1
|
Henry C, Boucher M, Boulay M, Côté A, Bossé Y. Oscillometry with or without spirometry for methacholine testing. Physiol Rep 2025; 13:e70387. [PMID: 40405531 PMCID: PMC12098963 DOI: 10.14814/phy2.70387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
Oscillometry is proposed as a complementary technique to spirometry for methacholine testing. Yet, before being prescribed in conjunction with spirometry, the extent by which the oscillometric readouts are influenced by spirometric maneuvers, especially the deep inspirations, will need to be determined. Herein, 16 very mild-to-mild asthmatics underwent two methacholine challenges on separate visits. On visit 1, the response was tracked by both oscillometry and spirometry, and the challenge was stopped at the provocative concentration causing a decline in forced expiratory volume in 1 s of at least 20%. The same concentration regimen was used on visit 2, but the response was tracked by oscillometry only. The results demonstrated that, except for resistance at 19 Hz, the changes in all oscillometric readouts were greater in the challenge without spirometry (p ≤ 0.02). The maximal change in reactance at 5 Hz (Xrs5), for example, was on average 75.8% greater in the challenge without than with spirometry (p = 0.025). The number of doubling concentrations of methacholine that was needed to reach an equivalent change in Xrs5 was also lower without concomitant spirometry (p = 0.0078). It is concluded that the deep inspirations that are required in spirometry to monitor the response to methacholine decrease the oscillometric response.
Collapse
Affiliation(s)
- Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)Université LavalQuébec CityQuébecCanada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)Université LavalQuébec CityQuébecCanada
| | - Marie‐Ève Boulay
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)Université LavalQuébec CityQuébecCanada
| | - Andréanne Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)Université LavalQuébec CityQuébecCanada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)Université LavalQuébec CityQuébecCanada
| |
Collapse
|
2
|
Yasuda Y, Wang L, Chitano P, Seow CY. Rho-Kinase Inhibition of Active Force and Passive Tension in Airway Smooth Muscle: A Strategy for Treating Airway Hyperresponsiveness in Asthma. BIOLOGY 2024; 13:115. [PMID: 38392332 PMCID: PMC10886476 DOI: 10.3390/biology13020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Rho-kinase inhibitors have been identified as a class of potential drugs for treating asthma because of their ability to reduce airway inflammation and active force in airway smooth muscle (ASM). Past research has revealed that, besides the effect on the ASM's force generation, rho-kinase (ROCK) also regulates actin filament formation and filament network architecture and integrity, thus affecting ASM's cytoskeletal stiffness. The present review is not a comprehensive examination of the roles played by ROCK in regulating ASM function but is specifically focused on passive tension, which is partially determined by the cytoskeletal stiffness of ASM. Understanding the molecular basis for maintaining active force and passive tension in ASM by ROCK will allow us to determine the suitability of ROCK inhibitors and its downstream enzymes as a class of drugs in treating airway hyperresponsiveness seen in asthma. Because clinical trials using ROCK inhibitors in the treatment of asthma have yet to be conducted, the present review focuses on the in vitro effects of ROCK inhibitors on ASM's mechanical properties which include active force generation, relaxation, and passive stiffness. The review provides justification for future clinical trials in the treatment of asthma using ROCK inhibitors alone and in combination with other pharmacological and mechanical interventions.
Collapse
Affiliation(s)
- Yuto Yasuda
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Lu Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Pasquale Chitano
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Chun Y Seow
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
3
|
Yasuda Y, Wang L, Chitano P, Seow CY. Critical roles of airway smooth muscle in mediating deep-inspiration-induced bronchodilation: a big stretch? Respir Res 2023; 24:250. [PMID: 37853472 PMCID: PMC10585885 DOI: 10.1186/s12931-023-02538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Deep inspiration (DI) has been shown to induce bronchodilation and bronchoprotection in bronchochallenged healthy subjects, but not in asthmatics. Strain-induced relaxation of airway smooth muscle (ASM) is considered one of the factors responsible for these effects. Other factors include the release or redistribution of pulmonary surfactant, alteration in mucus plugs, and changes in airway heterogeneity. MAIN BODY The present review is focused on the DI effect on ASM function, based on recent findings from ex vivo sheep lung experiments showing a large change in airway diameter during a DI. The amount of stretch on the airways, when applied to isolated airway rings in vitro, caused a substantial decrease in ASM contractility that takes many minutes to recover. When challenged with a bronchoconstrictor, the increase in pulmonary resistance in the ex vivo ovine lungs is mostly due to the increase in airway resistance. CONCLUSIONS Although non-ASM related factors cannot be excluded, the large strain on the airways associated with a DI substantially reduces ASM contractility and thus can account for most of the bronchodilatory and bronchoprotective effects of DI.
Collapse
Affiliation(s)
- Yuto Yasuda
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.
| | - Lu Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Pasquale Chitano
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Chun Y Seow
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Kaminsky DA, Cockcroft DW, Davis BE. Respiratory System Dynamics. Semin Respir Crit Care Med 2023; 44:526-537. [PMID: 37429331 DOI: 10.1055/s-0043-1770058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
While static mechanical forces govern resting lung volumes, dynamic forces determine tidal breathing, airflow, and changes in airflow and lung volume during normal and abnormal breathing. This section will examine the mechanisms, measurement methodology, and interpretation of the dynamic changes in airflow and lung volume that occur in health and disease. We will first examine how the total work of breathing can be described by the parameters of the equation of motion, which determine the pressure required to move air into and out of the lung. This will include a detailed description of airflow characteristics and airway resistance. Next, we will review the changes in pressure and flow that determine maximal forced inspiration and expiration, which result in the maximal flow-volume loop and the clinically important forced expired volume in 1 second. We will also assess the mechanisms and interpretation of bronchodilator responsiveness, dynamic hyperinflation, and airways hyperresponsiveness.
Collapse
Affiliation(s)
- David A Kaminsky
- Division of Pulmonary and Critical Care, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Donald W Cockcroft
- Division of Respirology, Critical Care and Sleep Medicine, University of Saskatchewan College of Medicine, Saskatoon Saskatchewan, Canada
| | - Beth E Davis
- Division of Respirology, Critical Care and Sleep Medicine, University of Saskatchewan College of Medicine, Saskatoon Saskatchewan, Canada
| |
Collapse
|
5
|
Henry C, Boucher M, Boulay MÈ, Côté A, Boulet LP, Bossé Y. The cumulative effect of methacholine on large and small airways when deep inspirations are avoided. Respirology 2023; 28:226-235. [PMID: 36210352 DOI: 10.1111/resp.14387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVE The effect of serial incremental concentrations of methacholine is only slightly cumulative when assessed by spirometry. This limited cumulative effect may be attributed to the bronchodilator effect of deep inspirations that are required between concentrations to measure lung function. Using oscillometry, the response to methacholine can be measured without deep inspirations. Conveniently, oscillometry can also dissociate the contribution of large versus small airways. Herein, oscillometry was used to assess the cumulative effect of methacholine in the absence of deep inspirations on large and small airways. METHODS Healthy and asthmatic volunteers underwent a multiple-concentration methacholine challenge on visit 1 and a single-concentration challenge on visit 2 using the highest concentration of visit 1. The maximal response was compared between visits to assess the cumulative effect of methacholine. The lung volume was also measured after the final concentration to assess hyperinflation. RESULTS In both healthy and asthmatic subjects, increases in resistance at 19 Hz (Rrs19 ), reflecting large airway narrowing, did not differ between the multiple- and the single-concentration challenge. However, increases in resistance at 5 Hz (Rrs5 ) minus Rrs19 , reflecting small airway narrowing, were 117 and 270% greater in the multiple- than the single-concentration challenge in healthy (p = 0.006) and asthmatic (p < 0.0001) subjects, respectively. Hyperinflation occurred with both challenges and was greater in the multiple- than the single-concentration challenge in both groups. CONCLUSION Without deep inspirations, the effect of methacholine is cumulative on small airways but not on large airways. Lung hyperinflation and derecruitment may partially explain these different responses.
Collapse
Affiliation(s)
- Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Marie-Ève Boulay
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Andréanne Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | | | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| |
Collapse
|
6
|
Purification of Myosin from Bovine Tracheal Smooth Muscle, Filament Formation and Endogenous Association of Its Regulatory Complex. Cells 2023; 12:cells12030514. [PMID: 36766856 PMCID: PMC9914928 DOI: 10.3390/cells12030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
Dynamic regulation of myosin filaments is a crucial factor in the ability of airway smooth muscle (ASM) to adapt to a wide length range. Increased stability or robustness of myosin filaments may play a role in the pathophysiology of asthmatic airways. Biochemical techniques for the purification of myosin and associated regulatory proteins could help elucidate potential alterations in myosin filament properties of asthmatic ASM. An effective myosin purification approach was originally developed for chicken gizzard smooth muscle myosin. More recently, we successfully adapted the procedure to bovine tracheal smooth muscle. This method yields purified myosin with or without the endogenous regulatory complex of myosin light chain kinase and myosin light chain phosphatase. The tight association of the regulatory complex with the assembled myosin filaments can be valuable in functional experiments. The purification protocol discussed here allows for enzymatic comparisons of myosin regulatory proteins. Furthermore, we detail the methodology for quantification and removal of the co-purified regulatory enzymes as a tool for exploring potentially altered phenotypes of the contractile apparatus in diseases such as asthma.
