1
|
Zhang H, Bai Z, Xi Y. The physiological characteristics of inward rectifying potassium channel Kir4.2 and its research progress in human diseases. Front Cell Dev Biol 2025; 13:1519080. [PMID: 40342929 PMCID: PMC12058739 DOI: 10.3389/fcell.2025.1519080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
Kir4.2 is a member of the inward rectifying potassium channel family, encoded by the KCNJ15 gene. The Kir4.2 protein is expressed in various organs including the kidneys, liver, pancreas, bladder, stomach, and lungs. Kir4.2 not only forms functional homomeric channels, but also heteromeric channels with Kir5.1. An increasing number of studies indicate that the function of the Kir4.2 channel should not be underestimated. Kir4.2 participates in cell electrotaxis chemotaxis by sensing extracellular electric fields and functions as a K + sensor in the proximal tubules of the kidney, playing a crucial role in maintaining acid-base and potassium balance. This article provides a comprehensive review of the main physiological characteristics of the Kir4.2 channel, the various pathological processes it is involved in, and the human diseases resulting from Kir4.2 dysfunction.
Collapse
Affiliation(s)
- Hongling Zhang
- Pathology Department, The Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhongyuan Bai
- Colorectal Surgery, The First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yanfeng Xi
- Pathology Department, The Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- Pathology Department, Shanxi Cancer Hospital, Taiyuan, China
| |
Collapse
|
2
|
Staubitz-Vernazza JI, Lederer AK, Bouzakri N, Lozan O, Wild F, Musholt TJ. Calcium and vitamin D substitution for hypoparathyroidism after thyroidectomy - how is it continued after discharge from hospital? Langenbecks Arch Surg 2024; 409:373. [PMID: 39636417 PMCID: PMC11621183 DOI: 10.1007/s00423-024-03556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Postoperative hypoparathyroidism (HypoPT) is one of the most feared complications after thyroid surgery. In most cases, HypoPT is transient, requiring temporary substitution with calcium and active vitamin D. The analysis was conducted to investigate how calcium and vitamin D substitution was managed in routine postoperative clinical practice after discharge from hospital. METHODS From March 2015 to December 2023, patients with HypoPT after thyroidectomy at the university medical center (UMC) Mainz, were included in a retrospective study. The rate of continued prescription of calcium and vitamin D by external practitioners in relation to the PTH and calcium levels at the first postoperative outpatient visit at the outpatient clinic of the UMC Mainz was analyzed and critically discussed. RESULTS Ninety-four of 332 patients (28.3%) were continuously prescribed with calcium/vitamin D supplements: 14 had PTH deficiency and hypocalcemia and 14 had normal/elevated PTH levels with hypocalcemia, 59 had PTH values below the normal range and normo- or hypercalcemia and 7 had normal or elevated PTH levels with normocalcemia. CONCLUSIONS There are inconsistent procedures regarding the adjustment of the calcium and vitamin D substitution by the practices providing external follow-up treatment. To avoid iatrogenic suppression of PTH levels, high calcium load and potential affection of the kidney function, a reduction scheme should be actively recommended by thyroid surgeons.
Collapse
Affiliation(s)
- Julia I Staubitz-Vernazza
- Section of Endocrine Surgery, Department of General, Visceral and Transplantation Surgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131, Mainz, Germany
| | - Ann-Kathrin Lederer
- Section of Endocrine Surgery, Department of General, Visceral and Transplantation Surgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131, Mainz, Germany
| | - Nabila Bouzakri
- Section of Endocrine Surgery, Department of General, Visceral and Transplantation Surgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131, Mainz, Germany
| | - Oana Lozan
- Section of Endocrine Surgery, Department of General, Visceral and Transplantation Surgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131, Mainz, Germany
| | - Florian Wild
- Section of Endocrine Surgery, Department of General, Visceral and Transplantation Surgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131, Mainz, Germany
| | - Thomas J Musholt
- Section of Endocrine Surgery, Department of General, Visceral and Transplantation Surgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131, Mainz, Germany.
