer et Littoral - FR3473 CNRS, 72085, Le Mans Cedex, France
| | - Amel Hamza-Chaffai
- Laboratoire d'Ecotoxicologie Marine et Environnementale, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
6
|
Sun M, Hu F, Wang T, Zhang T, Jing Y, Guo W, Chen Q, Liu G. Effect of temperature on the toxicokinetics and gene expression of the pacific cupped oyster Crassostrea gigas exposed to cadmium. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109252. [PMID: 34968742 DOI: 10.1016/j.cbpc.2021.109252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023]
Abstract
In this study, we investigated the influence of temperature on the bioaccumulation and depuration of Crassostrea gigas exposed to Cd associated with its molecular responses. Oysters were acclimatized to different temperatures (10 °C, 15 °C, 20 °C, 25 °C, and 30 °C) for 14 d and then exposed to 10 μg/L Cd for 28 d, followed by a depuration period of 35 d. Oysters were sampled for chemical analysis by inductively coupled plasma mass spectrometry (ICP-MS) and for mRNA quantification by qPCR. In the digestive gland, gill, and mantle, the cadmium concentration at 10 °C was significantly lower than that at 25 °C and 30 °C in both the whole experiments. The use of a two-compartment model showed that the uptake rate k1 in the above three tissues increased with increasing temperatures ranging from 15 to 25 °C. The fastest elimination rates and shortest half-lives were observed at 15-25 °C. The induction of metallothionein (MT) only occurred in the digestive gland at 15 °C and 20 °C at the end of the accumulation phase. In the mantle and gills, the expression of P-glycoprotein (P-gp) was significantly induced at the end of the accumulation phase and significantly inhibited at the end of the depuration phase. In the digestive gland, the expression of P-gp was induced at the end of both the accumulation and depuration phases. Heat shock protein (hsp70) expression exhibited an overall increasing trend throughout the experiment.
Collapse
Affiliation(s)
- Ming Sun
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Fanguang Hu
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Tianming Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Tianwen Zhang
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Yuanyuan Jing
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Wen Guo
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Qun Chen
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Guangbin Liu
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China.
| |
Collapse
|
7
|
Roh H, Kim DH. Identification, classification and functional characterization of HSP70s in rainbow trout (Oncorhynchus mykiss) through multi-omics approaches. FISH & SHELLFISH IMMUNOLOGY 2022; 121:205-214. [PMID: 34990808 DOI: 10.1016/j.fsi.2021.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Heat shock protein 70s (HSP70s) are known to play vital biological processes in rainbow trout. However, information on the numerous roles and classification of many different HSP70s is insufficient. The purpose of this study was to investigate the characteristics of all HSP70s in rainbow trout using multi-dimensional genomic and transcriptomic analyses for inspecting HSP70 homologs, phylogenetic characteristics, DNA motifs, and transcription factor binding sites (TFBSs). Also, the transcriptomic results in conditions of acute thermal stress and Ichthyophthirius multifiliis infection were used to characterize the expression of all HSP70 homologs, and the isoforms of the most sensitive HSP70 were predicted in silico. A total of 23 HSP70s were identified, and they were divided into seven evolutionary groups (groups 1-7). Groups 1 and 2 had relatively longer phylogenetic distances compared to the other groups, which can speculate origin of groups 1 and 2 HSP70s would be different compared to others. With transcriptomic profiling, most HSPs belonging to group 3 showed highly sensitive responses to I. multifiliis infection, not thermal stress, but the group 6 HSP70s had the opposite expression tendencies. Likewise, the composition of the TFBS in each HSP70 was consistent with its group classification. Since TFBSs are widely known to influence transcriptomic expression, they could be one of the major reasons for the different patterns of expression within the HSP70 groups. Moreover, this study demonstrated several isoforms of HSP70a, by far the most sensitive HSP70s, under several stress environments such as hypoxia, thermal, and overcrowding stress. This is an important fundamental study to expand the understanding of HSP70s in rainbow trout as well as for selecting the most sensitive biomarkers for types of stress.
Collapse
Affiliation(s)
- HyeongJin Roh
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, South Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, South Korea.
| |
Collapse
|
8
|
Junprung W, Supungul P, Tassanakajon A. Structure, gene expression, and putative functions of crustacean heat shock proteins in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103875. [PMID: 32987013 DOI: 10.1016/j.dci.2020.103875] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones with critical roles in the maintenance of cellular proteostasis. HSPs, which regulate protein folding and refolding, assembly, translocation, and degradation, are induced in response to physiological and environmental stressors. In recent years, HSPs have been recognized for their potential role in immunity; in particular, these proteins elicit a variety of immune responses to infection and modulate inflammation. This review focuses on delineating the structural and functional roles of crustacean HSPs in the innate immune response. Members of crustacean HSPs include high molecular weight HSPs (HSP90, HSP70, and HSP60) and small molecular weight HSPs (HSP21 and HSP10). The sequences and structures of these HSPs are highly conserved across various crustacean species, indicating strong evolutionary links among this group of organisms. The expression of HSP-encoding genes across different crustacean species is significantly upregulated upon exposure to a wide range of pathogens, emphasizing the important role of HSPs in the immune response. Functional studies of crustacean HSPs, particularly HSP70s, have demonstrated their involvement in the activation of several immune pathways, including those mediating anti-bacterial resistance and combating viral infections, upon heat exposure. The immunomodulatory role of HSPs indicates their potential use as an immunostimulant to enhance shrimp health for control of disease in aquaculture.
Collapse
Affiliation(s)
- Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Premruethai Supungul
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Klong Luang, Pathum Thani, 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Guan W, Wei X, Nong W, Shao Y, Mao L. Heat shock protein 70 (HSP70) promotes air exposure tolerance of Litopenaeus vannamei by preventing hemocyte apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103844. [PMID: 32861730 DOI: 10.1016/j.dci.2020.103844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Brief pretreatment of cold shock at 13 °C for 3 min proved to be an inducer of heat shock protein 70 (HSP70) and improved stress tolerance as a molecular chaperone. With the improvement of air exposure tolerance, HSP70 in shrimp hemocytes was upregulated in mRNA and protein levels after cold shock. Both HSP70 RNA interference (RNAi) gene knockdown and recombinant HSP70 (rHSP70) injection were successfully established in order to investigate the role of HSP70 in response to air exposure stress. Shrimp receiving rHSP70 showed an improved survival rate (80%) with no significant difference (p > 0.05) compared to cold shock treated shrimp (control, 90%) under air exposure, but the survival rate of HSP70-knockdown shrimp was significantly lower (62%, p < 0.05). Reactive oxygen species (ROS) content, relative expression of cytochrome c, caspase-3 activity, and apoptosis rate in hemocytes of HSP70 enriched shrimp (i.e., cold shock and rHSP70 injection) were significantly lower (p < 0.05) than HSP70-knockdown shrimp. Results suggested that HSP70 could be induced by cold shock and contributed to improve the tolerance of shrimp suffering air exposure by blocking the apoptosis pathway through scavenging intracellular ROS, inhibiting cytochrome c expression, inhibiting release from mitochondria, and inactivating caspase-3. This work updates the understanding of cold shock mechanism in water-free transportation of aquatic animals.
Collapse
Affiliation(s)
- Weiliang Guan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Xiaobo Wei
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Wenqian Nong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yelin Shao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
10
|
Gao P, Lu MX, Pan DD, Du YZ. Characterization of an inducible HSP70 gene in Chilo suppressalis and expression in response to environmental and biological stress. Cell Stress Chaperones 2020; 25:65-72. [PMID: 31792734 PMCID: PMC6985400 DOI: 10.1007/s12192-019-01047-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
The highly conserved heat shock protein 70 (HSP70) contributes to survival at a cellular level and greatly enhances stress tolerance in many organisms. In this study, we isolate and characterize Cshsp702, which encodes an inducible form of HSP70 in the rice stem borer, Chilo suppressalis. Cshsp702 does not contain introns; the translational product is comprised of 629 amino acids with an isoelectric point of 5.69. Real-time quantitative PCR revealed that Cshsp702 was expressed at maximal levels in hemocytes and was minimally expressed in the midgut. Expression of Cshsp702 in response to a range of temperatures (-11 to 43 °C) indicated significant induction by extreme cold and hot temperatures, with maximum expression after 2 h at 42 °C. The induction of Cshsp702 in response to the endoparasite Cotesia chilonis was also studied; interestingly, Cshsp702 expression in C. suppressalis was significantly induced at 24 h and 5 days, which correspond to predicted times of C. chilonis feeding and growth, respectively. The potential induction of Cshsp702 as an inflammatory response due to parasitic stress is discussed. In conclusion, Cshsp702 is induced in response to both environmental and biotic stress and plays an important role in the physiological adaptation of C. suppressalis.
Collapse
Affiliation(s)
- Peng Gao
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China
| | - Ming-Xing Lu
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China.
| | - Dan-Dan Pan
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China
| | - Yu-Zhou Du
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Cheng D, Liu H, Zhang H, Soon TK, Ye T, Li S, Ma H, Zheng H. Differential expressions of HSP70 gene between golden and brown noble scallops Chlamys nobilis under heat stress and bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 94:924-933. [PMID: 31604148 DOI: 10.1016/j.fsi.2019.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Heat shock proteins (HSPs) are a family of conserved proteins that enhance stress resistance and protect cells from external damage. In the present study, the full-length HSP70 cDNA from the noble scallop Chlamys nobilis (designated CnHSP70) was first cloned and characterized. Then, the expression of CnHSP70 in golden and brown scallops with different carotenoid content was evaluated under heat stress and Vibrio parahaemolyticus challenge. The complete CnHSP70 cDNA is 2621 bp, including a 1971 bp open reading frame (ORF) encoding a polypeptide of 656 amino acids with an estimated molecular weight of 71.55 kDa and an isoelectric point of 5.32. Based on amino acid sequence and phylogenetic analysis, the CnHSP70 gene was identified as a member of the cytoplasmic HSP70 family. The CnHSP70 was ubiquitously expressed in all examined tissues, including intestines, hemocytes, mantle, adductor and gills, with the highest expression in gills. After heat stress and V. parahaemolyticus injection, the expression levels of CnHSP70 in gills and hemocytes of golden and brown scallops were both significantly increased, indicating that the gene was involved in resistance or immune response. Moreover, under both conditions, similar expression profiles of CnHSP70 were observed between gills and hemocytes from the same color scallop, but different expression levels were detected in the same tissue from the different color scallop, which may be related to difference in their carotenoids content.