Collapse
|
7
|
Kaminsky DA, Simpson SJ, Berger KI, Calverley P, de Melo PL, Dandurand R, Dellacà RL, Farah CS, Farré R, Hall GL, Ioan I, Irvin CG, Kaczka DW, King GG, Kurosawa H, Lombardi E, Maksym GN, Marchal F, Oostveen E, Oppenheimer BW, Robinson PD, van den Berge M, Thamrin C. Clinical significance and applications of oscillometry. Eur Respir Rev 2022; 31:31/163/210208. [PMID: 35140105 PMCID: PMC9488764 DOI: 10.1183/16000617.0208-2021] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022] Open
Abstract
Recently, “Technical standards for respiratory oscillometry” was published, which reviewed the physiological basis of oscillometric measures and detailed the technical factors related to equipment and test performance, quality assurance and reporting of results. Here we present a review of the clinical significance and applications of oscillometry. We briefly review the physiological principles of oscillometry and the basics of oscillometry interpretation, and then describe what is currently known about oscillometry in its role as a sensitive measure of airway resistance, bronchodilator responsiveness and bronchial challenge testing, and response to medical therapy, particularly in asthma and COPD. The technique may have unique advantages in situations where spirometry and other lung function tests are not suitable, such as in infants, neuromuscular disease, sleep apnoea and critical care. Other potential applications include detection of bronchiolitis obliterans, vocal cord dysfunction and the effects of environmental exposures. However, despite great promise as a useful clinical tool, we identify a number of areas in which more evidence of clinical utility is needed before oscillometry becomes routinely used for diagnosing or monitoring respiratory disease. This paper provides a current review of the interpretation, clinical significance and application of oscillometry in respiratory medicine, with special emphasis on limitations of evidence and suggestions for future research.https://bit.ly/3GQPViA
Collapse
Affiliation(s)
- David A Kaminsky
- Dept of Medicine, Pulmonary and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, USA.,These authors have contributed equally to this manuscript
| | - Shannon J Simpson
- Children's Lung Health, Telethon Kids Institute, School of Allied Health, Curtin University, Perth, Australia.,These authors have contributed equally to this manuscript
| | - Kenneth I Berger
- Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine and André Cournand Pulmonary Physiology Laboratory, Belleuve Hospital, New York, NY, USA
| | - Peter Calverley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Pedro L de Melo
- Dept of Physiology, Biomedical Instrumentation Laboratory, Institute of Biology and Faculty of Engineering, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronald Dandurand
- Lakeshore General Hospital, Pointe-Claire, QC, Canada.,Montreal Chest Institute, Meakins-Christie Labs, Oscillometry Unit of the Centre for Innovative Medicine, McGill University Health Centre and Research Institute, and McGill University, Montreal, QC, Canada
| | - Raffaele L Dellacà
- Dipartimento di Elettronica, Informazione e Bioingegneria - DEIB, Politecnico di Milano University, Milan, Italy
| | - Claude S Farah
- Dept of Respiratory Medicine, Concord Repatriation General Hospital, Sydney, Australia
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Graham L Hall
- Children's Lung Health, Telethon Kids Institute, School of Allied Health, Curtin University, Perth, Australia
| | - Iulia Ioan
- Dept of Paediatric Lung Function Testing, Children's Hospital, Vandoeuvre-lès-Nancy, France.,EA 3450 DevAH - Laboratory of Physiology, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Charles G Irvin
- Dept of Medicine, Pulmonary and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - David W Kaczka
- Depts of Anaesthesia, Biomedical Engineering and Radiology, University of Iowa, Iowa City, IA, USA
| | - Gregory G King
- Dept of Respiratory Medicine and Airway Physiology and Imaging Group, Royal North Shore Hospital, St Leonards, Australia.,Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Hajime Kurosawa
- Dept of Occupational Health, Tohoku University School of Medicine, Sendai, Japan
| | - Enrico Lombardi
- Paediatric Pulmonary Unit, Meyer Paediatric University Hospital, Florence, Italy
| | - Geoffrey N Maksym
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - François Marchal
- Dept of Paediatric Lung Function Testing, Children's Hospital, Vandoeuvre-lès-Nancy, France.,EA 3450 DevAH - Laboratory of Physiology, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Ellie Oostveen
- Dept of Respiratory Medicine, Antwerp University Hospital and University of Antwerp, Belgium
| | - Beno W Oppenheimer
- Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine and André Cournand Pulmonary Physiology Laboratory, Belleuve Hospital, New York, NY, USA
| | - Paul D Robinson
- Woolcock Institute of Medical Research, Children's Hospital at Westmead, Sydney, Australia
| | - Maarten van den Berge
- Dept of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Cindy Thamrin
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| |
Collapse
|
8
|
Dong SJ, Wang L, Chitano P, Coxson HO, Paré PD, Seow CY. Airway diameter at different transpulmonary pressures in ex vivo sheep lungs: Implications for deep-inspiration-induced bronchodilation and bronchoprotection. Am J Physiol Lung Cell Mol Physiol 2021; 321:L663-L674. [PMID: 34287071 DOI: 10.1152/ajplung.00208.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep inspiration (DI)-induced bronchodilation is the first line of defense against bronchoconstriction in healthy subjects. A hallmark of asthma is the lack of this beneficial effect of DI. The mechanism underlying the bronchodilatory effect of DI is not clear. Understanding the mechanism will help us unravel the mystery of asthma pathophysiology. It has been postulated that straining airway smooth muscle (ASM) during a DI could lead to bronchodilation and bronchoprotection. The hypothesis is currently under debate, and a central question is whether ASM is sufficiently stretched during a DI for its contractility to be compromised. Besides bronchoconstriction, another contributor to lung resistance is airway heterogeneity. The present study examines changes in airway diameter and heterogeneity at different lung volumes. Freshly explanted sheep lungs were used in plethysmographic measurements of lung resistance and elastance at different lung volumes while the airway dimensions were measured by computed tomography (CT). The change in airway diameter informed by CT measurements was applied to isolated airway ring preparations to determine the strain-induced loss of ASM contractility. We found that changing the transpulmonary pressure from 5 to 30 cmH2O led to a 51%-increase in lung volume, accompanied by a 46%-increase in the airway diameter with no change in airway heterogeneity. When comparable airway strains measured in the whole lung were applied to isolated airway rings in either relaxed or contracted state, a significant loss of ASM contractility was observed, suggesting that DI-induced bronchodilation and bronchoprotection can result from strain-induced loss of ASM contractility.
Collapse
Affiliation(s)
- Shou-Jin Dong
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Respiratory Department, Chengdu First People's Hospital, Chengdu, China
| | - Lu Wang
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Pasquale Chitano
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Harvey O Coxson
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Peter D Paré
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y Seow
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
LIMK2 is required for membrane cytoskeleton reorganization of contracting airway smooth muscle. J Genet Genomics 2021; 48:452-462. [PMID: 34353741 DOI: 10.1016/j.jgg.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022]
Abstract
Airway smooth muscle (ASM) has developed a mechanical adaption mechanism by which it transduces force and responds to environmental forces, which is essential for periodic breathing. Cytoskeletal reorganization has been implicated in this process, but the regulatory mechanism remains to be determined. We here observe that ASM abundantly expresses cytoskeleton regulators Limk1 and Limk2, and their expression levels are further upregulated in chronic obstructive pulmonary disease (COPD) animals. By establishing mouse lines with deletions of Limk1 or Limk2, we analyse the length-sensitive contraction, F/G-actin dynamics, and F-actin pool of mutant ASM cells. As LIMK1 phosphorylation does not respond to the contractile stimulation, LIMK1-deficient ASM develops normal maximal force, while LIMK2 or LIMK1/LIMK2 deficient ASMs show approximately 30% inhibition. LIMK2 deletion causes a significant decrease in cofilin phosphorylation along with a reduced F/G-actin ratio. As LIMK2 functions independently of cross-bridge movement, this observation indicates that LIMK2 is necessary for F-actin dynamics and hence force transduction. Moreover, LIMK2-deficient ASMs display abolishes stretching-induced suppression of 5-hydroxytryptamine (5-HT) but not acetylcholine-evoks force, which is due to the differential contraction mechanisms adopted by the agonists. We propose that LIMK2-mediated cofilin phosphorylation is required for membrane cytoskeleton reorganization that is necessary for ASM mechanical adaption including the 5-HT-evoked length-sensitive effect.
Collapse
|
10
|
Wang L, Chitano P, Seow CY. Filament evanescence of myosin II and smooth muscle function. J Gen Physiol 2021; 153:211814. [PMID: 33606000 PMCID: PMC7901143 DOI: 10.1085/jgp.202012781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
Smooth muscle is an integral part of hollow organs. Many of them are constantly subjected to mechanical forces that alter organ shape and modify the properties of smooth muscle. To understand the molecular mechanisms underlying smooth muscle function in its dynamic mechanical environment, a new paradigm has emerged that depicts evanescence of myosin filaments as a key mechanism for the muscle’s adaptation to external forces in order to maintain optimal contractility. Unlike the bipolar myosin filaments of striated muscle, the side-polar filaments of smooth muscle appear to be less stable, capable of changing their lengths through polymerization and depolymerization (i.e., evanescence). In this review, we summarize accumulated knowledge on the structure and mechanism of filament formation of myosin II and on the influence of ionic strength, pH, ATP, myosin regulatory light chain phosphorylation, and mechanical perturbation on myosin filament stability. We discuss the scenario of intracellular pools of monomeric and filamentous myosin, length distribution of myosin filaments, and the regulatory mechanisms of filament lability in contraction and relaxation of smooth muscle. Based on recent findings, we suggest that filament evanescence is one of the fundamental mechanisms underlying smooth muscle’s ability to adapt to the external environment and maintain optimal function. Finally, we briefly discuss how increased ROCK protein expression in asthma may lead to altered myosin filament stability, which may explain the lack of deep-inspiration–induced bronchodilation and bronchoprotection in asthma.
Collapse
Affiliation(s)
- Lu Wang
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pasquale Chitano
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chun Y Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Wang L, Chitano P, Seow CY. Mechanopharmacology of Rho-kinase antagonism in airway smooth muscle and potential new therapy for asthma. Pharmacol Res 2020; 159:104995. [PMID: 32534100 DOI: 10.1016/j.phrs.2020.104995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
The principle of mechanopharmacology of airway smooth muscle (ASM) is based on the premise that physical agitation, such as pressure oscillation applied to an airway, is able to induce bronchodilation by reducing contractility and softening the cytoskeleton of ASM. Although the underlying mechanism is not entirely clear, there is evidence to suggest that large-amplitude stretches are able to disrupt the actomyosin interaction in the crossbridge cycle and weaken the cytoskeleton in ASM cells. Rho-kinase is known to enhance force generation and strengthen structural integrity of the cytoskeleton during smooth muscle activation and plays a key role in the maintenance of force during prolonged muscle contractions. Synergy in relaxation has been observed when the muscle is subject to oscillatory length change while Rho-kinase is pharmacologically inhibited. In this review, inhibition of Rho-kinase coupled to therapeutic pressure oscillation applied to the airways is explored as a combination treatment for asthma.
Collapse
Affiliation(s)
- Lu Wang
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada.
| | - Pasquale Chitano
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada
| | - Chun Y Seow
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada
| |
Collapse
|
12
|
King GG, Bates J, Berger KI, Calverley P, de Melo PL, Dellacà RL, Farré R, Hall GL, Ioan I, Irvin CG, Kaczka DW, Kaminsky DA, Kurosawa H, Lombardi E, Maksym GN, Marchal F, Oppenheimer BW, Simpson SJ, Thamrin C, van den Berge M, Oostveen E. Technical standards for respiratory oscillometry. Eur Respir J 2020; 55:13993003.00753-2019. [PMID: 31772002 DOI: 10.1183/13993003.00753-2019] [Citation(s) in RCA: 349] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022]
Abstract
Oscillometry (also known as the forced oscillation technique) measures the mechanical properties of the respiratory system (upper and intrathoracic airways, lung tissue and chest wall) during quiet tidal breathing, by the application of an oscillating pressure signal (input or forcing signal), most commonly at the mouth. With increased clinical and research use, it is critical that all technical details of the hardware design, signal processing and analyses, and testing protocols are transparent and clearly reported to allow standardisation, comparison and replication of clinical and research studies. Because of this need, an update of the 2003 European Respiratory Society (ERS) technical standards document was produced by an ERS task force of experts who are active in clinical oscillometry research.The aim of the task force was to provide technical recommendations regarding oscillometry measurement including hardware, software, testing protocols and quality control.The main changes in this update, compared with the 2003 ERS task force document are 1) new quality control procedures which reflect use of "within-breath" analysis, and methods of handling artefacts; 2) recommendation to disclose signal processing, quality control, artefact handling and breathing protocols (e.g. number and duration of acquisitions) in reports and publications to allow comparability and replication between devices and laboratories; 3) a summary review of new data to support threshold values for bronchodilator and bronchial challenge tests; and 4) updated list of predicted impedance values in adults and children.