| |
Collapse
|
3
|
Kojima I, Medina J, Nakagawa Y. Role of the glucose-sensing receptor in insulin secretion. Diabetes Obes Metab 2017; 19 Suppl 1:54-62. [PMID: 28880472 DOI: 10.1111/dom.13013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 11/27/2022]
Abstract
Glucose is a primary stimulator of insulin secretion. It has been thought that glucose exerts its effect by a mechanism solely dependent on glucose metabolism. We show here that glucose induces rapid Ca2+ and cyclic AMP signals in β-cells. These rapid signals are independent of glucose-metabolism and are reproduced by non-metabolizable glucose analogues. These results led us to postulate that glucose activates a cell-surface receptor, namely the glucose-sensing receptor. Rapid signals induced by glucose are blocked by inhibition of a sweet taste receptor subunit T1R3 and a calcium-sensing receptor subunit CaSR. In accordance with these observations, T1R3 and CaSR form a heterodimer. In addition, a heterodimer of T1R3 and CaSR is activated by glucose. These results suggest that a heterodimer of T1R3 and CaSR is a major component of the glucose-sensing receptor. When the glucose-sensing receptor is blocked, glucose-induced insulin secretion is inhibited. Also, ATP production is significantly attenuated by the inhibition of the receptor. Conversely, stimulation of the glucose-sensing receptor by either artificial sweeteners or non-metabolizable glucose analogue increases ATP. Hence, the glucose-sensing receptor signals promote glucose metabolism. Collectively, glucose activates the cell-surface glucose-sensing receptor and promotes its own metabolism. Glucose then enters the cells and is metabolized through already activated metabolic pathways. The glucose-sensing receptor is a key molecule regulating the action of glucose in β-cells.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Cyclic AMP/metabolism
- Dimerization
- Enzyme Activation
- Gene Expression Regulation
- Glucose/metabolism
- Humans
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/enzymology
- Insulin-Secreting Cells/metabolism
- Models, Biological
- Protein Kinase C/chemistry
- Protein Kinase C/metabolism
- Protein Multimerization
- Receptors, Calcium-Sensing/agonists
- Receptors, Calcium-Sensing/chemistry
- Receptors, Calcium-Sensing/genetics
- Receptors, Calcium-Sensing/metabolism
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Second Messenger Systems
Collapse
Affiliation(s)
- Itaru Kojima
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Johan Medina
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yuko Nakagawa
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
4
|
Medina J, Nakagawa Y, Nagasawa M, Fernandez A, Sakaguchi K, Kitaguchi T, Kojima I. Positive Allosteric Modulation of the Calcium-sensing Receptor by Physiological Concentrations of Glucose. J Biol Chem 2016; 291:23126-23135. [PMID: 27613866 DOI: 10.1074/jbc.m116.729863] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 01/08/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is activated by various cations, cationic compounds, and amino acids. In the present study we investigated the effect of glucose on CaSR in HEK293 cells stably expressing human CaSR (HEK-CaSR cells). When glucose concentration in the buffer was raised from 3 to 25 mm, a rapid elevation of cytoplasmic Ca2+ concentration ([Ca2+]c) was observed. This elevation was immediate and transient and was followed by a sustained decrease in [Ca2+]c The effect of glucose was detected at a concentration of 4 mm and reached its maximum at 5 mm 3-O-Methylglucose, a non-metabolizable analogue of glucose, reproduced the effect of glucose. Sucrose also induced an elevation of [Ca2+]c in HEK-CaSR cells. Similarly, sucralose was nearly as effective as glucose in inducing elevation of [Ca2+]c Glucose was not able to increase [Ca2+]c in the absence of extracellular Ca2+ The effect of glucose on [Ca2+]c was inhibited by NPS-2143, an allosteric inhibitor of CaSR. In addition, NPS-2143 also inhibited the [Ca2+]c responses to sucralose and sucrose. Glucose as well as sucralose decreased cytoplasmic cAMP concentration in HEK-CaSR cells. The reduction of cAMP induced by glucose was blocked by pertussis toxin. Likewise, sucralose reduced [cAMP]c Finally, glucose increased [Ca2+]c in PT-r parathyroid cells and in Madin-Darby canine kidney cells, both of which express endogenous CaSR. These results indicate that glucose acts as a positive allosteric modulator of CaSR.