Collapse
Affiliation(s)
- Dewei Cheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongxing Liu
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Tan Kar Soon
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ting Ye
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
12
|
Li C, Wang Y, Wang G, Chen Y, Guo J, Pan C, Liu E, Ling Q. Physicochemical changes in liver and Hsc70 expression in pikeperch Sander lucioperca under heat stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:130-137. [PMID: 31176247 DOI: 10.1016/j.ecoenv.2019.05.083] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 05/27/2023]
Abstract
The pikeperch Sander lucioperca is an economically important freshwater species that is currently threatened by higher summer temperatures caused by global warming. To clarify the physiological state of pikeperch reared under relatively high temperatures and to acquire valuable biomarkers to monitor heat stress in this species, 100 fish were subjected to five different temperature treatments, ranging from 23 °C (control) to 36 °C. The physiological and biochemical indexes of liver and blood were determined, and heat-shock cognate 70 kDa protein (Hsc70) mRNA expression profiles were analyzed. The results showed that the activities of superoxide dismutase, catalase, and glutathione peroxidase in heat-stressed pikeperch first increased and then decreased, exhibiting peaks at 34 °C, 28 °C, and 28 °C, respectively. The level of thiobarbituric acid-reactive substances (TBARS) in all experimental groups was significantly higher than that of the control. The numbers of red blood cells, the packed-cell volume, and the contents of hemoglobin were significantly higher in the 34 °C and 36 °C treatment groups. Under heat stress, the albumin, cholesterol, and triglycerides contents decreased with increasing temperatures. Real-time fluorescence-based quantitative RT-PCR showed that Hsc70 mRNA levels increased in all eight of the tested tissues under heat stress. Expression reached maximum levels at 34 °C in the muscle, heart and gill tissues, and at 36 °C in the other five tissues. These results demonstrate that several physiological and biochemical phenotypes, such as oxidative stress, antioxidant enzymes and molecular chaperones, could be important biomarkers of heat stress in pikeperch, and are potentially valuable to uncover the mechanisms of heat-stress responses in fish.
Collapse
Affiliation(s)
- Caijuan Li
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu, China
| | - Yunfeng Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu, China
| | - Guocheng Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu, China
| | - Yining Chen
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu, China
| | - Jinqiang Guo
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu, China
| | - Chenglong Pan
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu, China
| | - Enguang Liu
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu, China
| | - Qufei Ling
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu, China.
| |
Collapse
|
13
|
Description of strongly heat-inducible heat shock protein 70 transcripts from Baikal endemic amphipods. Sci Rep 2019; 9:8907. [PMID: 31222132 PMCID: PMC6586656 DOI: 10.1038/s41598-019-45193-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022] Open
Abstract
Heat shock proteins/cognates 70 are chaperones essential for proper protein folding. This protein family comprises inducible members (Hsp70s) with expression triggered by the increased concentration of misfolded proteins due to protein-destabilizing conditions, as well as constitutively expressed cognate members (Hsc70s). Previous works on non-model amphipod species Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, both endemic to Lake Baikal in Eastern Siberia, have only revealed a constitutively expressed form, expression of which was moderately further induced by protein-destabilizing conditions. Here we describe heat-inducible hsp70s in these species. Contrary to the common approach of using sequence similarity with hsp/hsc70 of a wide spectrum of organisms and some characteristic features, such as absence of introns within genes and presence of heat shock elements in their promoter areas, the present study is based on next-generation sequencing for the studied or related species followed by differential expression analysis, quantitative PCR validation and detailed investigation of the predicted polypeptide sequences. This approach allowed us to describe a novel type of hsp70 transcripts that overexpress in response to heat shock. Moreover, we propose diagnostic sequence features of this Hsp70 type for amphipods. Phylogenetic comparisons with different types of Hsp/Hsc70s allowed us to suggest that the hsp/hsc70 gene family in Amphipoda diversified into cognate and heat-inducible paralogs independently from other crustaceans. Thus, the cognate and inducible hsp70 types in distant taxa may not be recognized by sequence similarity.
Collapse
|
14
|
Koehlé-Divo V, Pain-Devin S, Bertrand C, Devin S, Mouneyrac C, Giambérini L, Sohm B. Corbicula fluminea gene expression modulated by CeO 2 nanomaterials and salinity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15174-15186. [PMID: 30924045 DOI: 10.1007/s11356-019-04927-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Cerium dioxide nanomaterials (CeO2 NMs) are used in different fields and incorporated in daily products. Several studies highlighted their effects on organism physiology, although molecular studies remain scarce. NM behavior is strongly dependent on the environment but few data are available using complex exposure media, raising the question of its environmental impacts. The aim of the present work was to assess the toxic potential of three CeO2 NMs in Corbicula fluminea at a molecular level by RT-qPCR under a more realistic scenario of exposure, in a multistress context at two different salinities (1.5 and 15 psu). C. fluminea was exposed for 28 days to pulses of the three selected NMs (reference, manufactured, and aged manufactured). In bivalves, the gills and digestive gland are two key organs used for ecotoxicological studies. The expression change of 12 genes was measured in control organisms after 28 days in both organs, allowing us to clearly separate the responses for both organs and salinities. As gills come in contact with the environment first, we monitored gene the expression at intermediate time points (7, 14, and 21 days) for this organ in order to highlight clams responses to NM and salinity. Two genes (Se-GPx, MnSOD) had a salinity-dependent level of expression. HSP70, Se-GPx, and Trxr mRNAs presented significant changes in their expressions in the presence of NM. This study was completed using an integrated statistical approach. The exposed organisms differed more from control at field salinity than those exposed to hyper-saline conditions. At 15 psu, salinity pressure seems to cause the first molecular impact. At 1.5 psu, gene expression patterns allowed the effect of each NM to separate clearly. These results confirmed the usefulness of gene expression studies. Moreover, we highlighted the necessity to assess the environmental toxicity of the different forms of manufactured NM.
Collapse
Affiliation(s)
- Vanessa Koehlé-Divo
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France.
| | - Sandrine Pain-Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| | - Carole Bertrand
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
- Laboratoire Mer, Molécules et Santé (MMS, EA2160), Université Catholique de l'Ouest, 3 Place André Leroy, F-49000, Angers Cedex 01, France
| | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| | - Catherine Mouneyrac
- Laboratoire Mer, Molécules et Santé (MMS, EA2160), Université Catholique de l'Ouest, 3 Place André Leroy, F-49000, Angers Cedex 01, France
| | - Laure Giambérini
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| |
Collapse
|
15
|
Di Natale M, Bennici C, Biondo G, Masullo T, Monastero C, Tagliavia M, Torri M, Costa S, Ragusa MA, Cuttitta A, Nicosia A. Aberrant gene expression profiles in Mediterranean sea urchin reproductive tissues after metal exposures. CHEMOSPHERE 2019; 216:48-58. [PMID: 30359916 DOI: 10.1016/j.chemosphere.2018.10.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Marine organisms are simultaneously exposed to numerous pollutants, among which metals probably represent the most abundant in marine environments. In order to evaluate the effects of metal exposure at molecular level in reproductive tissues, we profiled the sea urchin transcriptional response after non-lethal exposures using pathway-focused mRNA expression analyses. Herein, we show that exposures to relatively high concentrations of both essential and toxic metals hugely affected the gonadic expression of several genes involved in stress-response, detoxification, transcriptional and post-transcriptional regulation, without significant changes in gonadosomatic indices. Even though treatments did not result in reproductive tissues visible alterations, metal exposures negatively affected the main mechanisms of stress-response, detoxification and survival of adult P. lividus. Additionally, transcriptional changes observed in P. lividus gonads may cause altered gametogenesis and maintenance of heritable aberrant epigenetic effects. This study leads to the conclusion that exposures to metals, as usually occurs in polluted coastal areas, may affect sea urchin gametogenesis, thus supporting the hypothesis that parental exposure to environmental stressors affects the phenotype of the offspring.
Collapse
Affiliation(s)
- Marilena Di Natale
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Carmelo Bennici
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Girolama Biondo
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Tiziana Masullo
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Calogera Monastero
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Marcello Tagliavia
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Marco Torri
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Angela Cuttitta
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Aldo Nicosia
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| |
Collapse
|
16
|
Garrido PM, Porrini MP, Damiani N, Ruffinengo S, Martínez Noël GMA, Salerno G, Eguaras MJ. Heat shock proteins in Varroa destructor exposed to heat stress and in-hive acaricides. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 76:421-433. [PMID: 30357575 DOI: 10.1007/s10493-018-0319-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Varroa destructor is one of the major pests that affect honeybees around the world. Chemical treatments are common to control varroosis, but mites possess biochemical adaptive mechanisms to resist these treatments, enabling them to survive. So far, no information is available regarding whether these pesticides can induce the expression of heat shock protein (Hsp) as a common protective mechanism against tissue damage. The aims of this study were to determine differences in heat shock tolerance between mites collected from brood combs and phoretic ones, and to examine patterns of protein expression of Hsp70 that occur in various populations of V. destructor after exposure to acaricides commonly employed in beekeeping, such as flumethrin, tau-fluvalinate and coumaphos. Curiously, mites obtained from brood cells were alive at 40 °C, unlike phoretic mites that reached 100% mortality, demonstrating differential thermo-tolerance. Heat treatment induced Hsp70 in mites 4 × more than in control mites and no differences in response were observed in phoretic versus cell-brood-obtained mites. Dose-response assays were carried out at increasing acaricide concentrations. Each population showed a different stress response to acaricides despite belonging to the same geographic region. In one of them, coumaphos acted as a hormetic stressor. Pyrethroids also induced Hsp70, but mite population seemed sensitive to this treatment. We concluded that Hsp70 could represent a robust biomarker for measuring exposure of V. destructor to thermal and chemical stress, depending on the acaricide class and interpopulation variability. This is relevant because it is the first time that stress response is analyzed in this biological model, providing new insight in host-parasite-xenobiotic interaction.
Collapse
Affiliation(s)
- P M Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata, Buenos Aires, Argentina.