Collapse
Affiliation(s)
- Gregory G King
- Dept of Respiratory Medicine and Airway Physiology and Imaging Group, Royal North Shore Hospital and The Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Jason Bates
- Dept of Medicine, Pulmonary/Critical Care Division, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Kenneth I Berger
- Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine and André Cournand Pulmonary Physiology Laboratory, Belleuve Hospital, New York, NY, USA
| | - Peter Calverley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Pedro L de Melo
- Institute of Biology and Faculty of Engineering, Department of Physiology, Biomedical Instrumentation Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raffaele L Dellacà
- Dipartimento di Elettronica, Informazione e Bioingegneria - DEIB, Politecnico di Milano University, Milano, Italy
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Graham L Hall
- Children's Lung Health, Telethon Kids Institute, School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | - Iulia Ioan
- Dept of Pediatric Lung Function Testing, Children's Hospital, Vandoeuvre-lès-Nancy, France.,EA 3450 DevAH - Laboratory of Physiology, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Charles G Irvin
- Dept of Medicine, Pulmonary/Critical Care Division, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - David W Kaczka
- Depts of Anesthesia, Biomedical Engineering and Radiology, University of Iowa, Iowa City, IA, USA
| | - David A Kaminsky
- Dept of Medicine, Pulmonary/Critical Care Division, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Hajime Kurosawa
- Dept of Occupational Health, Tohoku University School of Medicine, Sendai, Japan
| | - Enrico Lombardi
- Pediatric Pulmonary Unit, Meyer Pediatric University Hospital, Florence, Italy
| | - Geoffrey N Maksym
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - François Marchal
- Dept of Pediatric Lung Function Testing, Children's Hospital, Vandoeuvre-lès-Nancy, France.,EA 3450 DevAH - Laboratory of Physiology, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Beno W Oppenheimer
- Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine and André Cournand Pulmonary Physiology Laboratory, Belleuve Hospital, New York, NY, USA
| | - Shannon J Simpson
- Children's Lung Health, Telethon Kids Institute, School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | - Cindy Thamrin
- Dept of Respiratory Medicine and Airway Physiology and Imaging Group, Royal North Shore Hospital and The Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Dept of Pulmonary Diseases, Groningen, The Netherlands
| | - Ellie Oostveen
- Dept of Respiratory Medicine, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Kurti SP, Smith JR, Rosenkranz SK, Emerson SR, Edwards ES, Jurrens K, Laughlin A, Harms CA. Deep inspirations attenuate postprandial airway inflammation in college-aged adults with elevated baseline exhaled nitric oxide: A pilot study. Exp Lung Res 2020; 46:32-43. [PMID: 31941389 DOI: 10.1080/01902148.2020.1713923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Airway inflammation (assessed by exhaled nitric oxide (eNO)) increases after a single high-fat meal (HFM), yet this response may be modified by airway stretch and baseline eNO level.Purpose: The purpose of this study was to investigate whether deep inspirations (DIs) would attenuate airway inflammation post-HFM and whether this is modulated by baseline eNO level.Methods: A total of sixteen healthy college-aged participants completed a randomized cross-over study with 8 lower eNO (14.8 ± 2.0 ppb: 3 M/5F; age: 22.0 ± 2.2 yrs) and 8 higher eNO (29.3 ± 11.6 ppb 5 M/3F; age: 22.5 ± 2.6 yrs) participants. All participants completed a control (CON) condition (no DIs pre-HFM) and DI condition (60 DI's to total lung capacity immediately pre-HFM) after an overnight fast. The primary outcome was eNO. Participants had 20 minutes to consume the HFM (1 g fat/1 kg body weight) and eNO was performed at 2- and 4- hours post-HFM. To determine whether baseline eNO levels impacted the effect of DI's, a median split was performed on their baseline eNO level.Results: There was a significant increase in eNO as a main effect of time (p < 0.001). However when analyzing the potential effect of baseline eNO, there was no significant increase in eNO post-HFM in the higher eNO group in the DI condition (p = 0.54). DIs modified the eNO response to a HFM in the group with a higher baseline eNO value.Conclusions: These data display a possible bronchoprotective protect of DIs against postprandial airway inflammation in participants with higher initial eNO level.
Collapse
Affiliation(s)
- S P Kurti
- Department of Kinesiology, James Madison University, Harrisonburg, Virginia, USA.,Department of Kinesiology, Kansas State University, Manhattan, Kansas, USA.,Physical Activity and Nutrition Clinical Research Consortium (PAN-CRC), College of Human Ecology, Kansas State University, Manhattan, Kansas, USA
| | - J R Smith
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - S K Rosenkranz
- Physical Activity and Nutrition Clinical Research Consortium (PAN-CRC), College of Human Ecology, Kansas State University, Manhattan, Kansas, USA.,Department of Food, Nutrition, Dietetics, and Health, Kansas State University, Manhattan, Kansas, USA
| | - S R Emerson
- Physical Activity and Nutrition Clinical Research Consortium (PAN-CRC), College of Human Ecology, Kansas State University, Manhattan, Kansas, USA.,Department of Food, Nutrition, Dietetics, and Health, Kansas State University, Manhattan, Kansas, USA.,Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - E S Edwards
- Department of Kinesiology, James Madison University, Harrisonburg, Virginia, USA
| | - K Jurrens
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, USA
| | - A Laughlin
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, USA
| | - C A Harms
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
14
|
Gazzola M, Khadangi F, Clisson M, Beaudoin J, Clavel MA, Bossé Y. Shortening of airway smooth muscle is modulated by prolonging the time without simulated deep inspirations in ovine tracheal strips. J Appl Physiol (1985) 2019; 127:1528-1538. [PMID: 31545157 DOI: 10.1152/japplphysiol.00423.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The shortening of airway smooth muscle (ASM) is greatly affected by time. This is because stimuli affecting ASM shortening, such as bronchoactive molecules or the strain inflicted by breathing maneuvers, not only alter quick biochemical processes regulating contraction but also slower processes that allow ASM to adapt to an ever-changing length. Little attention has been given to the effect of time on ASM shortening. The present study investigates the effect of changing the time interval between simulated deep inspirations (DIs) on ASM shortening and its responsiveness to simulated DIs. Excised tracheal strips from sheep were mounted in organ baths and either activated with methacholine or relaxed with isoproterenol. They were then subjected to simulated DIs by imposing swings in distending stress, emulating a transmural pressure from 5 to 30 cmH2O. The simulated DIs were intercalated by 2, 5, 10, or 30 min. In between simulated DIs, the distending stress was either fixed or oscillating to simulate tidal breathing. The results show that although shortening was increased by prolonging the interval between simulated DIs, the bronchodilator effect of simulated DIs (i.e., the elongation of the strip post- vs. pre-DI) was not affected, and the rate of re-shortening post-simulated DIs was decreased. As the frequency with which DIs are taken increases upon bronchoconstriction, our results may be relevant to typical alterations observed in asthma, such as an increased rate of re-narrowing post-DI.NEW & NOTEWORTHY The frequency with which patients with asthma take deep inspirations (DIs) increases during bronchoconstriction. This in vitro study investigated the effect of changing the time interval between simulated DIs on airway smooth muscle shortening. The results demonstrated that decreasing the interval between simulated DIs not only decreases shortening, which may be protective against excessive airway narrowing, but also increases the rate of re-shortening post-simulated DIs, which may contribute to the increased rate of re-narrowing post-DI observed in asthma.
Collapse
|
15
|
Rampadarath AK, Donovan GM. An in silico study examining the role of airway smooth muscle dynamics and airway compliance on the rate of airway re-narrowing after deep inspiration. Respir Physiol Neurobiol 2019; 271:103257. [PMID: 31542658 DOI: 10.1016/j.resp.2019.103257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 11/15/2022]
Abstract
Deep inspirations are a widely studied topic due to their varied effectiveness as a bronchodilator in asthmatic and non-asthmatic patients. Specifically, they are known to be effective at reversing bronchoconstriction in non-asthmatic patients but may fail to prevent bronchoconstriction in asthmatic patients. Inspired by a recent study on the effect of deep inspirations on the rate of re-narrowing of an isolated airway, we investigate whether the latch-bridge dynamics of smooth muscle cross-bridge theory, coupled with non-linear compliance of the airway wall, can account for the reported results: namely that only the rate of renarrowing after DI is sensitive to the interval between deep inspirations, while other measures are unaffected. We develop and present length- and pressure-controlled protocols which mimic both the experiments performed in the study, as well as simulate in vivo conditions respectively. Both protocols are simulated and show qualitative agreement with the results reported by the experiments, suggesting that latch-bridge dynamics coupled with airway wall non-compliance may be sufficient to explain these results. Moreover pressure- and length-controlled protocols show important differences which should be considered when designing in vitro experiments to mimic in vivo conditions.
Collapse
Affiliation(s)
- A K Rampadarath
- Department of Mathematics, University of Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - G M Donovan
- Department of Mathematics, University of Auckland, New Zealand
| |
Collapse
|
16
|
Bossé Y. The Strain on Airway Smooth Muscle During a Deep Inspiration to Total Lung Capacity. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2019; 2:0108021-1080221. [PMID: 32328568 PMCID: PMC7164505 DOI: 10.1115/1.4042309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/06/2018] [Indexed: 02/05/2023]
Abstract
The deep inspiration (DI) maneuver entices a great deal of interest because of its ability to temporarily ease the flow of air into the lungs. This salutary effect of a DI is proposed to be mediated, at least partially, by momentarily increasing the operating length of airway smooth muscle (ASM). Concerningly, this premise is largely derived from a growing body of in vitro studies investigating the effect of stretching ASM by different magnitudes on its contractility. The relevance of these in vitro findings remains uncertain, as the real range of strains ASM undergoes in vivo during a DI is somewhat elusive. In order to understand the regulation of ASM contractility by a DI and to infer on its putative contribution to the bronchodilator effect of a DI, it is imperative that in vitro studies incorporate levels of strains that are physiologically relevant. This review summarizes the methods that may be used in vivo in humans to estimate the strain experienced by ASM during a DI from functional residual capacity (FRC) to total lung capacity (TLC). The strengths and limitations of each method, as well as the potential confounders, are also discussed. A rough estimated range of ASM strains is provided for the purpose of guiding future in vitro studies that aim at quantifying the regulatory effect of DI on ASM contractility. However, it is emphasized that, owing to the many limitations and confounders, more studies will be needed to reach conclusive statements.
Collapse
Affiliation(s)
- Ynuk Bossé
- Université Laval, Faculty of Medicine, Department of Medicine, IUCPQ, M2694, Pavillon Mallet, Chemin Sainte-Foy, Québec, QC G1V 4G5, Canada e-mail:
| |
Collapse
|
17
|
O'Sullivan MJ, Lan B. The Aftermath of Bronchoconstriction. ACTA ACUST UNITED AC 2019; 2:0108031-108036. [PMID: 32328569 DOI: 10.1115/1.4042318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/30/2018] [Indexed: 11/08/2022]
Abstract
Asthma is characterized by chronic airway inflammation, airway remodeling, and excessive constriction of the airway. Detailed investigation exploring inflammation and the role of immune cells has revealed a variety of possible mechanisms by which chronic inflammation drives asthma development. However, the underlying mechanisms of asthma pathogenesis still remain poorly understood. New evidence now suggests that mechanical stimuli that arise during bronchoconstriction may play a critical role in asthma development. In this article, we review the mechanical effect of bronchoconstriction and how these mechanical stresses contribute to airway remodeling independent of inflammation.