Collapse
Affiliation(s)
- Johan Medina
- From the Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Yuko Nakagawa
- From the Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Masahiro Nagasawa
- From the Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Anny Fernandez
- From the Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Kazushige Sakaguchi
- Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Tetsuya Kitaguchi
- Waseda Bioscience Research Institute in Singapore Singapore 138667, and.,Organization for University Research Initiatives, Waseda University, Tokyo 162-0041, Japan
| | - Itaru Kojima
- From the Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan,
| |
Collapse
|
5
|
Muramatsu M, Hira T, Mitsunaga A, Sato E, Nakajima S, Kitahara Y, Eto Y, Hara H. Activation of the gut calcium-sensing receptor by peptide agonists reduces rapid elevation of plasma glucose in response to oral glucose load in rats. Am J Physiol Gastrointest Liver Physiol 2014; 306:G1099-107. [PMID: 24812056 DOI: 10.1152/ajpgi.00155.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The calcium-sensing receptor (CaSR) is expressed in various tissues, including the gastrointestinal tract. To investigate the role of gut CaSR on glycemic control, we examined whether single oral administration of CaSR agonist peptides affected the glycemic response in rats. Glucose tolerance tests were performed under oral or duodenal administration of various CaSR agonist peptides (γGlu-Cys, protamine, and poly-d-lysine hydrobromide) in conscious rats. Involvement of CaSR was determined by using a CaSR antagonist. Signaling pathways underlying CaSR agonist-modified glycemia were investigated using gut hormone receptor antagonists. The gastric emptying rate after the administration of CaSR agonist peptides was measured by the phenol red recovery method. Oral and duodenal administration of CaSR agonist peptides attenuated glycemic responses under the oral glucose tolerance test, but the administration of casein did not. The promotive effect on glucose tolerance was weakened by luminal pretreatment with a CaSR antagonist. Treatment with a 5-HT3 receptor antagonist partially diminished the glucose-lowering effect of peptides. Furthermore, the gastric emptying rate was decreased by duodenal administration of CaSR agonist peptides. These results demonstrate that activation of the gut CaSR by peptide agonists promotes glucose tolerance in conscious rats. 5-HT3 receptor and the delayed gastric emptying rate appear to be involved in the glucose-lowering effect of CaSR agonist peptides. Thus, activation of gut CaSR by dietary peptides reduces glycemic responses so that gut CaSR may be a potential target for the improvement of postprandial glycemia.
Collapse
Affiliation(s)
- Maya Muramatsu
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tohru Hira
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan;
| | - Arimi Mitsunaga
- Faculty of Agriculture, Hokkaido University, Sapporo, Japan; and
| | - Eri Sato
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shingo Nakajima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yoshiro Kitahara
- Faculty of Agriculture, Hokkaido University, Sapporo, Japan; and
| | - Yuzuru Eto
- Faculty of Agriculture, Hokkaido University, Sapporo, Japan; and
| | - Hiroshi Hara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Parkash J, Asotra K. L-histidine sensing by calcium sensing receptor inhibits voltage-dependent calcium channel activity and insulin secretion in β-cells. Life Sci 2011; 88:440-6. [PMID: 21219913 PMCID: PMC3044179 DOI: 10.1016/j.lfs.2010.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 11/22/2010] [Accepted: 12/14/2010] [Indexed: 12/29/2022]
Abstract
AIMS Our goal was to test the hypothesis that the histidine-induced activation of calcium sensing receptor (CaR) can regulate calcium channel activity of L-type voltage dependent calcium channel (VDCC) due to increased spatial interaction between CaR and VDCC in β-cells and thus modulate glucose-induced insulin secretion. MAIN METHODS Rat insulinoma (RINr1046-38) insulin-producing β-cells were cultured in RPMI-1640 medium on 25 mm diameter glass coverslips in six-well culture plates in a 5% CO(2) incubator at 37°C. The intracellular calcium concentration, [Ca(2+)](i), was determined by ratio fluorescence microscopy using Fura-2AM. The spatial interactions between CaR and L-type VDCC in β-cells were measured by immunofluorescence confocal microscopy using a Nikon C1 laser scanning confocal microscope. The insulin release was determined by enzyme-linked immunosorbent assay (ELISA). KEY FINDINGS The addition of increasing concentrations of L-histidine along with 10 mM glucose resulted in 57% decrease in [Ca(2+)](i). The confocal fluorescence imaging data showed 5.59 to 8.62-fold increase in colocalization correlation coefficient between CaR and VDCC in β-cells exposed to L-histidine thereby indicating increased membrane delimited spatial interactions between these two membrane proteins. The insulin ELISA data showed 54% decrease in the 1st phase of glucose-induced insulin secretion in β-cells exposed to increasing concentrations of L-histidine. SIGNIFICANCE L-histidine-induced increased spatial interaction of CaR with VDCC can inhibit calcium channel activity of VDCC and consequently regulate glucose-induced insulin secretion by β-cells. The L-type VDCC could therefore be a potential therapeutic target in diabetes.