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM-CONICET-CIC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata, Buenos Aires, Argentina.
| | - M P Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM-CONICET-CIC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata, Buenos Aires, Argentina
| | - N Damiani
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM-CONICET-CIC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata, Buenos Aires, Argentina
| | - S Ruffinengo
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata, Buenos Aires, Argentina
- Grupo Apicultura, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Ruta 226, Km 73,5, Balcarce, Buenos Aires, Argentina
| | - G M A Martínez Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Vieytes 3103, Mar del Plata, Buenos Aires, Argentina
| | - G Salerno
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Vieytes 3103, Mar del Plata, Buenos Aires, Argentina
| | - M J Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM-CONICET-CIC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
17
|
Xu W, Vebrosky EN, Richards ML, Armbrust KL. Evaluation of dicloran phototoxicity using primary cardiomyocyte culture from Crassostrea virginica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1-10. [PMID: 29432924 DOI: 10.1016/j.scitotenv.2018.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Dicloran is a commonly used fungicide throughout the Southern and Western United States. Runoff of dicloran from agriculture systems to nearby waterbodies can accumulate in the organisms that inhabit those areas. Although severe damage of dicloran to ecological systems has not been reported, its toxicity has been modified by photodegradation. The objective of this study is to assess the changes of dicloran toxicities during photo exposure using a reliable in vitro biological model. In the present investigation, the photodegradation of dicloran in vitro showed over 90% of dicloran was degraded within 24h of UV exposure in water. Two major intermediate degradation products, 2-chloro-1,4-benzoquinone (CBQ) and 1,4-benzoquinone (BQ), were detected upon UV exposure of dicloran; however, they were rapidly degraded via photolysis. To estimate the impact of the phototoxicity of dicloran to aquatic organisms, we developed an in vitro cell culture system using the C. virginica cardiomyoctes (CvCMs) which were isolated from heart tissues and formed beating cell clusters. The CvCM clusters were treated with irradiated dicloran or the two intermediate standards, CBQ and BQ, and they showed up to 41% decrease in beating rates compared to control cell clusters. Expression levels of selected genes: def, hsp70, and cam, were upregulated in response to stimulations of UV irradiated dicloran and the two standard intermediates. The four-hour irradiated dicloran also resulted in more significant inhibition in the proliferation and small cardioactive peptide β production of CvCMs than other treatment. Tested solutions of photolyzed dicloran showed elevated toxicities opposed to the standard intermediates, CBQ and BQ, suggesting additive toxicity of these dicloran products or toxicity due to other unidentified degradation products. Results of this study supported our hypothesis that the degradation of dicloran caused by photo irradiation results in an elevated toxicity which can be evaluated by the in vitro CvCM model.
Collapse
Affiliation(s)
- Wei Xu
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA 70803, United States; Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Emily N Vebrosky
- Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Mackenzie L Richards
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA 70803, United States; Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Kevin L Armbrust
- Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
18
|
Zhang L, Xu D, Cui M, Tang L, Hou T, Zhang Q. The guanine nucleotide-binding protein α subunit protein ChGnaq positively regulates Hsc70 transcription in Crassostrea hongkongensis. Biochem Biophys Res Commun 2018; 499:215-220. [DOI: 10.1016/j.bbrc.2018.03.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
|
19
|
Wang L, Song X, Song L. The oyster immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:99-118. [PMID: 28587860 DOI: 10.1016/j.dci.2017.05.025] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/21/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Oysters, the common name for a number of different bivalve molluscs, are the worldwide aquaculture species and also play vital roles in the function of ecosystem. As invertebrate, oysters have evolved an integrated, highly complex innate immune system to recognize and eliminate various invaders via an array of orchestrated immune reactions, such as immune recognition, signal transduction, synthesis of antimicrobial peptides, as well as encapsulation and phagocytosis of the circulating haemocytes. The hematopoietic tissue, hematopoiesis, and the circulating haemocytes have been preliminary characterized, and the detailed annotation of the Pacific oyster Crassostrea gigas genome has revealed massive expansion and functional divergence of innate immune genes in this animal. Moreover, immune priming and maternal immune transfer are reported in oysters, suggesting the adaptability of invertebrate immunity. Apoptosis and autophagy are proved to be important immune mechanisms in oysters. This review will summarize the research progresses of immune system and the immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, neuropeptides, GABAergic and nitric oxidase system, which possibly make oysters ideal model for studying the origin and evolution of immune system and the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
- Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China.
| |
Collapse
|
20
|
Meng J, Wang WX, Li L, Zhang G. Respiration disruption and detoxification at the protein expression levels in the Pacific oyster (Crassostrea gigas) under zinc exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:34-41. [PMID: 28780297 DOI: 10.1016/j.aquatox.2017.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
The Pacific oyster (Crassostrea gigas) can accumulate high levels of zinc (Zn) without obvious toxicity, but the related molecular mechanisms are largely unknown. In the present study, C. gigas were exposed to excess Zn for 9days and the differentially expressed proteins (DEPs) were examined using the isobaric tags for relative and absolute quantitation (iTRAQ) method. In total, 2667 proteins containing at least two peptides and detected in both replicates were used for proteomic analysis. Among these DEPs, 332 were up-regulated and 282 were down-regulated. KEGG enrichment analysis of DEPs revealed that Zn exposure mainly distrubed 'tricarboxylic acid (TCA) cycle', 'electron transport chain (ETC)' and 'glutathione (GSH) metabolism' processes in oysters. Further key protein expressions enriched in these metabolism pathways were analyzed. In TCA cycle, Zn inhibited the Fe-containing protein expressions, which may lead to the accumulation of succinate and induce anaerobiosis. In ETC metabolism process, Zn inhibited ETC complex protein expressions, including complex I-IV, which may affect the electron transport process. Furthermore, Zn induced phytochelatin (PC) and glutathione peroxidase (GPX) expression in GSH catabolism. The proteins play important roles in Zn detoxification and ROS elimination process. The transcriptional expressions of genes encoding these proteins were observed using real-time PCR analysis, and there was good consistency between these two datasets. Overall, we provide direct evidence for Zn toxicity and detoxification mechanisms at protein level.
Collapse
Affiliation(s)
- Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China.
| |
Collapse
|
21
|
Rodrigo AP, Costa PM. The Role of the Cephalopod Digestive Gland in the Storage and Detoxification of Marine Pollutants. Front Physiol 2017; 8:232. [PMID: 28473775 PMCID: PMC5397501 DOI: 10.3389/fphys.2017.00232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
The relevance of cephalopods for fisheries and even aquaculture, is raising concerns on the relationship between these molluscs and environmental stressors, from climate change to pollution. However, how these organisms cope with environmental toxicants is far less understood than for other molluscs, especially bivalves, which are frontline models in aquatic toxicology. Although, sharing the same basic body plan, cephalopods hold distinct adaptations, often unique, as they are active predators with high growth and metabolic rates. Most studies on the digestive gland, the analog to the vertebrate liver, focused on metal bioaccumulation and its relation to environmental concentrations, with indication for the involvement of special cellular structures (like spherulae) and proteins. Although the functioning of phase I and II enzymes of detoxification in molluscs is controversial, there is evidence for CYP-mediated bioactivation, albeit with lower activity than vertebrates, but this issue needs yet much research. Through novel molecular tools, toxicology-relevant genes and proteins are being unraveled, from metallothioneins to heat-shock proteins and phase II conjugation enzymes, which highlights the importance of increasing genomic annotation as paramount to understand toxicant-specific pathways. However, little is known on how organic toxicants are stored, metabolized and eliminated, albeit some evidence from biomarker approaches, particularly those related to oxidative stress, suggesting that these molluscs' digestive gland is indeed responsive to chemical aggression. Additionally, cause-effect relationships between pollutants and toxicopathic effects are little understood, thus compromising, if not the deployment of these organisms for biomonitoring, at least understanding how they are affected by anthropogenically-induced global change.
Collapse
Affiliation(s)
- Ana P Rodrigo
- Environmental Toxicology Lab, MARE - Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de LisboaCaparica, Portugal
| | - Pedro M Costa
- Environmental Toxicology Lab, MARE - Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de LisboaCaparica, Portugal
| |
Collapse
|
22
|
Liu H, Wu J, Xu M, He J. A novel biomarker for marine environmental pollution of HSP90 from Mytilus coruscus. MARINE POLLUTION BULLETIN 2016; 111:428-434. [PMID: 27491367 DOI: 10.1016/j.marpolbul.2016.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
Heat shock protein 90 (HSP90) is a conserved molecular chaperone contributing to cell cycle control, organism development and the proper regulation of cytosolic proteins. The full-length HSP90 cDNA of Mytilus coruscus (McHSP90, KT946644) was 2420bp, including an ORF of 2169bp encoding a polypeptide of 722 amino acids with predicted pI/MW 4.89/83.22kDa. BLASTp analysis and phylogenetic relationship strongly suggested McHSP90 was a member of HSP90 family, and it was highly conserved with other known HSP90, especially in the HSP90 family signatures, ATP/GTP-Binding sites and 'EEVD' motif. The mRNA of McHSP90 in haemolymph was upregulated in all treatments including Vibrio alginolyticus and Vibrio harveyi challenge, metals stresses (copper and cadmium) and 180 CST fuel exposure. All the results implied the expression of McHSP90 could be affected by Vibrio challenge and environmental stress, which might help us gain more insight into the molecular mechanism of HSP against adverse stresses in mollusca.
Collapse
Affiliation(s)
- Huihui Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Jiong Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mengshan Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jianyu He
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
23
|
Zhu Q, Zhang L, Li L, Que H, Zhang G. Expression Characterization of Stress Genes Under High and Low Temperature Stresses in the Pacific Oyster, Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:176-188. [PMID: 26746430 DOI: 10.1007/s10126-015-9678-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
As a characteristic sessile inhabitant of the intertidal zone, the Pacific oyster Crassostrea gigas occupies one of the most physically stressful environments on earth. With high exposure to terrestrial conditions, oysters must tolerate broad fluctuations in temperature range. However, oysters' cellular and molecular responses to temperature stresses have not been fully characterized. Here, we analyzed oyster transcriptome data under high and low temperatures. We also identified over 30 key temperature stress-responsive candidate genes, which encoded stress proteins such as heat shock proteins and apoptosis-associated proteins. The expression characterization of these genes under short-term cold and hot environments (5 and 35 °C) and long-term cold environments (5 °C) was detected by quantitative real-time PCR. Most of these genes reached expression peaks during the recovery stage after 24 h of heat stress, and these genes were greatly induced around day 3 in long-term cold stress while responded little to short-term cold stress. In addition, in the second heat stress after 2 days of recovery, oysters showed milder expression in these genes and a lower mortality rate, which indicated the existence of plasticity in the oyster's response to heat stress. We confirmed that homeostatic flexibility and anti-apoptosis might be crucial centers of temperature stress responses in oysters. Furthermore, we analyzed stress gene families in 11 different species and found that the linage-specific expansion of stress genes might be implicated in adaptive evolution. These results indicated that both plasticity and evolution played an important role in the stress response adaptation of oysters.