Collapse
Affiliation(s)
- Michael J O'Sullivan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, 1-G07, Boston, MA 02115
| | - Bo Lan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, 1-G07, Boston, MA 02115 e-mail:
| |
Collapse
|
18
|
Bates JHT, Rajendran V. Mitigation of airways responsiveness by deep inflation of the lung. J Appl Physiol (1985) 2018; 124:1447-1455. [PMID: 29446713 DOI: 10.1152/japplphysiol.00051.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stretching activated strips of airway smooth muscle (ASM) significantly affects both active force and stiffness due to a temporary reduction of the proportion of cycling myosin cross bridges that are bound to their actin binding sites. For the same reason, stretch applied to ASM in situ by a deep inflation (DI) of the lungs is one of the most potent means of reversing bronchoconstriction. When the DI is sufficiently large, however, and is applied while bronchoconstriction is in the process of developing, the subsequent depression in airway resistance is more persistent than can be attributed simply to temporary detachment of ASM cross bridges. In the present study, we use a computational model to demonstrate that this DI-induced ablation of airway responsiveness can be explained by a dose-dependent reduction in the number of cross bridges available to bind to actin when the ASM in the airway wall is stretched above a critical threshold strain and that this disruption of the contractile apparatus recovers over an order of magnitude longer time scale than that of the simple reattachment of unbound cross bridges. NEW & NOTEWORTHY The mechanisms by which deep inflation of the lung reverse bronchoconstriction and affect subsequent airway responsiveness have important potential implications for asthma, yet remain controversial. This study uses computational modeling to posit a mechanism by which sufficiently vigorous inflations applied during active bronchoconstriction not only transiently reverse bronchoconstriction, but also reduce subsequent airways responsiveness for a period of time. Fitting the model to published data in mice supports this notion.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, Larner College of Medicine, University of Vermont , Burlington, Vermont
| | - Vignesh Rajendran
- Department of Medicine, Larner College of Medicine, University of Vermont , Burlington, Vermont
| |
Collapse
|
19
|
Schilero GJ, Hobson JC, Singh K, Spungen AM, Bauman WA, Radulovic M. Bronchodilator effects of ipratropium bromide and albuterol sulfate among subjects with tetraplegia. J Spinal Cord Med 2018; 41:42-47. [PMID: 27808011 PMCID: PMC5810805 DOI: 10.1080/10790268.2016.1235753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE In addition to lung volume restriction, persons with chronic tetraplegia demonstrate obstructive airway physiology evinced by pharmacologically-induced bronchodilation. We previously found independent evidence that anticholinergic agents (ipratropium bromide; IB) and beta-2 adrenergic agonists (albuterol sulfate; AS) were associated with significant bronchodilation in subjects with tetraplegia as determined via spirometry or body plethysmography. Direct comparison of these two classes of agents has received little attention. METHODS Twelve subjects with chronic tetraplegia completed single dose treatment on alternate days with nebulized IB or AS. Patients underwent pre- and 30-minute post-bronchodilator spirometry, body plethysmography, and impulse oscillation system (IOS) in accordance with established protocols. RESULTS Spirometry and specific airway conductance revealed significant bronchodilator responsiveness following both IB and AS. As determined by increases in specific airway conductance post-bronchodilator, IB tended toward greater bronchodilation than AS (71% vs. 47%). IOS revealed a greater reduction in central airway resistance (R20) following IB compared to AS (22% vs. 9%, P < 0.01). A greater number of subjects exhibited a clinically significant reduction in R20 following IB compared to AS (58% vs. 8%, P < 0.01). CONCLUSION Among subjects with tetraplegia, both IB and AS elicit significant bronchodilation, although the magnitude of the bronchodilator response is greater following IB. This lends support to theory of overriding cholinergic airway tone in tetraplegia. The IOS findings further suggest that the predominant site of action of IB is upon the larger central airways congruent with findings in able-bodied subjects.
Collapse
Affiliation(s)
- Gregory J. Schilero
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA,Medical Service, James J. Peters VA Medical Center, Bronx NY, USA,Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Correspondence to: Gregory J. Schilero, Director, Sleep Diagnostic and Treatment Center, Director, Pulmonary and Sleep Medicine Research Section, RR&D National Center for the Medical Consequences of Spinal Cord Injury, The James J. Peters VA Medical Center, Bronx, NY.
| | - Joshua C. Hobson
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Kamaldeep Singh
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA,Medical Service, James J. Peters VA Medical Center, Bronx NY, USA
| | - Ann M. Spungen
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA,Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William A. Bauman
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA,Medical Service, James J. Peters VA Medical Center, Bronx NY, USA,Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miroslav Radulovic
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA,Medical Service, James J. Peters VA Medical Center, Bronx NY, USA,Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Mailhot-Larouche S, Lortie K, Marsolais D, Flamand N, Bossé Y. An in vitro study examining the duration between deep inspirations on the rate of renarrowing. Respir Physiol Neurobiol 2017; 243:13-19. [PMID: 28487171 DOI: 10.1016/j.resp.2017.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/07/2017] [Accepted: 04/29/2017] [Indexed: 12/12/2022]
Abstract
The factors altering the bronchodilatory response to a deep inspiration (DI) in asthma are important to decipher. In this in vitro study, we investigated the effect of changing the duration between DIs on the rate of force recovery post-DI in guinea pig bronchi. The airway smooth muscle (ASM) within the main bronchi were submitted to length oscillation that simulated tidal breathing in different contractile states during 2, 5, 10 or 30min prior to a larger length excursion that simulated a DI. The contractile states of ASM were determined by adding either methacholine or isoproterenol. Irrespective of the contractile state, the duration between DIs neither affected the measured force during length oscillation nor the bronchodilator effect of DI. Contrastingly, the rate of force recovery post-DI in contracted state increased as the duration between DIs decreased. Similar results were obtained with contracted parenchymal strips. These findings suggest that changing the duration between DIs may alter the rate of ASM force recovery post-DI and thereby affect the rate of renarrowing and the duration of the respiratory relief afforded by DI.
Collapse
Affiliation(s)
- Samuel Mailhot-Larouche
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Katherine Lortie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - David Marsolais
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Nicolas Flamand
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada.
| |
Collapse
|
21
|
Bates JHT. Systems physiology of the airways in health and obstructive pulmonary disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:423-37. [PMID: 27340818 DOI: 10.1002/wsbm.1347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023]
Abstract
Fresh air entering the mouth and nose is brought to the blood-gas barrier in the lungs by a repetitively branching network of airways. Provided the individual airway branches remain patent, this airway tree achieves an enormous amplification in cross-sectional area from the trachea to the terminal bronchioles. Obstructive lung diseases such as asthma occur when airway patency becomes compromised. Understanding the pathophysiology of these obstructive diseases thus begins with a consideration of the factors that determine the caliber of an individual airway, which include the force balance between the inward elastic recoil of the airway wall, the outward tethering forces of its parenchymal attachments, and any additional forces due to contraction of airway smooth muscle. Other factors may also contribute significantly to airway narrowing, such as thickening of the airway wall and accumulation of secretions in the lumen. Airway obstruction becomes particularly severe when these various factors occur in concert. However, the effect of airway abnormalities on lung function cannot be fully understood only in terms of what happens to a single airway because narrowing throughout the airway tree is invariably heterogeneous and interdependent. Obstructive lung pathologies thus manifest as emergent phenomena arising from the way in which the airway tree behaves a system. These emergent phenomena are studied with clinical measurements of lung function made by spirometry and by mechanical impedance measured with the forced oscillation technique. Anatomically based computational models are linking these measurements to underlying anatomic structure in systems physiology terms. WIREs Syst Biol Med 2016, 8:423-437. doi: 10.1002/wsbm.1347 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
22
|
Hansel NN, Paré PD, Rafaels N, Sin DD, Sandford A, Daley D, Vergara C, Huang L, Elliott WM, Pascoe CD, Arsenault BA, Postma DS, Boezen HM, Bossé Y, van den Berge M, Hiemstra PS, Cho MH, Litonjua AA, Sparrow D, Ober C, Wise RA, Connett J, Neptune ER, Beaty TH, Ruczinski I, Mathias RA, Barnes KC. Genome-Wide Association Study Identification of Novel Loci Associated with Airway Responsiveness in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2015; 53:226-34. [PMID: 25514360 DOI: 10.1165/rcmb.2014-0198oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increased airway responsiveness is linked to lung function decline and mortality in subjects with chronic obstructive pulmonary disease (COPD); however, the genetic contribution to airway responsiveness remains largely unknown. A genome-wide association study (GWAS) was performed using the Illumina (San Diego, CA) Human660W-Quad BeadChip on European Americans with COPD from the Lung Health Study. Linear regression models with correlated meta-analyses, including data from baseline (n = 2,814) and Year 5 (n = 2,657), were used to test for common genetic variants associated with airway responsiveness. Genotypic imputation was performed using reference 1000 Genomes Project data. Expression quantitative trait loci (eQTL) analyses in lung tissues were assessed for the top 10 markers identified, and immunohistochemistry assays assessed protein staining for SGCD and MYH15. Four genes were identified within the top 10 associations with airway responsiveness. Markers on chromosome 9p21.2 flanked by LINGO2 met a predetermined threshold of genome-wide significance (P < 9.57 × 10(-8)). Markers on chromosomes 3q13.1 (flanked by MYH15), 5q33 (SGCD), and 6q21 (PDSS2) yielded suggestive evidence of association (9.57 × 10(-8) < P ≤ 4.6 × 10(-6)). Gene expression studies in lung tissue showed single nucleotide polymorphisms on chromosomes 5 and 3 to act as eQTL for SGCD (P = 2.57 × 10(-9)) and MYH15 (P = 1.62 × 10(-6)), respectively. Immunohistochemistry confirmed localization of SGCD protein to airway smooth muscle and vessels and MYH15 to airway epithelium, vascular endothelium, and inflammatory cells. We identified novel loci associated with airway responsiveness in a GWAS among smokers with COPD. Risk alleles on chromosomes 5 and 3 acted as eQTLs for SGCD and MYH15 messenger RNA, and these proteins were expressed in lung cells relevant to the development of airway responsiveness.