Collapse
Affiliation(s)
- Jai Parkash
- Robert Stempel College of Public Health and Social Work, Department of Environmental and Occupational Health, Florida International University, 11200 SW 8 Street, HLS-594, Miami, FL 33199, USA
| | - Kamlesh Asotra
- Cardiovascular Disease and General Biomedical Sciences, Tobacco-Related Disease Research Program, University of California Office of President, 300 Lakeside Drive, Oakland, CA 94612, USA, Tel: (510) 287-3366, FAX: (510) 835-4740,
| |
Collapse
|
7
|
Soybean β51–63 peptide stimulates cholecystokinin secretion via a calcium-sensing receptor in enteroendocrine STC-1 cells. ACTA ACUST UNITED AC 2010; 159:148-55. [DOI: 10.1016/j.regpep.2009.11.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/06/2009] [Accepted: 11/01/2009] [Indexed: 11/22/2022]
|
8
|
Bouschet T, Henley JM. Calcium as an extracellular signalling molecule: perspectives on the Calcium Sensing Receptor in the brain. C R Biol 2005; 328:691-700. [PMID: 16125647 PMCID: PMC3310908 DOI: 10.1016/j.crvi.2004.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 10/22/2004] [Indexed: 11/28/2022]
Abstract
Calcium acts as a universal signal that is responsible for controlling a spectrum of cellular processes ranging from fertilization to apoptosis. For a long time, calcium was regarded solely as an intracellular second messenger. However, the discovery that calcium can also act as an external ligand together with the molecular cloning of its cell surface receptor, the Calcium Sensing Receptor (CaSR), demonstrated that calcium also acts as an important extracellular or first messenger. Here, we give an overview of the main structural, pharmacological and physiological features of the CaSR and provide an assessment of its functions and cellular and molecular mechanisms of action. In addition, we propose possible avenues for future research into the trafficking of CaSR and the role(s) of this receptor in the central nervous system.
Collapse
Affiliation(s)
- Tristan Bouschet
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University walk, Bristol BS8 1TD, UK.
| | | |
Collapse
|
9
|
Leech CA, Habener JF. Regulation of glucagon-like peptide-1 receptor and calcium-sensing receptor signaling by L-histidine. Endocrinology 2003; 144:4851-8. [PMID: 12959987 DOI: 10.1210/en.2003-0498] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Receptor-specific agonists of the extracellular calcium-sensing receptor (CaSR) potentiate glucose-induced insulin secretion, an effect similar to that of glucagon-like peptide-1 (GLP-1). We have sequenced the full open reading frame of the CaSR from rat insulinoma (INS-1) cells and find that the predicted amino acid sequence of the receptor is identical with that of the receptor from the parathyroid gland. This receptor couples to both Gq/11 and Gi/o, and this dual coupling may partly explain the varying effects of nonspecific agonists on secretion reported previously. L-Histidine (L-His) increases the sensitivity of the CaSR to extracellular Ca2+ and potentiates glucose-dependent insulin secretion from INS-1 cells. This potentiation is partially inhibited at low extracellular [Ca2+] where the CaSR is ineffective. Coexpression of the CaSR and GLP-1 receptor (GLP-1R) produces a pertussis toxin-sensitive inhibition of GLP-1-induced cAMP production in response to elevated extracellular [Ca2+]. However, l-His potentiates cAMP response element reporter activity in INS-1 cells and in human embryonic kidney-293 cells expressing either the GLP-1R alone or the CaSR and GLP-1R. INS-1 cells express the RNA for the CaSR at a lower level than that for the GLP-1R. This difference in expression level of the receptors may explain the potentiation of insulin secretion by L-His despite coupling of the CaSR to Gi/o. In conclusion, L-His can potentiate both GLP-1R- and CaSR-activated signaling pathways, and these effects may play a role in the potentiation of glucose-induced insulin secretion in response to meals containing protein in addition to carbohydrates and fat.