Collapse
Affiliation(s)
- Qihui Zhu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Huayong Que
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
24
|
Sandbichler AM, Höckner M. Cadmium Protection Strategies--A Hidden Trade-Off? Int J Mol Sci 2016; 17:ijms17010139. [PMID: 26805823 PMCID: PMC4730378 DOI: 10.3390/ijms17010139] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022] Open
Abstract
Cadmium (Cd) is a non-essential transition metal which is introduced into the biosphere by various anthropogenic activities. Environmental pollution with Cd poses a major health risk and Cd toxicity has been extensively researched over the past decades. This review aims at changing the perspective by discussing protection mechanisms available to counteract a Cd insult. Antioxidants, induction of antioxidant enzymes, and complexation of Cd to glutathione (GSH) and metallothionein (MT) are the most potent protective measures to cope with Cd-induced oxidative stress. Furthermore, protection mechanisms include prevention of endoplasmic reticulum (ER) stress, mitophagy and metabolic stress, as well as expression of chaperones. Pre-exposure to Cd itself, or co-exposure to other metals or trace elements can improve viability under Cd exposure and cells have means to reduce Cd uptake and improve Cd removal. Finally, environmental factors have negative or positive effects on Cd toxicity. Most protection mechanisms aim at preventing cellular damage. However, this might not be possible without trade-offs like an increased risk of carcinogenesis.
Collapse
Affiliation(s)
| | - Martina Höckner
- University of Innsbruck, Institute of Zoology, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
25
|
Tran NT, Jakovlić I, Wang WM. In silico characterisation, homology modelling and structure-based functional annotation of blunt snout bream (Megalobrama amblycephala) Hsp70 and Hsc70 proteins. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2015; 57:44. [PMID: 26672478 PMCID: PMC4678458 DOI: 10.1186/s40781-015-0077-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/28/2015] [Indexed: 12/16/2022]
Abstract
Background Heat shock proteins play an important role in protection from stress stimuli and metabolic insults in almost all organisms. Methods In this study, computational tools were used to deeply analyse the physicochemical characteristics and, using homology modelling, reliably predict the tertiary structure of the blunt snout bream (Ma-) Hsp70 and Hsc70 proteins. Derived three-dimensional models were then used to predict the function of the proteins. Results Previously published predictions regarding the protein length, molecular weight, theoretical isoelectric point and total number of positive and negative residues were corroborated. Among the new findings are: the extinction coefficient (33725/33350 and 35090/34840 - Ma-Hsp70/ Ma-Hsc70, respectively), instability index (33.68/35.56 – both stable), aliphatic index (83.44/80.23 – both very stable), half-life estimates (both relatively stable), grand average of hydropathicity (−0.431/-0.473 – both hydrophilic) and amino acid composition (alanine-lysine-glycine/glycine-lysine-aspartic acid were the most abundant, no disulphide bonds, the N-terminal of both proteins was methionine). Homology modelling was performed by SWISS-MODEL program and the proposed model was evaluated as highly reliable based on PROCHECK’s Ramachandran plot, ERRAT, PROVE, Verify 3D, ProQ and ProSA analyses. Conclusions The research revealed a high structural similarity to Hsp70 and Hsc70 proteins from several taxonomically distant animal species, corroborating a remarkably high level of evolutionary conservation among the members of this protein family. Functional annotation based on structural similarity provides a reliable additional indirect evidence for a high level of functional conservation of these two genes/proteins in blunt snout bream, but it is not sensitive enough to functionally distinguish the two isoforms.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070 China ; Center for Fish Biology and Fishery Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072 China
| | - Ivan Jakovlić
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Wei-Min Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070 China ; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 41500 China
| |
Collapse
|
26
|
Liu HH, He JY, Chi CF, Lv ZM. Identification and analysis of HSP70 from Sepiella maindroni under stress of Vibrio harveyi and Cd(2.). Gene 2015; 572:146-152. [PMID: 26192462 DOI: 10.1016/j.gene.2015.07.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 11/26/2022]
Abstract
The 70-kDa heat shock proteins (HSP70) play crucial roles in protecting cells against environmental stresses, such as heat shock, heavy metals and pathogenic bacteria. The full-length HSP70 cDNA of Sepiella maindroni (designated as SmHSP70, GenBank accession no. KJ739788) was 2109 bp, including an ORF of 1950 bp encoding a polypeptide of 649 amino acids with predicted pI/MW 5.24/71.30 kDa, a 62 bp-5'-UTR and a 97 bp-3'-UTR. BLASTp analysis and phylogenetic relationship strongly suggested that the amino acid sequence was a member of HSP70 family. Multiple sequence alignment revealed that SmHSP70 and other known HSP70 were highly conserved, especially in the regions of HSP70 family signatures, the bipartite nuclear targeting sequence, ATP/GTP-binding site motif and 'EEVD' motif. Time-dependent mRNA expression of SmHSP70 in the liver was recorded by quantitative real-time RT-PCR after Vibrio harveyi injection and Cd(2+) exposure. The results indicated that SmHSP70 played a significant role in mediating the environmental stress and immune response against pathogens.
Collapse
Affiliation(s)
- Hui-Hui Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Jian-Yu He
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chang-Feng Chi
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhen-Ming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
27
|
Fei J, Wang YS, Zhou Q, Gu JD. Cloning and expression analysis of HSP70 gene from mangrove plant Kandelia obovata under cold stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1677-85. [PMID: 25980488 DOI: 10.1007/s10646-015-1484-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 05/16/2023]
Abstract
Heat shock protein 70 (HSP70), the primary member of the HSPs that play various stress-protective roles in plants. In this study, a hsp70 gene of Kandelia obovata (KoHsp70) was cloned by rapid amplification of cDNA ends (RACE). The full-length of KoHsp70 was 2255 bp, consisting of a 5'-terminal untranslated region (UTR) of 118 bp, a 3'-terminal UTR of 178 bp, and an open reading frame (ORF) of 1959 bp. The ORF (KoHSP70) was predicted to encode a polypeptide of 652 amino acids with a theoretical molecular weight (MW) of 71.40 kDa and a pI of 5.16. The amino acid sequence analysis revealed that the KoHSP70 contained three conserved regions of HSP70 family, a bipartite nuclear localization signal sequences (NLS), an ATP/GTP-binding site motif and a cytoplasmic characteristic motif (EEVD). Homology analysis indicated that KoHSP70 shared 96.0 % identity with the known HSP70 (Gossypium hirsutum). Bioinformatics analysis indicated that the KoHSP70 was hydrophilic and had no signal peptide or transmembrane region. The mRNA expression of KoHsp70 kept relatively stable at first and then increased significantly after 48 h cold stress, and reached the highest level at 168 h after cold treatment. The results indicated that the KoHsp70 was a stress-inducible gene that might play a role in cold stress-protective response and in coping with environmental and biological stresses for K. obovata. This study provided a basis to further study the mechanism of anti-adverseness and expression characteristics under stress conditions of K. obovata.
Collapse
Affiliation(s)
- Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China.
| | - Qiao Zhou
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ji-Dong Gu
- Laboratory of Environmental Toxicology, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
28
|
Valenzuela-Castillo A, Sánchez-Paz A, Castro-Longoria R, López-Torres MA, Grijalva-Chon JM. Seasonal changes in gene expression and polymorphism of hsp70 in cultivated oysters (Crassostrea gigas) at extreme temperatures. MARINE ENVIRONMENTAL RESEARCH 2015; 110:25-32. [PMID: 26254584 DOI: 10.1016/j.marenvres.2015.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/30/2015] [Accepted: 07/30/2015] [Indexed: 06/04/2023]
Abstract
The HSP70 proteins are an important element of the response against thermal stress and infectious diseases, and they are highly conserved and ubiquitous. In some species, variations on the hsp70 encoding sequence resulted in intraspecific differential expression, which leads to variations on thermo-tolerance among individuals. This phenomenon has not been described in the Pacific oyster Crassostrea gigas, which is cultivated in Mexico under temperature conditions highly above the optimal for this species. The present study was aimed to identify associations between hsp70 genotypes and their expression levels in C. gigas. By analyzing a 603 bp fragment from the 3' end of the hsp70 gene, 21 different genotypes with 60 nucleotide polymorphic sites were detected, of which 34 sites were found in heterozygous condition. Although no correlation was found between genotype-expression-season, a minimum expression threshold that should be taken into account as an important feature for a future breeding program is proposed.
Collapse
Affiliation(s)
- Adán Valenzuela-Castillo
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico
| | - Arturo Sánchez-Paz
- Centro de Investigaciones Biológicas del Noroeste S.C. Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Hermosillo, Sonora 83106, Mexico
| | - Reina Castro-Longoria
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico
| | - Marco Antonio López-Torres
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico
| | - José Manuel Grijalva-Chon
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico.