Collapse
Affiliation(s)
- Nadia N Hansel
- 1 Department of Medicine, School of Medicine; and.,Departments of 2 Environmental Health Sciences
| | - Peter D Paré
- 3 Department of Pathology, Centre for Heart Lung Innovation, St. Paul's Hospital, Division of Respirology, University of British Columbia, Vancouver, British Columbia
| | | | - Don D Sin
- 3 Department of Pathology, Centre for Heart Lung Innovation, St. Paul's Hospital, Division of Respirology, University of British Columbia, Vancouver, British Columbia
| | - Andrew Sandford
- 3 Department of Pathology, Centre for Heart Lung Innovation, St. Paul's Hospital, Division of Respirology, University of British Columbia, Vancouver, British Columbia
| | - Denise Daley
- 3 Department of Pathology, Centre for Heart Lung Innovation, St. Paul's Hospital, Division of Respirology, University of British Columbia, Vancouver, British Columbia
| | | | - Lili Huang
- 1 Department of Medicine, School of Medicine; and
| | - W Mark Elliott
- 3 Department of Pathology, Centre for Heart Lung Innovation, St. Paul's Hospital, Division of Respirology, University of British Columbia, Vancouver, British Columbia
| | - Chris D Pascoe
- 3 Department of Pathology, Centre for Heart Lung Innovation, St. Paul's Hospital, Division of Respirology, University of British Columbia, Vancouver, British Columbia
| | - Bryna A Arsenault
- 3 Department of Pathology, Centre for Heart Lung Innovation, St. Paul's Hospital, Division of Respirology, University of British Columbia, Vancouver, British Columbia
| | - Dirkje S Postma
- Departments of 4 Pulmonary Diseases and.,5 Groningen Research Institute for Asthma and COPD Research Institute, University Medical Center Groningen, Groningen; and
| | - H Marike Boezen
- 6 Epidemiology, and.,5 Groningen Research Institute for Asthma and COPD Research Institute, University Medical Center Groningen, Groningen; and
| | - Yohan Bossé
- 7 Department of Molecular Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec City, Québec, Canada
| | - Maarten van den Berge
- Departments of 4 Pulmonary Diseases and.,5 Groningen Research Institute for Asthma and COPD Research Institute, University Medical Center Groningen, Groningen; and
| | - Pieter S Hiemstra
- 8 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michael H Cho
- 9 Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Augusto A Litonjua
- 9 Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David Sparrow
- 10 VA Normative Aging Study and Boston University School of Medicine, Boston, Massachusetts
| | - Carole Ober
- 11 Department of Human Genetics, University of Chicago, Chicago, Illinois
| | | | - John Connett
- 12 Division of Biostatistics, School of Public Health, University of Minnesota, St. Paul, Minnesota
| | | | | | - Ingo Ruczinski
- 14 Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | | | - Kathleen C Barnes
- 1 Department of Medicine, School of Medicine; and.,13 Epidemiology, and
| | | |
Collapse
|
23
|
Brown RH, Reynolds C, Brooker A, Talalay P, Fahey JW. Sulforaphane improves the bronchoprotective response in asthmatics through Nrf2-mediated gene pathways. Respir Res 2015; 16:106. [PMID: 26369337 PMCID: PMC4570035 DOI: 10.1186/s12931-015-0253-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/21/2015] [Indexed: 01/16/2023] Open
Abstract
Background It is widely recognized that deep inspiration (DI), either before methacholine (MCh) challenge (Bronchoprotection, BP) or after MCh challenge (Bronchodilation, BD) protects against this challenge in healthy individuals, but not in asthmatics. Sulforaphane, a dietary antioxidant and antiinflammatory phytochemical derived from broccoli, may affect the pulmonary bronchoconstrictor responses to MCh and the responses to DI in asthmatic patients. Methods Forty-five moderate asthmatics were administered sulforaphane (100 μmol daily for 14 days), BP, BD, lung volumes by body-plethsmography, and airway morphology by computed tomography (CT) were measured pre- and post sulforaphane consumption. Results Sulforaphane ameliorated the bronchoconstrictor effects of MCh on FEV1 significantly (on average by 21 %; p = 0.01) in 60 % of these asthmatics. Interestingly, in 20 % of the asthmatics, sulforaphane aggravated the bronchoconstrictor effects of MCh and in a similar number was without effect, documenting the great heterogeneity of the responsiveness of these individuals to sulforaphane. Moreover, in individuals in whom the FEV1 response to MCh challenge decreased after sulforaphane administration, i.e., sulforaphane was protective, the activities of Nrf2-regulated antioxidant and anti-inflammatory genes decreased. In contrast, individuals in whom sulforaphane treatment enhanced the FEV1 response to MCh, had increased expression of the activities of these genes. High resolution CT scans disclosed that in asthmatics sulforaphane treatment resulted in a significant reduction in specific airway resistance and also increased small airway luminal area and airway trapping modestly but significantly. Conclusion These findings suggest the potential value of blocking the bronchoconstrictor hyperresponsiveness in some types of asthmatics by phytochemicals such as sulforaphane.
Collapse
Affiliation(s)
- Robert H Brown
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Division of Pulmonary Medicine and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Environmental Health Sciences, Johns Hopkins University School of Public Health, Room E7614, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| | - Curt Reynolds
- Department of Environmental Health Sciences, Johns Hopkins University School of Public Health, Room E7614, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Allison Brooker
- Department of Environmental Health Sciences, Johns Hopkins University School of Public Health, Room E7614, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Paul Talalay
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Human Nutrition, Department of International Health, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - Jed W Fahey
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Human Nutrition, Department of International Health, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| |
Collapse
|
24
|
Dowie J, Ansell TK, Noble PB, Donovan GM. Airway compliance and dynamics explain the apparent discrepancy in length adaptation between intact airways and smooth muscle strips. Respir Physiol Neurobiol 2015; 220:25-32. [PMID: 26376002 DOI: 10.1016/j.resp.2015.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/27/2015] [Accepted: 09/11/2015] [Indexed: 11/16/2022]
Abstract
Length adaptation is a phenomenon observed in airway smooth muscle (ASM) wherein over time there is a shift in the length-tension curve. There is potential for length adaptation to play an important role in airway constriction and airway hyper-responsiveness in asthma. Recent results by Ansell et al., 2015 (JAP 2014 10.1152/japplphysiol.00724.2014) have cast doubt on this role by testing for length adaptation using an intact airway preparation, rather than strips of ASM. Using this technique they found no evidence for length adaptation in intact airways. Here we attempt to resolve this apparent discrepancy by constructing a minimal mathematical model of the intact airway, including ASM which follows the classic length-tension curve and undergoes length adaptation. This allows us to show that (1) no evidence of length adaptation should be expected in large, cartilaginous, intact airways; (2) even in highly compliant peripheral airways, or at more compliant regions of the pressure-volume curve of large airways, the effect of length adaptation would be modest and at best marginally detectable in intact airways; (3) the key parameters which control the appearance of length adaptation in intact airways are airway compliance and the relaxation timescale. The results of this mathematical simulation suggest that length adaptation observed at the level of the isolated ASM may not clearly manifest in the normal intact airway.
Collapse
Affiliation(s)
- Jackson Dowie
- Department of Mathematics, University of Auckland, New Zealand
| | - Thomas K Ansell
- School of Veterinary and Life Sciences, Murdoch University, Australia; School of Anatomy, Physiology and Human Biology, The University of Western Australia, Australia
| | - Peter B Noble
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Australia; Centre for Neonatal Research and Education, The University of Western Australia, Australia
| | | |
Collapse
|
25
|
Pascoe CD, Swyngedouw NE, Seow CY, Paré PD. Gene expression in asthmatic airway smooth muscle: a mixed bag. Can J Physiol Pharmacol 2014; 93:137-43. [PMID: 25587873 DOI: 10.1139/cjpp-2014-0390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has long been known that airway smooth muscle (ASM) contraction contributes significantly to the reversible airflow obstruction that defines asthma. It has also been postulated that phenotypic changes in ASM contribute to the airway hyper-responsiveness (AHR) that is a characteristic feature of asthma. Although there is agreement that the mass of ASM surrounding the airways is significantly increased in asthmatic compared with non-asthmatic airways, it is still uncertain whether there are quantitative or qualitative changes in the level of expression of the genes and proteins involved in the canonical contractile pathway in ASM that could account for AHR. This review will summarize past attempts at quantifying gene expression changes in the ASM of asthmatic lungs as well as non-asthmatic ASM cells stimulated with various inflammatory cytokines. The lack of consistent findings in asthmatic samples coupled with the relative concordance of results from stimulated ASM cells suggests that changes to the contractility of ASM tissues in asthma may be dependent on the presence of an inflammatory environment surrounding the ASM layer. Removal of the ASM from this environment could explain why hypercontractility is rarely seen ex vivo.
Collapse
Affiliation(s)
- Christopher D Pascoe
- a Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | | | | | | |
Collapse
|
26
|
Pascoe CD, Donovan GM, Bossé Y, Seow CY, Paré PD. Bronchoprotective effect of simulated deep inspirations in tracheal smooth muscle. J Appl Physiol (1985) 2014; 117:1502-13. [PMID: 25324512 DOI: 10.1152/japplphysiol.00713.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep inspirations (DIs) taken before an inhaled challenge with a spasmogen limit airway responsiveness in nonasthmatic subjects. This phenomenon is called bronchoprotection and is severely impaired in asthmatic subjects. The ability of DIs to prevent a decrease in forced expiratory volume in 1 s (FEV1) was initially attributed to inhibition of airway narrowing. However, DIs taken before methacholine challenge limit airway responsiveness only when a test of lung function requiring a DI is used (FEV1). Therefore, it has been suggested that prior DIs enhance the compliance of the airways or airway smooth muscle (ASM). This would increase the strain the airway wall undergoes during the subsequent DI, which is part of the FEV1 maneuver. To investigate this phenomenon, we used ovine tracheal smooth muscle strips that were subjected to shortening elicited by acetylcholine with or without prior strain mimicking two DIs. The compliance of the shortened strip was then measured in response to a stress mimicking one DI. Our results show that the presence of "DIs" before acetylcholine-induced shortening resulted in 11% greater relengthening in response to the third DI, compared with the prior DIs. This effect, although small, is shown to be potentially important for the reopening of closed airways. The effect of prior DIs was abolished by the adaptation of ASM to either shorter or longer lengths or to a low baseline tone. These results suggest that DIs confer bronchoprotection because they increase the compliance of ASM, which, consequently, promotes greater strain from subsequent DI and fosters the reopening of closed airways.
Collapse
Affiliation(s)
- Christopher D Pascoe
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada; and
| | - Chun Y Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Peter D Paré
- Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, British Columbia, Canada; Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Chapman DG, Pascoe CD, Lee-Gosselin A, Couture C, Seow CY, Paré PD, Salome CM, King GG, Bossé Y. Smooth Muscle in the Maintenance of Increased Airway Resistance Elicited by Methacholine in Humans. Am J Respir Crit Care Med 2014; 190:879-85. [DOI: 10.1164/rccm.201403-0502oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Abstract
PURPOSE OF REVIEW Obesity and asthma are chronic conditions affecting millions of people worldwide. The two conditions also appear to be linked with an increased risk of asthma in people who are obese. The purpose of this review is to describe mechanism(s) that may explain the association between asthma and obesity. RECENT FINDINGS Current evidence suggests that the association between asthma and obesity is linked by two major phenotypes and three important pathways of obesity-related asthma: one phenotype with primary (often atopic) asthma that is aggravated by obesity and a second phenotype with late-onset nonatopic asthma, which predominantly affects women and primarily seems to be associated with neutrophilic inflammation. Proposed pathways include the mechanical effects of obesity (fewer deep inspirations leading to increased airway hyperresponsiveness), an inflammatory pathway driven by obesity-related cytokines (adipokines), and finally environment and lifestyle changes that have led to an increasing prevalence of obesity over the past 50 years (including exposures in utero, physical activity, and diet) may also result in asthma in predisposed individuals. How these environmental changes influence the occurrence and expression of asthma may depend on the age of exposure and on interactions with genetic susceptibilities. SUMMARY Future research should be directed to shed light on the associations between obesity and asthma phenotypes, modern lifestyles and environmental exposures and genetic susceptibilities. VIDEO ABSTRACT http://links.lww.com/COAI/A6.