Collapse
Affiliation(s)
- Colin A Leech
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
10
|
Kos CH, Karaplis AC, Peng JB, Hediger MA, Goltzman D, Mohammad KS, Guise TA, Pollak MR. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J Clin Invest 2003; 111:1021-8. [PMID: 12671051 PMCID: PMC152589 DOI: 10.1172/jci17416] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The extracellular calcium-sensing receptor (CaR; alternate gene names, CaR or Casr) is a membrane-spanning G protein-coupled receptor. CaR is highly expressed in the parathyroid gland, and is activated by extracellular calcium (Ca(2+)(o)). Mice homozygous for null mutations in the CaR gene (CaR(-/-)) die shortly after birth because of the effects of severe hyperparathyroidism and hypercalcemia. A wide variety of functions have been attributed to CaR. However, the lethal CaR-deficient phenotype has made it difficult to dissect the direct effect of CaR deficiency from the secondary effects of hyperparathyroidism and hypercalcemia. We therefore generated parathyroid hormone-deficient (PTH-deficient) CaR(-/-) mice (Pth(-/-)CaR(-/-)) by intercrossing mice heterozygous for the null CaR allele with mice heterozygous for a null Pth allele. We show that genetic ablation of PTH is sufficient to rescue the lethal CaR(-/-) phenotype. Pth(-/-)CaR(-/-) mice survive to adulthood with no obvious difference in size or appearance relative to control Pth(-/-) littermates. Histologic examination of most organs did not reveal abnormalities. These Pth(-/-)CaR(-/-) mice exhibit a much wider range of values for serum calcium and renal excretion of calcium than we observe in control littermates, despite the absence of any circulating PTH. Thus, CaR is necessary for the fine regulation of serum calcium levels and renal calcium excretion independent of its effect on PTH secretion.
Collapse
Affiliation(s)
- Claudine H Kos
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ohkubo E, Aida K, Chen J, Hayashi JI, Isobe K, Tawata M, Onaya T. A patient with type 2 diabetes mellitus associated with mutations in calcium sensing receptor gene and mitochondrial DNA. Biochem Biophys Res Commun 2000; 278:808-13. [PMID: 11095989 DOI: 10.1006/bbrc.2000.3867] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 44-year-old female with familial hypocalciuric hypercalcemia (FHH) due to a homozygous missense mutation (Pro40Ala) in calcium sensing receptor (CaSR) gene has type 2 diabetes mellitus. The identical heterozygous mutation of CaSR gene was observed in consanguineous parents and all other family members examined except her two sisters. Many subjects with abnormal glucose tolerance were observed in this family, which is compatible with maternal inheritance. Mitochondrial function of complex I (NADH-coenzyme Q reductase) activity in cybrid cells between mitochondrial DNA (mtDNA)-deleted (rho(0)) HeLa cells and mtDNA from the proband was decreased by 35%. The proband has eight substitutions and among these 4833 A/G is a missense substitution in NADH dehydrogenase 2 gene and may probably be a major pathogenic mutation of impaired complex I activity. These results suggest that coexistence of nuclear gene and mtDNA mutations may have caused or modified the development of abnormal glucose tolerance in this family.
Collapse
Affiliation(s)
- E Ohkubo
- Third Department of Internal Medicine, Yamanashi Medical University, Tamaho, Yamanashi, 409-3898, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Charollais A, Gjinovci A, Huarte J, Bauquis J, Nadal A, Martín F, Andreu E, Sánchez-Andrés JV, Calabrese A, Bosco D, Soria B, Wollheim CB, Herrera PL, Meda P. Junctional communication of pancreatic beta cells contributes to the control of insulin secretion and glucose tolerance. J Clin Invest 2000; 106:235-43. [PMID: 10903339 PMCID: PMC314309 DOI: 10.1172/jci9398] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2000] [Accepted: 06/07/2000] [Indexed: 12/20/2022] Open
Abstract
Proper insulin secretion requires the coordinated functioning of the numerous beta cells that form pancreatic islets. This coordination depends on a network of communication mechanisms whereby beta cells interact with extracellular signals and adjacent cells via connexin channels. To assess whether connexin-dependent communication plays a role in vivo, we have developed transgenic mice in which connexin 32 (Cx32), one of the vertebrate connexins found in the pancreas, is expressed in beta cells. We show that the altered beta-cell coupling that results from this expression causes reduced insulin secretion in response to physiologically relevant concentrations of glucose and abnormal tolerance to the sugar. These alterations were observed in spite of normal numbers of islets, increased insulin content, and preserved secretory response to glucose by individual beta cells. Moreover, glucose-stimulated islets showed improved electrical synchronization of these cells and increased cytosolic levels of Ca(2+). The results show that connexins contribute to the control of beta cells in vivo and that their excess is detrimental for insulin secretion.
Collapse
Affiliation(s)
- A Charollais
- Department of Morphology, and. Department of Medicine, University of Geneva, Medical School, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rasschaert J, Malaisse WJ. The G-protein-coupled, extracellular Ca(2+)-sensing receptor: expression in pancreatic islet B-cells and possible role in the regulation of insulin release. Mol Genet Metab 1999; 68:328-31. [PMID: 10527684 DOI: 10.1006/mgme.1999.2928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J Rasschaert
- Laboratory of Experimental Medicine, Brussels Free University, Brussels, Belgium
| | | |
Collapse
|