| |
Collapse
|
29
|
Jaafar SNT, Coelho AV, Sheehan D. Redox proteomic analysis ofmytilus edulisgills: effects of the pharmaceutical diclofenac on a non-target organism. Drug Test Anal 2015; 7:957-66. [DOI: 10.1002/dta.1786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Siti Nur Tahirah Jaafar
- Proteomics Research Group, School of Biochemistry and Cell Biology and Environmental Research Institute; University College Cork; Ireland
- Marine Biology Program, School of Marine Science and Environment; Universiti Malaysia Terengganu; Terengganu Malaysia
| | - Ana Varela Coelho
- Mass Spectrometry Laboratory, Analytical Services Unit, Institute of Chemical and Biological Technology (ITQB); New University of Lisbon; Avenida República - Quinta do Marquês 2784-505 Oeiras Portugal
| | - David Sheehan
- Proteomics Research Group, School of Biochemistry and Cell Biology and Environmental Research Institute; University College Cork; Ireland
| |
Collapse
|
30
|
Li J, Zhang H, Zhang X, Yang S, Yan T, Song Z. Molecular cloning and expression of two heat-shock protein genes (HSC70/HSP70) from Prenant's schizothoracin (Schizothorax prenanti). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:573-585. [PMID: 25690871 DOI: 10.1007/s10695-015-0030-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
Through the RT-PCR and rapid amplification of cDNA ends, two complementary deoxyribonucleic acid (cDNA) clones encoding heat-shock cognate 70 (HSC70, designated Sp-HSC70) and inducible heat-shock protein 70 (HSP70, designated Sp-HSP70) were isolated from the liver of Prenant's schizothoracin (Schizothorax prenanti). The cDNAs were 2344- and 2292-bp in length and contained 1950- and 1932-bp open reading frames, encoded proteins of 649 and 643 amino acids, respectively. Amino acid sequence analysis indicated that both Sp-HSC70 and Sp-HSP70 contained three signature sequences of HSP70 family, two partial overlapping bipartite nuclear localization signal sequences (an ATP-binding site motif, a bipartite nuclear targeting signal), and a cytoplasmic characteristic motif EEVD. Homology analysis revealed that Sp-HSC70 and Sp-HSP70 shared 77.5% identity and Sp-HSC70 shared more than 81.1% identity with the known HSC70s of other vertebrates, while Sp-HSP70 shared more than 77.5 % identity with the known HSP70s of other vertebrates. Fluorescent real-time quantitative RT-PCR showed that Sp-HSC70 and Sp-HSP70 mRNAs were found in all tested tissues, including blood, brain, heart, liver, spleen, head kidney, white muscle, skin, gonad, hypophysis, red muscle, and gill. The Sp-HSC70 and Sp-HSP70 mRNA expression level in blood and head kidney displayed a significant increase in vibrio-challenged group with the bacterium Aeromonas hydrophila at 24 h post-infection compared to a control group. Temporally, there was a clear time-dependent expression pattern of Sp-HSC70 or Sp-HSP70 gene after bacterial challenge, and the expression of Sp-HSC70 and Sp-HSP70 mRNAs reached a maximum level at 12 and 6 h post-challenge, respectively. Both returned to control level after 7 × 24 h. The results suggest that Sp-HSC70 and Sp-HSP70 genes may play important roles in mediating the immune responses of A. hydrophila-related diseases in the Prenant's schizothoracin.
Collapse
Affiliation(s)
- Jiuxuan Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Xiu Y, Feng J, Lu W, Liu D, Wu T, Zhu H, Liu P, Li W, Ren Q, Gu W, Meng Q, Wang W. Identification of a novel cognate cytosolic Hsp70 gene (MnHsc70-2) from oriental river prawn Macrobrachium nipponense and comparison of its expressions with the first cognate Hsc70 (MnHsc70-1) under different stresses. Cell Stress Chaperones 2014; 19:949-61. [PMID: 24859888 PMCID: PMC4389856 DOI: 10.1007/s12192-014-0519-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 11/26/2022] Open
Abstract
The 70-kDa family of heat-shock proteins (Hsp70) plays an important role in the host immunity, which is widely expressed in eukaryotic cells as a major chaperone protein. In the present study, the full-length complementary DNA (cDNA) of a second cognate cytosolic Hsp70 family member (MnHsc70-2) was cloned and characterized from Macrobrachium nipponense, which is an economically and nutritionally important crustacean. The cDNA was 2,717 bp, containing an open reading frame (ORF) of 1,950 bp, which encodes a protein of 649 amino acids with a theoretical molecular weight of 71.1 kDa and an isoelectric point of 5.27. Sequence alignment showed that the MnHsc70-2 shared 75-97 % identity with other heat-shock proteins. Compared to the previously identified cognate Hsp70 (MnHsc70-1) in M. nipponense, MnHsc70-2 showed quite different expression profiles under unstressed conditions in all tested tissues, including the hemocytes, heart, hepatopancreas, gill, intestine, nerve, and muscle. The phylogenetic analysis demonstrated that MnHsc70-2 showed the closest relationship with MnHsc70-1. Heat-inducibility assays showed that two isolated messenger RNAs (mRNAs) displayed different expression profiles in both the hepatopancreas and gill tissues. MnHsc70-1 mRNA expression level decreased at first and then increased to the normal level, whereas MnHsc70-2 mRNA level increased at first and then decreased. The expressions of two MnHsc70s showed substantial obvious heat-inducible regulation in both the hepatopancreas and gill. Under bacterial challenge by Aeromonas hydrophila, both MnHsc70-1 and MnHsc70-2 mRNA level was up-regulated moderately. The results suggested that two cognate Hsc70s may play essential functions in mediating responses to heat-shock and bacterial challenge.
Collapse
Affiliation(s)
- Yunji Xiu
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Jia Feng
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Weiqiang Lu
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Dandan Liu
- />College of Teacher Education, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, China
| | - Ting Wu
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Huanxi Zhu
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Peng Liu
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Wenjie Li
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Qian Ren
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Wei Gu
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Qingguo Meng
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Wen Wang
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| |
Collapse
|
32
|
Molecular cloning and sequence analysis of heat shock proteins 70 (HSP70) and 90 (HSP90) and their expression analysis when exposed to benzo(a)pyrene in the clam Ruditapes philippinarum. Gene 2014; 555:108-18. [PMID: 25445266 DOI: 10.1016/j.gene.2014.10.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/03/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023]
Abstract
HSP70 and HSP90 are the most important heat shock proteins (HSPs), which play the key roles in the cell as molecular chaperones and may involve in metabolic detoxification. The present research has obtained full-length cDNAs of genes HSP70 and HSP90 from the clam Ruditapes philippinarum and studied the transcriptional responses of the two genes when exposed to benzo(a)pyrene (BaP). The full-length RpHSP70 cDNA was 2336bp containing a 5' untranslated region (UTR) of 51bp, a 3' UTR of 335bp and an open reading frame (ORF) of 1950bp encoding 650 amino acid residues. The full-length RpHSP90 cDNA was 2839bp containing a 107-bp 5' UTR, a 554-bp 3' UTR and a 2178-bp ORF encoding 726 amino acid residues. The deduced amino acid sequences of RpHSP70 and RpHSP90 shared the highest identity with the sequences of Paphia undulata, and the phylogenetic trees showed that the evolutions of RpHSP70 and RpHSP90 were almost in accord with the evolution of species. The RpHSP70 and RpHSP90 mRNA expressions were detected in all tested tissues in the adult clams (digestive gland, gill, adductor muscle and mantle) and the highest mRNA expression level was observed in the digestive gland compared to other tissues. Quantitative real-time RT-PCR analysis revealed that mRNA expression levels of the clam RpHSP70, RpHSP90 and other xenobiotic metabolizing enzymes (XMEs) (AhR, DD, GST, GPx) in the digestive gland of R. philippinarum were induced by benzo(a)pyrene (BaP) and the absolute expression levels of these genes showed a temporal and dose-dependent response. The results suggested that RpHSP70 and RpHSP90 were involved in the metabolic detoxification of BaP in the clam R. philippinarum.
Collapse
|
33
|
Chen HL, Zhang HY, Throne JE, Zhu KY. Transcript analysis and expression profiling of three heat shock protein 70 genes in the ectoparasitoid Habrobracon hebetor (Hymenoptera: Braconidae). INSECT SCIENCE 2014; 21:415-428. [PMID: 23956228 DOI: 10.1111/1744-7917.12032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2013] [Indexed: 06/02/2023]
Abstract
Heat shock proteins (HSPs) are known as chaperones that help with folding of other proteins when cells are under environmental stresses. The upregulation of HSPs is essential for cold survival during insect diapause. The ectoparasitoid Habrobracon hebetor, a potential biological control agent, can enter reproductive diapause when reared at low temperature and short photoperiod. However, the expression of HSPs during diapause of H. hebetor has not been studied. In this study, we sequenced and characterized the full-length complementary DNAs of three Hsp70 genes (HhHsp70I, HhHsp70II and HhHsp70III) from H. hebetor. Their deduced amino acid sequences showed more than 80% identities to their counterparts from other insect species. However, the multiple sequence alignment among the three deduced amino acid sequences of HhHsp70s showed only 46% identities. A phylogenetic analysis of the three HhHsp70s and all other known Hsp70 sequences from Hymenoptera clustered all the Hsp70s into four groups, and the three HhHsp70s were distributed into three different groups. Real-time quantitative polymerase chain reaction analysis showed that the expression of the three HhHsp70 genes in H. hebetor reared at different conditions was quite different. HhHsp70I showed higher relative expression when H. hebetor were reared at 27.5°C than at two lower temperatures (17.5°C and 20°C) regardless of the photoperiod, whereas HhHsp70II showed higher expression when H. hebetor were reared at 20°C and 10 : 14 L : D than when reared at 17.5°C and either 16 : 8 L : D or 10 : 14 L : D. In contrast, HhHSP70III was expressed at similar levels regardless of the rearing conditions. These results may suggest functional differences among the three HhHsp70 genes in H. hebetor.
Collapse
Affiliation(s)
- Hao-Liang Chen
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Pests, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan; Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China; USDA Agricultural Research Service, Center for Grain & Animal Health Research, Manhattan, KS, USA; Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | | | | | |
Collapse
|
34
|
Song HM, Mu XD, Gu DE, Luo D, Yang YX, Xu M, Luo JR, Zhang JE, Hu YC. Molecular characteristics of the HSP70 gene and its differential expression in female and male golden apple snails (Pomacea canaliculata) under temperature stimulation. Cell Stress Chaperones 2014; 19:579-89. [PMID: 24368711 PMCID: PMC4041941 DOI: 10.1007/s12192-013-0485-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 01/09/2023] Open
Abstract
Heat-shock protein 70 (HSP70) is one of the most important heat-shock proteins that helps organisms to modulate stress response via over-expression. The HSP70 gene from Pomacea canaliculata was cloned using the RACE approach; the gene is 2,767 bp in length and contains an open reading frame of 1,932 bp, which is encoded by a polypeptide of 643 amino acids. BLAST analysis showed that the predicted amino acid sequence of the P. canaliculata HSP70 gene shared a relatively high similarity with that of other known eukaryotic species that display conserved HSP characteristics. The phylogeny demonstrated a separate clustering of the apple snail HSP70 with other constitutive members from other mollusk species. Quantitative real-time RT-PCR was used to detect the differential expression of HSP70 in both sexes of P. canaliculata at different temperature conditions. These results showed that HSP70 transcript levels decreased slightly under cold shock and increased significantly under heat-shock conditions in both sexes compared to normal temperatures (26 °C). Under cold-shock treatment, the sex effect was not significant. With heat treatment, HSP70 expression could be induced at 36 °C in both females and males, and it peaked at 42 and 39 °C in females and males, respectively. In addition, a clear time-dependent HSP70 expression pattern of the apple snail exposed to the same high temperature (36 °C) was observed at different time points. The maximal induction of HSP70 expression appeared at 12 and 48 h in males and females after heat shock, respectively. The maximal induction in females was significantly higher compared to males under heat stimulus. Taken together, these results strongly suggested that males were more susceptible to heat than females and provided useful molecular information for the ecological adaptability of P. canaliculata against extreme environmental stress.