Collapse
|
29
|
Noble PB, Pascoe CD, Lan B, Ito S, Kistemaker LEM, Tatler AL, Pera T, Brook BS, Gosens R, West AR. Airway smooth muscle in asthma: linking contraction and mechanotransduction to disease pathogenesis and remodelling. Pulm Pharmacol Ther 2014; 29:96-107. [PMID: 25062835 DOI: 10.1016/j.pupt.2014.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 02/07/2023]
Abstract
Asthma is an obstructive airway disease, with a heterogeneous and multifactorial pathogenesis. Although generally considered to be a disease principally driven by chronic inflammation, it is becoming increasingly recognised that the immune component of the pathology poorly correlates with the clinical symptoms of asthma, thus highlighting a potentially central role for non-immune cells. In this context airway smooth muscle (ASM) may be a key player, as it comprises a significant proportion of the airway wall and is the ultimate effector of acute airway narrowing. Historically, the contribution of ASM to asthma pathogenesis has been contentious, yet emerging evidence suggests that ASM contractile activation imparts chronic effects that extend well beyond the temporary effects of bronchoconstriction. In this review article we describe the effects that ASM contraction, in combination with cellular mechanotransduction and novel contraction-inflammation synergies, contribute to asthma pathogenesis. Specific emphasis will be placed on the effects that ASM contraction exerts on the mechanical properties of the airway wall, as well as novel mechanisms by which ASM contraction may contribute to more established features of asthma such as airway wall remodelling.
Collapse
Affiliation(s)
- Peter B Noble
- School of Anatomy, Physiology and Human Biology, University of Western Australia, WA, Australia
| | - Chris D Pascoe
- Center for Heart Lung Innovation, University of British Columbia, BC, Canada
| | - Bo Lan
- Center for Heart Lung Innovation, University of British Columbia, BC, Canada; Bioengineering College, Chongqing University, Chongqing, China
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University, Aichi, Japan
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Amanda L Tatler
- Division of Respiratory Medicine, University of Nottingham, United Kingdom
| | - Tonio Pera
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, United Kingdom
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Adrian R West
- Department of Physiology, University of Manitoba, MB, Canada; Biology of Breathing, Manitoba Institute of Child Health, MB, Canada.
| |
Collapse
|
30
|
Noble PB. Disruption of the bronchodilatory response to deep inspiration in asthma – Extrinsic or intrinsic to the airway smooth muscle? Respir Physiol Neurobiol 2013; 189:655-7. [DOI: 10.1016/j.resp.2013.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
|
31
|
Harvey BC, Parameswaran H, Lutchen KR. Can tidal breathing with deep inspirations of intact airways create sustained bronchoprotection or bronchodilation? J Appl Physiol (1985) 2013; 115:436-45. [PMID: 23722710 DOI: 10.1152/japplphysiol.00009.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluctuating forces imposed on the airway smooth muscle due to breathing are believed to regulate hyperresponsiveness in vivo. However, recent animal and human isolated airway studies have shown that typical breathing-sized transmural pressure (Ptm) oscillations around a fixed mean are ineffective at mitigating airway constriction. To help understand this discrepancy, we hypothesized that Ptm oscillations capable of producing the same degree of bronchodilation as observed in airway smooth muscle strip studies requires imposition of strains larger than those expected to occur in vivo. First, we applied increasingly larger amplitude Ptm oscillations to a statically constricted airway from a Ptm simulating normal functional residual capacity of 5 cmH2O. Tidal-like oscillations (5-10 cmH2O) imposed 4.9 ± 2.0% strain and resulted in 11.6 ± 4.8% recovery, while Ptm oscillations simulating a deep inspiration at every breath (5-30 cmH2O) achieved 62.9 ± 12.1% recovery. These same Ptm oscillations were then applied starting from a Ptm = 1 cmH2O, resulting in approximately double the strain for each oscillation amplitude. When extreme strains were imposed, we observed full recovery. On combining the two data sets, we found a linear relationship between strain and resultant recovery. Finally, we compared the impact of Ptm oscillations before and after constriction to Ptm oscillations applied only after constriction and found that both loading conditions had a similar effect on narrowing. We conclude that, while sufficiently large strains applied to the airway wall are capable of producing substantial bronchodilation, the Ptm oscillations necessary to achieve those strains are not expected to occur in vivo.
Collapse
Affiliation(s)
- Brian C Harvey
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
32
|
Noble PB, Jones RL, Cairncross A, Elliot JG, Mitchell HW, James AL, McFawn PK. Airway narrowing and bronchodilation to deep inspiration in bronchial segments from subjects with and without reported asthma. J Appl Physiol (1985) 2013; 114:1460-71. [PMID: 23493364 DOI: 10.1152/japplphysiol.01489.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study presents preliminary findings on how structural/functional abnormalities of the airway wall relate to excessive airway narrowing and reduced bronchodilatory response to deep inspiration (DI) in subjects with a history of asthma. Bronchial segments were acquired from subjects undergoing surgery, mostly to remove pulmonary neoplasms. Subjects reported prior doctor-diagnosed asthma ( n = 5) or had no history of asthma ( n = 8). In vitro airway narrowing in response to acetylcholine was assessed to determine maximal bronchoconstriction and sensitivity, under static conditions and during simulated tidal and DI maneuvers. Fixed airway segments were sectioned for measurement of airway wall dimensions, particularly the airway smooth muscle (ASM) layer. Airways from subjects with a history of asthma had increased ASM ( P = 0.014), greater maximal airway narrowing under static conditions ( P = 0.003), but no change in sensitivity. Maximal airway narrowing was positively correlated with the area of the ASM layer ( r = 0.58, P = 0.039). In tidally oscillating airways, DI produced bronchodilation in airways from the control group ( P = 0.0001) and the group with a history of asthma ( P = 0.001). While bronchodilation to DI was reduced with increased airway narrowing ( P = 0.02; r = −0.64)), when the level of airway narrowing was matched, there was no difference in magnitude of bronchodilation to DI between groups. Results suggest that greater ASM mass in asthma contributes to exaggerated airway narrowing in vivo. In comparison, the airway wall in asthma may have a normal response to mechanical stretch during DI. We propose that increased maximal airway narrowing and the reduced bronchodilatory response to DI in asthma are independent.
Collapse
Affiliation(s)
- Peter B. Noble
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Perth, Western Australia, Australia
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Robyn L. Jones
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Perth, Western Australia, Australia; and
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Alvenia Cairncross
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - John G. Elliot
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Perth, Western Australia, Australia; and
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Howard W. Mitchell
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Alan L. James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Perth, Western Australia, Australia; and
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Peter K. McFawn
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Perth, Western Australia, Australia
| |
Collapse
|
33
|
A Brief History of Airway Smooth Muscle's Role in Airway Hyperresponsiveness. J Allergy (Cairo) 2012; 2012:768982. [PMID: 23118776 PMCID: PMC3483821 DOI: 10.1155/2012/768982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/21/2012] [Indexed: 11/18/2022] Open
Abstract
A link between airway smooth muscle (ASM) and airway hyperresponsiveness (AHR) in asthma was first postulated in the midnineteenth century, and the suspected link has garnered ever increasing interest over the years. AHR is characterized by excessive narrowing of airways in response to nonspecific stimuli, and it is the ASM that drives this narrowing. The stimuli that can be used to demonstrate AHR vary widely, as do the potential mechanisms by which phenotypic changes in ASM or nonmuscle factors can contribute to AHR. In this paper, we review the history of research on airway smooth muscle's role in airway hyperresponsiveness. This research has ranged from analyzing the quantity of ASM in the airways to testing for alterations in the plastic behavior of smooth muscle, which distinguishes it from skeletal and cardiac muscles. This long history of research and the continued interest in this topic mean that the precise role of ASM in airway responsiveness remains elusive, which makes it a pertinent topic for this collection of articles.
Collapse
|
34
|
Airway Smooth Muscle Dynamics and Hyperresponsiveness: In and outside the Clinic. J Allergy (Cairo) 2012; 2012:157047. [PMID: 23118774 PMCID: PMC3483736 DOI: 10.1155/2012/157047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
The primary functional abnormality in asthma is airway hyperresponsiveness (AHR)-excessive airway narrowing to bronchoconstrictor stimuli. Our understanding of the underlying mechanism(s) producing AHR is incomplete. While structure-function relationships have been evoked to explain AHR (e.g., increased airway smooth muscle (ASM) mass in asthma) more recently there has been a focus on how the dynamic mechanical environment of the lung impacts airway responsiveness in health and disease. The effects of breathing movements such as deep inspiration reveal innate protective mechanisms in healthy individuals that are likely mediated by dynamic ASM stretch but which may be impaired in asthmatic patients and thereby facilitate AHR. This perspective considers the evidence for and against a role of dynamic ASM stretch in limiting the capacity of airways to narrow excessively. We propose that lung function measured after bronchial provocation in the laboratory and changes in lung function perceived by the patient in everyday life may be quite different in their dependence on dynamic ASM stretch.
Collapse
|
35
|
Functional phenotype of airway myocytes from asthmatic airways. Pulm Pharmacol Ther 2012; 26:95-104. [PMID: 22921313 DOI: 10.1016/j.pupt.2012.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 11/23/2022]
Abstract
In asthma, the airway smooth muscle (ASM) cell plays a central role in disease pathogenesis through cellular changes which may impact on its microenvironment and alter ASM response and function. The answer to the long debated question of what makes a 'healthy' ASM cell become 'asthmatic' still remains speculative. What is known of an 'asthmatic' ASM cell, is its ability to contribute to the hallmarks of asthma such as bronchoconstriction (contractile phenotype), inflammation (synthetic phenotype) and ASM hyperplasia (proliferative phenotype). The phenotype of healthy or diseased ASM cells or tissue for the most part is determined by expression of key phenotypic markers. ASM is commonly accepted to have different phenotypes: the contractile (differentiated) state versus the synthetic (dedifferentiated) state (with the capacity to synthesize mediators, proliferate and migrate). There is now accumulating evidence that the synthetic functions of ASM in culture derived from asthmatic and non-asthmatic donors differ. Some of these differences include an altered profile and increased production of extracellular matrix proteins, pro-inflammatory mediators and adhesion receptors, collectively suggesting that ASM cells from asthmatic subjects have the capacity to alter their environment, actively participate in repair processes and functionally respond to changes in their microenvironment.
Collapse
|
36
|
Sumino K. Reply. J Allergy Clin Immunol 2012. [DOI: 10.1016/j.jaci.2012.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Schelegle ES, Walby WF. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge. Respir Physiol Neurobiol 2012; 181:277-85. [PMID: 22525484 DOI: 10.1016/j.resp.2012.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 01/09/2023]
Abstract
Brown-Norway rats (n=113) sensitized and challenged with nDer f 1 allergen were used to examine the contribution of lung sensory nerves to ozone (O(3)) exacerbation of asthma. Prior to their third challenge rats inhaled 1.0ppm O(3) for 8h. There were three groups: (1) control; (2) vagus perineural capsaicin treatment (PCT) with or without hexamethonium; and (3) vagotomy. O(3) inhalation resulted in a significant increase in lung resistance (R(L)) and an exaggerated response to subsequent allergen challenge. PCT abolished the O(3)-induced increase in R(L) and significantly reduced the increase in R(L) induced by a subsequent allergen challenge, while hexamethonium treatment reestablished bronchoconstriction induced by allergen challenge. Vagotomy resulted in a significant increase in the bronchoconstriction induced by O(3) inhalation and subsequent challenge with allergen. In this model of O(3) exacerbation of asthma, vagal C-fibers initiate reflex bronchoconstriction, vagal myelinated fibers initiate reflex bronchodilation, and mediators released within the airway initiate bronchoconstriction.
Collapse
Affiliation(s)
- Edward S Schelegle
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
38
|
Sumino K, Sugar EA, Irvin CG, Kaminsky DA, Shade D, Wei CY, Holbrook JT, Wise RA, Castro M. Methacholine challenge test: diagnostic characteristics in asthmatic patients receiving controller medications. J Allergy Clin Immunol 2012; 130:69-75.e6. [PMID: 22465214 DOI: 10.1016/j.jaci.2012.02.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND The methacholine challenge test (MCT) is commonly used to assess airway hyperresponsiveness, but the diagnostic characteristics have not been well studied in asthmatic patients receiving controller medications after the use of high-potency inhaled corticosteroids became common. OBJECTIVES We investigated the ability of the MCT to differentiate participants with a physician's diagnosis of asthma from nonasthmatic participants. METHODS We conducted a cohort-control study in asthmatic participants (n= 126) who were receiving regular controller medications and nonasthmatic control participants (n= 93) to evaluate the sensitivity and specificity of the MCT. RESULTS The overall sensitivity was 77% and the specificity was 96% with a threshold PC(20) (the provocative concentration of methacholine that results in a 20% drop in FEV(1)) of 8 mg/mL. The sensitivity was significantly lower in white than in African American participants (69% vs 95%, P= .015) and higher in atopic compared with nonatopic (82% vs 52%, P= .005). Increasing the PC(20) threshold from 8 to 16 mg/mL did not noticeably improve the performance characteristics of the test. African American race, presence of atopy, and lower percent predicted FEV(1) were associated with a positive test result. CONCLUSIONS The utility of the MCT to rule out a diagnosis of asthma depends on racial and atopic characteristics. Clinicians should take into account the reduced sensitivity of the MCT in white and nonatopic asthmatic patients when using this test for the diagnosis of asthma.
Collapse
Affiliation(s)
- Kaharu Sumino
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rosenkranz SK, Rosenkranz RR, Hastmann TJ, Harms CA. High-intensity training improves airway responsiveness in inactive nonasthmatic children: evidence from a randomized controlled trial. J Appl Physiol (1985) 2012; 112:1174-83. [PMID: 22241059 DOI: 10.1152/japplphysiol.00663.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE the relationship between physical activity and airway health in children is not well understood. The purpose of this study was to determine whether 8 wk of high-intensity exercise training would improve airway responsiveness in prepubescent, nonasthmatic, inactive children. METHODS 16 healthy, prepubescent children were randomized [training group (TrG) n = 8, control group (ConG) n = 8]. Prior to and following 8 wk of training (or no training), children completed pulmonary function tests (PFTs): forced expiratory volume in 1 s (FEV(1)), forced vital capacity (FVC), forced expiratory flow at 25-75% of vital capacity (FEF(25-75)), and exhaled nitric oxide (FENO). Children completed an incremental cycle Vo(2max) test, eucapnic voluntary hyperventilation (EVH), anthropometric tests, and blood tests to determine fasting blood glucose, total cholesterol, HDL, LDL, and triglycerides. Body fat percentage was determined using dual-energy X-ray absorptiometry pretraining and bioelectrical impedance pre- and posttraining. RESULTS there were no differences (P > 0.05) in anthropometric measures or PFTs between TrG and ConG at baseline. In the TrG, there was a significant increase in Vo(2max) (∼24%) and a decrease in total cholesterol (∼13%) and LDL cholesterol (∼35%) following training. There were improvements (P < 0.05) in ΔFEV(1) both postexercise (pre: -7.60 ± 2.10%, post: -1.10 ± 1.80%) and post-EVH (pre: -6.71 ± 2.21%, post: -1.41 ± 1.58%) with training. The ΔFEF(25-75) pre-post exercise also improved with training (pre: -16.10 ± 2.10%, post: -6.80 ± 1.80%; P < 0.05). Lower baseline body fat percentages were associated with greater improvements in pre-post exercise ΔFEV(1) following training (r = -0.80, P < 0.05). CONCLUSION these results suggest that in nonasthmatic prepubescent children, inactivity negatively impacts airway responsiveness, which can be improved with high-intensity training. Excess adiposity, however, may constrain these improvements.
Collapse
Affiliation(s)
- Sara K Rosenkranz
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA.
| | | | | | | |
Collapse
|
40
|
Wongviriyawong C, Harris RS, Zheng H, Kone M, Winkler T, Venegas JG. Functional effect of longitudinal heterogeneity in constricted airways before and after lung expansion. J Appl Physiol (1985) 2011; 112:237-45. [PMID: 21940845 DOI: 10.1152/japplphysiol.01400.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heterogeneity in narrowing among individual airways is an important contributor to airway hyperresponsiveness. This paper investigates the contribution of longitudinal heterogeneity (the variability along the airway in cross-sectional area and shape) to airway resistance (R(aw)). We analyzed chest high-resolution computed tomography scans of 8 asthmatic (AS) and 9 nonasthmatic (NA) subjects before and after methacholine (MCh) challenge, and after lung expansion to total lung capacity. In each subject, R(aw) was calculated for 35 defined central airways with >2 mm diameter. Ignoring the area variability and noncircular shape results in an underestimation of R(aw) (%U(total)) that was substantial in some airways (∼50%) but generally small (median <6%). The average contribution of the underestimation of R(aw) caused by longitudinal heterogeneity in the area (%U(area)) to %U(total) was 36%, while the rest was due to the noncircularity of the shape (%U(shape)). After MCh challenge, %U(area) increased in AS and NA (P < 0.05). A lung volume increase to TLC reduced %U(total) and %U(area) in both AS and NA (P < 0.0001, except for %U(total) in AS with P < 0.01). Only in NA, %U(shape) had a significant reduction after increasing lung volume to TLC (P < 0.005). %U(area) was highly correlated, but not identical to the mean-normalized longitudinal heterogeneity in the cross-sectional area [CV(2)(A)] and %U(shape) to the average eccentricity of the elliptical shape. This study demonstrates that R(aw) calculated assuming a cylindrical shape and derived from an average area along its length may, in some airways, substantially underestimate R(aw). The observed changes in underestimations of R(aw) with the increase in lung volume to total lung capacity may be consistent with, and contribute in part to, the differences in effects of deep inhalations in airway function between AS and NA subjects.
Collapse
Affiliation(s)
- C Wongviriyawong
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Skloot G, Schechter C, Desai A, Togias A. Impaired response to deep inspiration in obesity. J Appl Physiol (1985) 2011; 111:726-34. [PMID: 21700888 PMCID: PMC3174789 DOI: 10.1152/japplphysiol.01155.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 06/22/2011] [Indexed: 11/22/2022] Open
Abstract
Deep inspirations modulate airway caliber and airway closure and their effects are impaired in asthma. The association between asthma and obesity raises the question whether the deep inspiration (DI) effect is also impaired in the latter condition. We assessed the DI effects in obese and nonobese nonasthmatics. Thirty-six subjects (17 obese, 19 nonobese) underwent routine methacholine (Mch) challenge and 30 of them also had a modified bronchoprovocation in the absence of DIs. Lung function was monitored with spirometry and forced oscillation (FO) [resistance (R) at 5 Hz (R5), at 20 Hz (R20), R5-R20 and the integrated area of low-frequency reactance (AX)]. The response to Mch, assessed with area under the dose-response curves (AUC), was consistently greater in the routine challenge in the obese (mean ± SE, obese vs. nonobese AUC: R5: 15.7 ± 2.3 vs. 2.4 ± 2.0, P < 0.0005; R20: 5.6 ± 1.4 vs. 1.4 ± 1.2, P = 0.027; R5-R20: 10.2 ± 1.6 vs. 0.9 ± 0.1.4, P < 0.0005; AX: 115.6 ± 22.0 vs. 1.5 ± 18.9, P < 0.0005), but differences between groups in the modified challenge were smaller, indicating reduced DI effects in obesity. Given that DI has bronchodilatory and bronchoprotective effects, we further assessed these components separately. In the obese subjects, DI prior to Mch enhanced Mch-induced bronchoconstriction, but DI after Mch resulted in bronchodilation that was of similar magnitude as in the nonobese. We conclude that obesity is characterized by increased Mch responsiveness, predominantly of the small airways, due to a DI effect that renders the airways more sensitive to the stimulus.
Collapse
Affiliation(s)
- Gwen Skloot
- Division of Pulmonary, Critical Care & Sleep Medicine, Mount Sinai Medical Center, One Gustave L. Levy Place, Box #1232, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
42
|
Connolly SC, Smith PG, Fairbank NJ, Lall CA, Cole DJ, Mackinnon JD, Maksym GN. Chronic oscillatory strain induces MLCK associated rapid recovery from acute stretch in airway smooth muscle cells. J Appl Physiol (1985) 2011; 111:955-63. [PMID: 21737821 DOI: 10.1152/japplphysiol.00812.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A deep inspiration (DI) temporarily relaxes agonist-constricted airways in normal subjects, but in asthma airways are refractory and may rapidly renarrow, possibly due to changes in the structure and function of airway smooth muscle (ASM). Chronic largely uniaxial cyclic strain of ASM cells in culture causes several structural and functional changes in ASM similar to that in asthma, including increases in contractility, MLCK content, shortening velocity, and shortening capacity. However, changes in recovery from acute stretch similar to a DI have not been measured. We have therefore measured the response and recovery to large stretches of cells modified by chronic stretching and investigated the role of MLCK. Chronic, 10% uniaxial cyclic stretch, with or without a strain gradient, was administered for up to 11 days to cultured cells grown on Silastic membranes. Single cells were then removed from the membrane and subjected to 1 Hz oscillatory stretches up to 10% of the in situ cell length. These oscillations reduced stiffness by 66% in all groups (P < 0.05). Chronically strained cells recovered stiffness three times more rapidly than unstrained cells, while the strain gradient had no effect. The stiffness recovery in unstrained cells was completely inhibited by the MLCK inhibitor ML-7, but recovery in strained cells exhibiting increased MLCK was slightly inhibited. These data suggest that chronic strain leads to enhanced recovery from acute stretch, which may be attributable to the strain-induced increases in MLCK. This may also explain in part the more rapid renarrowing of activated airways following DI in asthma.
Collapse
Affiliation(s)
- Sarah C Connolly
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Noble PB, Jones RL, Needi ET, Cairncross A, Mitchell HW, James AL, McFawn PK. Responsiveness of the human airway in vitro during deep inspiration and tidal oscillation. J Appl Physiol (1985) 2011; 110:1510-8. [PMID: 21310892 DOI: 10.1152/japplphysiol.01226.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In healthy individuals, deep inspiration produces bronchodilation and reduced airway responsiveness, which may be a response of the airway wall to mechanical stretch. The aim of this study was to examine the in vitro response of isolated human airways to the dynamic mechanical stretch associated with normal breathing. Human bronchial segments (n = 6) were acquired from patients without airflow obstruction undergoing lung resection for pulmonary neoplasms. The side branches were ligated and the airways were mounted in an organ bath chamber. Airway narrowing to cumulative concentrations of acetylcholine (3 × 10(-6) M to 3 × 10(-3) M) was measured under static conditions and in the presence of "tidal" oscillations with intermittent "deep inspiration." Respiratory maneuvers were simulated by varying transmural pressure using a motor-controlled syringe pump (tidal 5 to 10 cmH(2)O at 0.25 Hz, deep inspiration 5 to 30 cmH(2)O). Airway narrowing was determined from decreases in lumen volume. Tidal oscillation had no effect on airway responses to acetylcholine which was similar to those under static conditions. Deep inspiration in tidally oscillating, acetylcholine-contracted airways produced potent, transient (<1 min) bronchodilation, ranging from full reversal in airway narrowing at low acetylcholine concentrations to ∼50% reversal at the highest concentration. This resulted in a temporary reduction in maximal airway response (P < 0.001), without a change in sensitivity to acetylcholine. Our findings are that the mechanical stretch of human airways produced by physiological transmural pressures generated during deep inspiration produces bronchodilation and a transient reduction in airway responsiveness, which can explain the beneficial effects of deep inspiration in bronchial provocation testing in vivo.