Collapse
Affiliation(s)
- Hong-Mei Song
- />Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, Guangdong 510380 China
| | - Xi-Dong Mu
- />Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, Guangdong 510380 China
| | - Dang-En Gu
- />Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, Guangdong 510380 China
| | - Du Luo
- />Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, Guangdong 510380 China
| | - Ye-Xin Yang
- />Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, Guangdong 510380 China
| | - Meng Xu
- />Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, Guangdong 510380 China
| | - Jian-Ren Luo
- />Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, Guangdong 510380 China
| | - Jia-En Zhang
- />Department of Ecology, College of Agriculture, South China Agricultural University, Key Laboratory of Ecological Agriculture, Guangzhou, 510642 China
| | - Yin-Chang Hu
- />Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, Guangdong 510380 China
| |
Collapse
|
35
|
Luo L, Ke C, Guo X, Shi B, Huang M. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary. FISH & SHELLFISH IMMUNOLOGY 2014; 38:318-329. [PMID: 24698996 DOI: 10.1016/j.fsi.2014.03.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/23/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
Bio-accumulation and bio-transmission of toxic metals and the toxicological responses of organisms exposed to toxic metals have been focused, due to heavy metal contaminations have critically threatened the ecosystem and food security. However, still few investigations focused on the responses of certain organisms exposed to the long term and severe heavy metal contamination in specific environments. In present investigation, the Hong Kong oyster, Crassostrea hongkongensis were obtained from 3 sites which were contaminated by different concentrations of heavy metals (such as zinc, copper, manganese and lead etc.), respectively. Heavy metal concentrations in the sea water samples collected from the 3 sites and the dissected tissues of the oysters with blue visceral mass were determinated to estimate the metal contamination levels in environments and the bio-accumulation ratios of the heavy metals in the different tissues of oysters. Moreover, Proteomic methods were employed to analyze the differentially expressed proteins in the gills of oysters exposed to long-term heavy metal contaminations. Results indicated that the Jiulong River estuary has been severely contaminated by Cu, Zn and slightly with Cr, Ni, Mn, etc, moreover, Zn and Cu were the major metals accumulated by oysters to phenomenally high concentrations (more than 3.0% of Zn and about 2.0% of Cu against what the dry weight of tissues were accumulated), and Cr, Ni, Mn, etc were also significantly accumulated. The differentially expressed proteins in the gills of oysters exposed to heavy metals participate in several cell processes, such as metal binding, transporting and saving, oxidative-reduction balance maintaining, stress response, signal transduction, etc. Significantly up-regulated expression (about 10 folds) of an important metal binding protein, metallothionein (MT) and granular cells was observed in the gills of oysters exposed to long-term and severely heavy-metal-contaminated estuary, it suggested that binding toxic metals with metallothionein-like proteins (MTLP) and storing toxic metals in metal-rich granules (MRG) with insoluble forms were the important strategies of oyster to detoxify the toxic metals and adapt to the high level of metal-contaminated environment. Most of the stress and immunity responsive proteins, such as heat shock proteins (HSP), extracellular superoxide dismutase (ECSOD) and cavortin, and the cellular redox reaction relative proteins such as 20G-Fe (II) oxygenase family oxidoreductase, aldehyde dehydrogenase and retinal dehydrogenase 2, were detected significantly down-regulated in the gills of oysters exposed to long term heavy metal contaminated environments, it indicated that long term exposure different from emergent exposure to heavy metal contamination may significantly suppress the stress and immunity response system of oysters. Moreover, Formin homology 2 domain containing protein (FH2). The only protein domain to directly nucleate actin monomers into unbranched filament polymers, by which will subsequently control gene expression and chromatin remodelling complexes, was also detected greatly up-regulated in the gills of oysters exposed to long-term heavy metal contaminations. It indicated that nuclear activity regulation may also be important for oyster to adapt to the long-term heavy-metal-contaminated environment.
Collapse
Affiliation(s)
- Lianzhong Luo
- Department of Pharmacy, Xiamen Medical College, Xiamen 361008, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China.
| | - Xiaoyu Guo
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Bo Shi
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Miaoqin Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
36
|
Molecular cloning, characterization, and expression analysis of a heat shock protein (HSP) 70 gene from Paphia undulata. Gene 2014; 543:275-85. [PMID: 24726551 DOI: 10.1016/j.gene.2013.11.103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 01/05/2023]
Abstract
In this study, a full-length HSP70 cDNA from Paphia undulata was cloned using reverse transcriptase polymerase chain reaction (RT-PCR) coupled with rapid amplification of cDNA ends (RACE). The full-length cDNA is 2,351 bp, consisting of a 5'-untranslated region (UTR) of 83 bp, a 3'-UTR of 315 bp, and an open reading frame (ORF) of 1,953 bp. This cDNA encodes 650 amino acids with an estimated molecular weight of 71.3 kDa and an isoelectric point of 5.51. Based on the amino acid sequence analysis and phylogenetic analysis, this HSP70 gene was identified as a member of the cytoplasmic HSP70 family, being the constitutive expression, and it was designated as PuHSC70. The distribution of PuHSC70 mRNA in the mantle, digestive gland, adductor muscle, gonad, gill, heart, and hemocytes suggested that PuHSC70 is ubiquitously expressed. The mRNA levels of PuHSC70 under high temperature and high salinity stresses were analyzed by real-time PCR. Under high temperature stress of 32°C, PuHSC70 mRNA in the mantle, digestive gland, gill, and heart was significantly up-regulated at 1h and 2h, and it was then progressively down-regulated. In the adductor muscle, the level of PuHSC70 mRNA gradually increased throughout the study period; the mRNA levels in the gonad and hemocytes increased significantly at 4h and 8h (P<0.05) and then decreased at 8h and 14 h, respectively, however they increased again afterwards, reaching the highest levels at 50h. Under high salinity (32 ‰) stress, the mRNA levels of PuHSC70 in the mantle and gonad were increased significantly only at 24h and 48 h (P<0.05), and at the rest of the study period they were slightly elevated. Compared with the pretreatment level, the levels of expression in the digestive gland and gill were unchanged or reduced throughout the study period. The levels of PuHSC70 mRNA in the adductor muscle, hemocytes, and heart were significantly increased, reaching a maximum at 24h, and then they gradually decreased; moreover, in the heart, the mRNA expression recovered to the pretreatment level at 50h; while in the adductor muscle and hemocytes, the expression level remained higher than that of the control. The cloning and expression analyses of PuHSC70 provide theoretical basis to further study the mechanism of physiological response to thermal and high salinity stresses.
Collapse
|
37
|
Exposure to the neurotoxic dinoflagellate, Alexandrium catenella, induces apoptosis of the hemocytes of the oyster, Crassostrea gigas. Mar Drugs 2013; 11:4799-814. [PMID: 24317471 PMCID: PMC3877888 DOI: 10.3390/md11124799] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/31/2013] [Accepted: 11/06/2013] [Indexed: 11/16/2022] Open
Abstract
This study assessed the apoptotic process occurring in the hemocytes of the Pacific oyster, Crassostrea gigas, exposed to Alexandrium catenella, a paralytic shellfish toxins (PSTs) producer. Oysters were experimentally exposed during 48 h to the toxic algae. PSTs accumulation, the expression of 12 key apoptotic-related genes, as well as the variation of the number of hemocytes in apoptosis was measured at time intervals during the experiment. Results show a significant increase of the number of hemocytes in apoptosis after 29 h of exposure. Two pro-apoptotic genes (Bax and Bax-like) implicated in the mitochondrial pathway were significantly upregulated at 21 h followed by the overexpression of two caspase executor genes (caspase-3 and caspase-7) at 29 h, suggesting that the intrinsic pathway was activated. No modulation of the expression of genes implicated in the cell signaling Fas-Associated protein with Death Domain (FADD) and initiation-phase (caspase-2) was observed, suggesting that only the extrinsic pathway was not activated. Moreover, the clear time-dependent upregulation of five (Bcl2, BI-1, IAP1, IAP7B and Hsp70) inhibitors of apoptosis-related genes associated with the return to the initial number of hemocytes in apoptosis at 48 h of exposure suggests the involvement of strong regulatory mechanisms of apoptosis occurring in the hemocytes of the Pacific oyster.
Collapse
|
38
|
Molecular characterisation of TNF, AIF, dermatopontin and VAMP genes of the flat oyster Ostrea edulis and analysis of their modulation by diseases. Gene 2013; 533:208-17. [PMID: 24095775 DOI: 10.1016/j.gene.2013.09.085] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 12/21/2022]
Abstract
Bonamiosis and disseminated neoplasia (DN) are the most important diseases affecting cultured flat oysters (Ostrea edulis) in Galicia (NW Spain). Previous research of the response of O. edulis against bonamiosis by suppression subtractive hybridisation yielded a partial expressed sequence tag of tumour necrosis factor (TNF) and allograft inflammatory factor (AIF), as well as the whole open reading frame for dermatopontin and vesicle-associated membrane (VAMP). Herein, the complete open reading frames of TNF and AIF genes were determined by the rapid amplification of cDNA, and the deduced amino acid sequences of the four genes were characterised. Phylogenetic relationships for each gene were studied using maximum likelihood parameters. Quantitative-PCR assays were also performed in order to analyse the modulation of the expression of these genes by bonamiosis and disseminated neoplasia. Gene expression profiles were studied in haemolymph cells and in various organs (gill, gonad, mantle and digestive gland) of oysters affected by bonamiosis, DN, and both diseases with regard to non-affected oysters (control). TNF expression in haemolymph cells was up-regulated at heavy stage of bonamiosis but its expression was not affected by DN. AIF expression was up-regulated at heavy stage of bonamiosis in haemolymph cells and mantle, which is associated with heavy inflammatory response, and in haemolymph cells of oysters affected by DN. AIF expression was, however, down-regulated in other organs as gills and gonads. Dermatopontin expression was down-regulated in haemolymph cells and digestive gland of oysters affected by bonamiosis, but DN had no significant effect on its expression. Gills and gonads showed up-regulation of dermatopontin expression associated with bonamiosis. There were significant differences in the expression of TNF and VAMP depending on the bonamiosis intensity stage whereas no significant differences were detected between light and heavy severity degrees of DN for the studied genes. VAMP expression showed also differences among haemolymph cells and the organs studied. The occurrence of both diseases in oysters involved haemolymph cell gene expression patterns different from those associated to each disease separately: no significant effect was observed in TNF expression, dermatopontin was up-regulated and marked up-regulation of AIF and VAMP was recorded, which suggests a multiplier effect of the combination of both diseases for the latter two genes.