Collapse
Affiliation(s)
- Peter B Noble
- Div. of Clinical Sciences, Telethon Institute for Child Health Research, 100 Roberts Rd., Subiaco, Western Australia, Australia 6008.
| | | | | | | | | | | | | |
Collapse
|
44
|
Schweitzer C, Abdelkrim IB, Ferry H, Werts F, Varechova S, Marchal F. Airway response to exercise by forced oscillations in asthmatic children. Pediatr Res 2010; 68:537-41. [PMID: 20736883 DOI: 10.1203/pdr.0b013e3181f851d2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Forced expiratory volume in 1 s (FEV1) detection of exercise-induced bronchoconstriction (EIB) to identify asthma has good specificity but rather low sensitivity. The aim was to test whether sensitivity may be improved by measuring respiratory resistance (Rrs) by the forced oscillation technique (FOT). Forty-seven asthmatic and 50 control children (5-12 y) were studied before and after running 6 min on a treadmill. Rrs in inspiration (Rrsi) and expiration (Rrse), FEV1 and Rrsi response to a deep inhalation (DI) were measured before and after exercise. In asthmatics versus controls, exercise induced significantly larger increases in Rrsi (p < 0.001) and larger decreases in FEV1 (p = 0.004). Asthmatics but not controls showed more bronchodilation by DI after exercise (p = 0.02). At specificity >0.90, sensitivity was 0.53 with 25% increase Rrsi and 0.45 with 27% increase Rrse or 5% decrease FEV1. It is concluded that the FOT improves sensitivity of exercise challenge, and the Rrsi response to DI may prove useful in identifying the mechanism of airway obstruction.
Collapse
Affiliation(s)
- Cyril Schweitzer
- Service d'Explorations Fonctionnelles Pédiatriques, Hôpital d'enfants, Vandoeuvre F-54500, France
| | | | | | | | | | | |
Collapse
|
45
|
Pyrgos G, Scichilone N, Togias A, Brown RH. Bronchodilation response to deep inspirations in asthma is dependent on airway distensibility and air trapping. J Appl Physiol (1985) 2010; 110:472-9. [PMID: 21071596 DOI: 10.1152/japplphysiol.00603.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In healthy individuals, deep inspirations (DIs) have a potent bronchodilatory ability against methacholine (MCh)-induced bronchoconstriction. This is variably attenuated in asthma. We hypothesized that inability to bronchodilate with DIs is related to reduced airway distensibility. We examined the relationship between DI-induced bronchodilation and airway distensibility in 15 asthmatic individuals with a wide range of baseline lung function [forced expired volume in 1 s (FEV(1)) = 60-99% predicted]. After abstaining from DIs for 20 min, subjects received a single-dose MCh challenge and then asked to perform DIs. The effectiveness of DIs was assessed by the ability of the subjects to improve FEV(1). The same subjects were studied by two sets of high-resolution CT scans, one at functional residual capacity (FRC) and one at total lung capacity (TLC). In each subject, the areas of 21-41 airways (0.8-6.8 mm diameter at FRC) were matched and measured, and airway distensibility (increase in airway diameter from FRC to TLC) was calculated. The bronchodilatory ability of DIs was significantly lower in individuals with FEV(1) <75% predicted than in those with FEV(1) ≥75% predicted (15 ± 11% vs. 46 ± 9%, P = 0.04) and strongly correlated with airway distensibility (r = 0.57, P = 0.03), but also with residual volume (RV)/TLC (r = -0.63, P = 0.01). In multiple regression, only RV/TLC was a significant determinant of DI-induced bronchodilation. These relationships were lost when the airways were examined after maximal bronchodilation with albuterol. Our data indicate that the loss of the bronchodilatory effect of DI in asthma is related to the ability to distend the airways with lung inflation, which is, in turn, related to the extent of air trapping and airway smooth muscle tone. These relationships only exist in the presence of airway tone, indicating that structural changes in the conducting airways visualized by high-resolution CT do not play a pivotal role.
Collapse
Affiliation(s)
- George Pyrgos
- Johns Hopkins Univ., 615 N. Wolfe St., Rm. E7614, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
46
|
Chung KF. Should treatments for asthma be aimed at the airway smooth muscle? Expert Rev Respir Med 2010; 1:209-17. [PMID: 20477185 DOI: 10.1586/17476348.1.2.209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The airway smooth muscle (ASM) cell is an important part of the airway wall of asthma patients because of its increased contractile properties, which appear to be enhanced in this condition and which contribute to airflow obstruction and bronchial hyper-responsiveness. ASM cells are also abnormal in asthma with increased expression of certain chemokines, with increased proliferation rate, numbers and size. beta-adrenergic agonists and corticosteroids are the two most important treatments for asthma; other drugs used are leukotriene receptor antagonists and theophylline. Combination therapy of beta-adrenergic agonists and corticosteroids has become the treatment of choice for moderate-to-severe asthma. beta-adrenergic agonists cause relaxation of ASM cells, leading to a decrease in airflow obstruction of asthma and acute relief of symptoms. Corticosteroids also have direct effects on ASM cells. It is postulated that the effect of anti-inflammatory agents on ASM cells is the most important determinant of the therapeutic effects of these agents. Targeting the ASM cell in asthma could be the focus of therapies for asthma. Specific delivery of active agents to ASM cells may also be part of this strategy.
Collapse
Affiliation(s)
- Kian Fan Chung
- National Heart & Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
47
|
Bossé Y, Riesenfeld EP, Paré PD, Irvin CG. It's Not All Smooth Muscle: Non-Smooth-Muscle Elements in Control of Resistance to Airflow. Annu Rev Physiol 2010; 72:437-62. [DOI: 10.1146/annurev-physiol-021909-135851] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ynuk Bossé
- The James Hogg iCAPTURE Center for Cardiovascular and Pulmonary Research, Providence Health Care/St. Paul's Hospital, Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, British Columbia, V6Z 1Y6; ,
| | - Erik P. Riesenfeld
- Vermont Lung Center, Department of Medicine, Pulmonary and Critical Care Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405; ,
| | - Peter D. Paré
- The James Hogg iCAPTURE Center for Cardiovascular and Pulmonary Research, Providence Health Care/St. Paul's Hospital, Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, British Columbia, V6Z 1Y6; ,
| | - Charles G. Irvin
- Vermont Lung Center, Department of Medicine, Pulmonary and Critical Care Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405; ,
| |
Collapse
|
48
|
Bossé Y, Solomon D, Chin LYM, Lian K, Paré PD, Seow CY. Increase in passive stiffness at reduced airway smooth muscle length: potential impact on airway responsiveness. Am J Physiol Lung Cell Mol Physiol 2010; 298:L277-87. [DOI: 10.1152/ajplung.00275.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amplitude of strain in airway smooth muscle (ASM) produced by oscillatory perturbations such as tidal breathing or deep inspiration (DI) influences the force loss in the muscle and is therefore a key determinant of the bronchoprotective and bronchodilatory effects of these breathing maneuvers. The stiffness of unstimulated ASM (passive stiffness) directly influences the amplitude of strain. The nature of the passive stiffness is, however, not clear. In this study, we measured the passive stiffness of ovine ASM at different muscle lengths (relative to in situ length, which was used as a reference length, Lref) and states of adaptation to gain insights into the origin of this muscle property. The results showed that the passive stiffness was relatively independent of muscle length, possessing a constant plateau value over a length range from 0.62 to 1.25 Lref. Following a halving of ASM length, passive stiffness decreased substantially (by 71%) but redeveloped over time (∼30 min) at the shorter length to reach 65% of the stiffness value at Lref, provided that the muscle was stimulated to contract at least once over a ∼30-min period. The redevelopment and maintenance of passive stiffness were dependent on the presence of Ca2+ but unaffected by latrunculin B, an inhibitor of actin filament polymerization. The maintenance of passive stiffness was also not affected by blocking myosin cross-bridge cycling using a myosin light chain kinase inhibitor or by blocking the Rho-Rho kinase (RhoK) pathway using a RhoK inhibitor. Our results suggest that the passive stiffness of ASM is labile and capable of redevelopment following length reduction. Redevelopment and maintenance of passive stiffness following muscle shortening could contribute to airway hyperresponsiveness by attenuating the airway wall strain induced by tidal breathing and DI.
Collapse
Affiliation(s)
- Ynuk Bossé
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Providence Health Care/St. Paul's Hospital,
| | - Dennis Solomon
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Providence Health Care/St. Paul's Hospital,
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leslie Y. M. Chin
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Providence Health Care/St. Paul's Hospital,
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Lian
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Providence Health Care/St. Paul's Hospital,
| | - Peter D. Paré
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Providence Health Care/St. Paul's Hospital,
- Department of Medicine, Respiratory Division, and
| | - Chun Y. Seow
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Providence Health Care/St. Paul's Hospital,
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
49
|
ANSELL TK, NOBLE PB, MITCHELL HW, WEST AR, FERNANDES LB, MCFAWN PK. Effects of simulated tidal and deep breathing on immature airway contraction to acetylcholine and nerve stimulation. Respirology 2009; 14:991-8. [DOI: 10.1111/j.1440-1843.2009.01596.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Bates JHT, Bullimore SR, Politi AZ, Sneyd J, Anafi RC, Lauzon AM. Transient oscillatory force-length behavior of activated airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2009; 297:L362-72. [PMID: 19525391 DOI: 10.1152/ajplung.00095.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway smooth muscle (ASM) is cyclically stretched during breathing, even in the active state, yet the factors determining its dynamic force-length behavior remain incompletely understood. We developed a model of the activated ASM strip and compared its behavior to that observed in strips of rat trachealis muscle stimulated with methacholine. The model consists of a nonlinear viscoelastic element (Kelvin body) in series with a force generator obeying the Hill force-velocity relationship. Isometric force in the model is proportional to the number of bound crossbridges, the attachment of which follows first-order kinetics. Crossbridges detach at a rate proportional to the rate of change of muscle length. The model accurately accounts for the experimentally observed transient and steady-state oscillatory force-length behavior of both passive and activated ASM. However, the model does not predict the sustained decrement in isometric force seen when activated strips of ASM are subjected briefly to large stretches. We speculate that this force decrement reflects some mechanism unrelated to the cycling of crossbridges, and which may be involved in the reversal of bronchoconstriction induced by a deep inflation of the lungs in vivo.
Collapse
Affiliation(s)
- J H T Bates
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, 05405-0075, USA.
| | | | | | | | | | | |
Collapse
|