Collapse
|
39
|
Morris JP, Thatje S, Hauton C. The use of stress-70 proteins in physiology: a re-appraisal. Mol Ecol 2013; 22:1494-502. [PMID: 23599959 DOI: 10.1111/mec.12216] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are few factors more important to the mechanisms of evolution than stress. The stress response has formed as a result of natural selection, improving the capacity of organisms to withstand situations that require action.The ubiquity of the cellular stress response suggests that effective mechanisms to counteract stress emerged early in the history of life, and their commonality proves how vital such mechanisms are to operative evolution. The cellular stress response (CSR) has been identified as a characteristic of cells in all three domains of life and consists of a core 44 proteins that are structurally highly conserved and that have been termed the ‘minimal stressproteome’ (MSP). Within the MSP, the most intensely researched proteins are a family of heat-shock proteins known as HSP70. Superficially, correlations between the induction of stress and HSP70 differential expression support the use of HSP70 expression as a nonspecific biomarker of stress. However, we argue that too often authors have failed to question exactly what HSP70 differential expression signifies. Herein, we argue that HSP70 up-regulation in response to stressors has been shown to be far more complex than the commonly accepted quasi-linear relationship. In addition, in many instances, the uncertain identity and function of heat-shock proteins and heat-shock cognates has led to difficulties in interpretation of reports of inducible heat-shock proteins and constitutive heat-shock cognates. We caution against the broad application of HSP70 as a biomarker of stress in isolation and conclude that the application of HSP70 as a meaningful index of stress requires a higher degree of validation than the majority of research currently undertakes.
Collapse
Affiliation(s)
- J P Morris
- Ocean and Earth Science, National Oceanography Centre, Southampton, University of Southampton, Southampton, European Way, SO14 3ZH, UK.
| | | | | |
Collapse
|
40
|
Fu W, Zhang F, Liao M, Liu M, Zheng B, Yang H, Zhong M. Molecular cloning and expression analysis of a cytosolic heat shock protein 70 gene from mud crab Scylla serrata. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1306-1314. [PMID: 23481212 DOI: 10.1016/j.fsi.2013.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 02/16/2013] [Accepted: 02/20/2013] [Indexed: 06/01/2023]
Abstract
Heat shock protein 70s (Hsp70s) play important roles in resisting environmental stresses and stimulating innate immune system. To understand the immune defense mechanisms of Scylla serrata, a full-length cytosolic Hsp70 cDNA of S. serrata (designated as SSHsp70) was obtained by reverse transcriptase-polymerase chain reaction (RT-PCR) coupled with rapid amplification of cDNA ends (RACE). The full-length of SSHsp70 cDNA was 2235 bp, with a 5' untranslated region of 105 bp, a 3' untranslated region of 174 bp, and an open reading frame of 1956 bp encoding a polypeptide of 651 amino acids with an estimated molecular mass of 71.3 kDa and an estimated isoelectric point of 5.55. The cloned SSHsp70 belonged to a cytosolic Hsp70 family. Three typical Hsp70 signature motifs were detected in SSHsp70 by InterPro analysis. Quantitative PCR (qPCR) was used to detect tissue distribution and mRNA expression levels of SSHsp70 under different stress conditions. The obviously high levels of SSHsp70 transcript were in hemocyte, heart, hepatopancreas and gill, whereas low levels were detected in muscle, eyestalk, stomach, and gut. In different temperature treatments, the expression levels of SSHsp70 in low or high temperatures were higher than those in temperate temperature. In pathogen challenge treatments, the mRNA expression level of SSHsp70 reached a maximum level after 18 h and then dropped progressively. In different salt concentration treatments, the mRNA expression level of SSHsp70 had a minimum level at 25‰ salt concentration and high expression levels at high or low salt concentration. In different nitrite concentration treatments, the mRNA expression level of SSHsp70 increased progressively with the increase of nitrite concentration. The results confirmed Hsp70 could be used as a tool for evolution and phylogenetic analysis, a kind of potential biomarker, and a disease resistance factor used in application.
Collapse
Affiliation(s)
- Wandong Fu
- Zhejiang Marine Development Research Institute, Zhoushan 316100, PR China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Tanguy M, McKenna P, Gauthier-Clerc S, Pellerin J, Danger JM, Siah A. Sequence analysis of a normalized cDNA library of Mytilus edulis hemocytes exposed to Vibrio splendidus LGP32 strain. RESULTS IN IMMUNOLOGY 2013; 3:40-50. [PMID: 24600557 DOI: 10.1016/j.rinim.2013.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 11/19/2022]
Abstract
In the past decades, reports on bivalves' pathogens and associated mortalities have steadily increased. To face pathogenic micro-organisms, bivalves rely on innate defenses established in hemocytes which are essentially based on phagocytosis and cytotoxic reactions. As a step towards a better understanding of the molecular mechanisms involved in the mussel Mytilus edulis innate immune system, we constructed and sequenced a normalized cDNA library specific to M. edulis hemocytes unchallenged (control) and challenged with Vibrio splendidus LGP32 strain for 2, 4 and 6 h. A total of 1,024,708 nucleotide reads have been generated using 454 pyrosequencing. These reads have been assembled and annotated into 19,622 sequences which we believe cover most of the M. edulis hemocytes transcriptome. These sequences were successfully assigned to biological process, cellular component, and molecular function Gene Ontology (GO) categories. Several transcripts related to immunity and stress such as some fibrinogen related proteins and Toll-like receptors, the complement C1qDC, some antioxidant enzymes and antimicrobial peptides have already been identified. In addition, Toll-like receptors signaling pathways and the lysosome and apoptosis mechanisms were compared to KEGG reference pathways. As an attempt for large scale RNA sequencing, this study focuses on identifying and annotating transcripts from M. edulis hemocytes regulated during an in vitro experimental challenge with V. splendidus. The bioinformatic analysis provided a reference transcriptome, which could be used in studies aiming to quantify the level of transcripts using high-throughput analysis such as RNA-Seq.
Collapse
Affiliation(s)
- Marion Tanguy
- Laboratory of Ecotoxicology, University of Le Havre, 25 rue Philippe Lebon, BP540, 76058 Le Havre, France ; Institute of Marine Science, University of Quebec at Rimouski, 310 allée des Ursulines, Rimouski, Québec, Canada G5L 3A1 ; Department of Pathology & Microbiology, Atlantic Veterinary College (AVC), University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Patty McKenna
- Department of Pathology & Microbiology, Atlantic Veterinary College (AVC), University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Sophie Gauthier-Clerc
- Institute of Marine Science, University of Quebec at Rimouski, 310 allée des Ursulines, Rimouski, Québec, Canada G5L 3A1
| | - Jocelyne Pellerin
- Institute of Marine Science, University of Quebec at Rimouski, 310 allée des Ursulines, Rimouski, Québec, Canada G5L 3A1
| | - Jean-Michel Danger
- Laboratory of Ecotoxicology, University of Le Havre, 25 rue Philippe Lebon, BP540, 76058 Le Havre, France
| | - Ahmed Siah
- Department of Pathology & Microbiology, Atlantic Veterinary College (AVC), University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 ; British Columbia Centre for Aquatic Health Sciences (BC CAHS), 871A Island Highway, Campbell River, BC, Canada V9W 2C2
| |
Collapse
|
42
|
Molecular Characterization and Expression Analysis of Heat Shock Cognate 70 After Heat Stress and Lipopolysaccharide Challenge in Sea Cucumber (Apostichopus japonicus). Biochem Genet 2013; 51:443-57. [DOI: 10.1007/s10528-013-9576-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
|
43
|
Wei T, Sun Y, Shi G, Wang R, Xu T. Characterization and SNP variation analysis of a HSP70 gene from miiuy croaker and its expression as related to bacterial challenge and heat shock. FISH & SHELLFISH IMMUNOLOGY 2012; 33:632-640. [PMID: 22750024 DOI: 10.1016/j.fsi.2012.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 05/31/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
Heat shock proteins (HSPs) play crucial roles in the immune response of vertebrates. In order to study immune defense mechanism of heat shock protein gene in miiuy croaker (Miichthys miiuy), a cDNA encoding heat shock protein 70 (designated Mimi-HSP70) gene was cloned from miiuy croaker. The cDNA was 2195 bp in length, consisting of an open reading frame (ORF) of 1917 bp encoding a polypeptide of 638 amino acids with estimated molecular mass of 70.3 kDa and theoretical isoelectric point of 5.55. Genomic DNA structure analysis revealed that the Mimi-HSP70 gene contain no introns in coding region and four SNPs with 373 C/T, 789 G/A, 1005 C/T, and 1185 G/A were detected by direct sequencing of 20 samples from six different populations. BLAST analysis, structure comparison and phylogenetic analysis indicated that Mimi-HSP70 should be an inducible cytosolic member of the HSP70 family. The deduced amino acid sequence of Mimi-HSP70 had 82.4%-92.2% identity with those of vertebrate. A real-time quantitative RT-PCR demonstrated that the HSP70 gene was ubiquitously expressed in ten normal tissues. Under different temperature shock stress, the expression of Mimi-HSP70 gene in miiuy croaker increased at first and then decreased with the rise of temperature, finally, reached a maximum level in liver, spleen and kidney tissues. Infection of miiuy croaker with Vibrio anguillarum resulted in significant changes expression of Mimi-HSP70 gene in the immune-related tissues. These results indicated that expression analysis of Mimi-HSP70 gene provide theoretical basis to further study the mechanism of anti-adverseness in the miiuy croaker.
Collapse
Affiliation(s)
- Tao Wei
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316000, PR China
| | | | | | | | | |
Collapse
|
44
|
Molecular cloning, characterization and expression of heat shock protein 70 gene from the oyster Crassostrea hongkongensis responding to thermal stress and exposure of Cu2+ and malachite green. Gene 2012; 497:172-80. [DOI: 10.1016/j.gene.2012.01.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/21/2011] [Accepted: 01/22/2012] [Indexed: 11/21/2022]
|
45
|
Kawabe S, Yokoyama Y. Role of hypoxia-inducible factor α in response to hypoxia and heat shock in the Pacific oyster Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:106-119. [PMID: 21748344 DOI: 10.1007/s10126-011-9394-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 06/02/2011] [Indexed: 05/31/2023]
Abstract
The Pacific oyster Crassostrea gigas inhabits the intertidal zone and shows tolerance to stress conditions such as hypoxia and heat shock. Although some information is available about the genes expressed in response to hypoxia, little is known about the molecular mechanism of the regulation of their expression in mollusks, including the Pacific oyster. Hypoxia-inducible factor 1α (HIF-1α) is a master regulator of hypoxia-responsive transcription. In this study, we cloned HIF-α from the oyster and investigated its response to unique stress conditions, including air exposure, for the first time in mollusks. The cDNA of oyster Hif-α is 3,182 bp long, of which 2,094 bp encodes a protein of 698 amino acid residues. Northern and Western blot analysis showed that expression of oyster HIF-α mRNA and protein were induced by air exposure, and that expression was induced periodically during air exposure. In addition, induction of Hif-α mRNA increased by a maximum 8.0-fold by heat shock. Under heat shock at 35°C (lethal temperature for the oyster), however, it was induced later than at 30°C. After recovery from hypoxia and/or heat shock, Hif-α mRNA also upregulated. These data suggest that the oyster has a strategy to induce Hif-α mRNA in order to survive hypoxia and heat shock, and that HIF signaling is necessary for recovery from stress.
Collapse
Affiliation(s)
- Shinya Kawabe
- Department of Marine Bioscience, Faculty of Marine Bioscience, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | | |
Collapse
|
46
|
Liu D, Chen Z, Zhou X. Detection of heat shock proteins 70 in the gill, liver, and cardiac muscle of Carassius auratus with confocal microscopy. Microsc Res Tech 2011; 75:531-6. [PMID: 22021177 DOI: 10.1002/jemt.21088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/04/2011] [Indexed: 11/11/2022]
Abstract
Heat shock proteins 70 (Hsp70) are the most extensively studied heat shock proteins for the cellular abundance and cytoprotective effects. Hsp70 induction and subsequent quantification has been used as a sensitive system for aquatic toxicity risk assessment. In this study, the confocal microscopy was used to localize Hsp70 in Carassius auratus (C. auratus) with immunohistochemical technology. There are different zooms to select to analyze the object at the same field of vision with one objective lens with confocal microscopy. It need not change objective lens to observe the details of tissues. In this study, the tissue slices of C. auratus were observed with the 20-fold objective lens. Furthermore, the zooms of 1, 2, and 3 were used to acquire the distribution of Hsp70 in the tissue slices of C. auratus, and the clearer images of Hsp70 in the tissues were acquired. The results indicated that Hsp70 were present in the gill, liver, and cardiac muscle of C. auratus, and a method was established to detect Hsp70 in the tissues of C. auratus with confocal microscopy.
Collapse
Affiliation(s)
- Dongwu Liu
- School of Life Sciences, Shandong University of Technology, 255049, Zibo, China.
| | | | | |
Collapse
|
47
|
Kawabe S, Yokoyama Y. Novel isoforms of heat shock transcription factor 1 are induced by hypoxia in the Pacific oyster Crassostrea gigas. ACTA ACUST UNITED AC 2011; 315:394-407. [PMID: 21455948 DOI: 10.1002/jez.685] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 12/22/2022]
Abstract
The Pacific oyster Crassostrea gigas inhabits the intertidal zone and shows tolerance to various stress conditions such as hypoxia and heat shock. However, little is known about the cellular mechanism of responses to these stresses. Heat shock transcription factor 1 (HSF1) regulates the transcription of several genes, including heat shock proteins (HSPs). In this study, we cloned HSF1 from the oyster and investigated its response to air-exposure. The cDNA of oyster Hsf1 contains 2,931 bp, of which 1,389 bp encode a protein of 463 amino acid residues. Moreover, we found that the oyster has seven novel alternatively spliced isoforms, Hsf1b-h, consisting of insertion A with 48 bp, insertion B with 42 bp and/or insertion C with 42 bp. We determined the sequences of oyster genomic DNA containing Hsf1 insertions A, B and C. The results indicated that eight isoforms of Hsf1 are generated from a single Hsf1 gene by alternative splicing without frameshifting. Real-time PCR analysis showed that Hsf1a is expressed constitutively, and the expression of Hsf1b-h and Hsp70 mRNA is induced by air exposure and/or hypoxia. In addition, we found that 11 putative hypoxia response elements, which are hypoxia-inducible factor 1 (HIF-1) binding sequences, are located in the Hsf1 promoter region. These data suggest that the oyster has an HIF-HSF pathway in which HSPs are induced in an HIF-dependent manner, and that it also has a novel mechanism of alternative splicing of Hsf1 in response to hypoxia.
Collapse
Affiliation(s)
- Shinya Kawabe
- Department of Marine Bioscience, Faculty of Marine Bioscience, Fukui Prefectural University, Fukui, Japan
| | | |
Collapse
|
48
|
Yue X, Liu B, Sun L, Tang B. Cloning and characterization of a hsp70 gene from Asiatic hard clam Meretrix meretrix which is involved in the immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2011; 30:791-799. [PMID: 21215805 DOI: 10.1016/j.fsi.2010.12.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 12/30/2010] [Accepted: 12/30/2010] [Indexed: 05/30/2023]
Abstract
In the present study, a 71.43 kDa heat shock protein cDNA was cloned from Asiatic hard clam Meretrix meretrix. The cDNA was 2292 bp, containing an open reading frame (ORF) of 1959 bp, which encodes a protein of 652 amino acids with a theoretical molecular weight of 71.43 kDa and an isoelectric point of 5.32. Based on the amino acid sequence analysis and phylogenetic analysis, this hsp70 cDNA is a member of cytoplasmic hsc70 (constitutive genes) subfamily in the hsp70 family, and is designated as MmeHsc71. Quantitative RT-PCR was carried out to compare the spatial and temporal expression patterns of MmeHsc71 in the mRNA level between control clams and Vibrio parahaemolyticus-infected clams. Spatially, MmeHsc71 mRNA was found in all tested tissues, including foot, hepatopancreas, mantle and gill. MmeHsc71 mRNA expression level in hepatopancreas and gill displayed a significant increase in vibrio-challenged clams at 24h post-infection compared to control clams (P < 0.05). Temporally, there was a significant increase of MmeHsc71 mRNA level in hepathopancreas of vibrio-challenged clams compared to control clams at 6, 12, and 24h post-challenge, respectively. The result of quantitative immunofluorescence also indicated that there was obvious increase of MmeHsc71 in hepatopancreas of vibrio-challenged clams compared to control clams in protein level at 24h post-infection. The results suggested that MmeHsc71 may play an important role in mediating the immune responses of M. meretrix to bacterial challenge.
Collapse
Affiliation(s)
- Xin Yue
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | |
Collapse
|
49
|
Jurgen F, Valerio M, Roberto R, Paolo SG, Marta M. 2-DE proteomic analysis of HSP70 in mollusc Chamelea gallina. FISH & SHELLFISH IMMUNOLOGY 2011; 30:739-743. [PMID: 21168507 DOI: 10.1016/j.fsi.2010.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/23/2010] [Accepted: 12/12/2010] [Indexed: 05/30/2023]
Abstract
Bidimensional electrophoresis (2-DE) protocols were adapted on Chamelea gallina digestive glands studies by the analysis of Heat Shock Proteins (HSP) compared with monodimensional electrophoresis (1-DE) results. Because polycyclic aromatic hydrocarbons (PAH) act on HSPs, C. gallina specimens were exposed to 0.5 mg/L of benzo[a]pyrene (B[a]P) for 24 h, 7 and 12 days. Immunoblotting after 1-DE showed a single band of 70 kDa significantly induced after 7 days of B[a]P exposure. After 2-DE, eight major high-resolved spots between 17 and 98 kDa were revealed. Three spots fell within the range of 62-98 kDa and of 5-6 pI, parameters which could include HSP70. Two spots of 77 and 72 kDa, obtained after 2-DE immunoblotting, could correspond to constitutive HSC70 and to inducible HSP70 forms respectively. Changes observed in inducible and in constitutive forms might be related to an adaptation to stress and to a normal protein synthesis capability, respectively. Employment of 2-DE and relationship between HSP70 and HSC70 may be useful to clarify their role in molluscs subjected to stress events.
Collapse
Affiliation(s)
- Foschi Jurgen
- Department of Biochemistry "G. Moruzzi", University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | | | | | | | | |
Collapse
|
50
|
Kawabe S, Yokoyama Y. Molecular cloning of calnexin and calreticulin in the Pacific oyster Crassostrea gigas and its expression in response to air exposure. Mar Genomics 2010; 3:19-27. [PMID: 21798193 DOI: 10.1016/j.margen.2010.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/18/2009] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
Abstract
Calnexin (CNX) and calreticulin (CRT) are endoplasmic reticulum (ER) chaperones. CNX is a type I transmembrane protein and CRT is a soluble CNX homologue. In the ER, CNX and CRT are important for Ca(2+) homeostasis and protein maturation. Here, we describe the full-length cDNA of the first mollusk CNX (cgCNX) and a second mollusk CRT (cgCRT) from the oyster Crassostrea gigas. CgCNX, containing 3255bp, was composed of a 1764bp open reading frame (ORF) that encodes a 588-amino acid protein. CgCRT, containing 1727bp, was composed of a 1242bp ORF that encodes a 414-amino acid protein. CgCNX and cgCRT contains an N-terminal 21- and 16-amino acid sequence, respectively, which is characteristic of a signal sequence. At the C-terminus, cgCRT also contains the KDEL (-Lys-Asp-Glu-Leu) peptide motif suggesting that cgCRT localizes in the ER. Northern blot analysis showed that both cgCNX and cgCRT mRNAs are induced by air exposure. The expression patterns of cgCNX mRNA differed from those of cgCRT during air exposure. This suggests that these two molecular chaperones have different roles in the response to air exposure.
Collapse
Affiliation(s)
- Shinya Kawabe
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Japan
| | | |
Collapse
|