1
|
Antonini SR, Leal LF, Cavalcanti MM. Pediatric adrenocortical tumors: diagnosis, management and advancements in the understanding of the genetic basis and therapeutic implications. Expert Rev Endocrinol Metab 2014; 9:445-464. [PMID: 30736208 DOI: 10.1586/17446651.2014.941813] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adrenocortical tumors (ACTs) may be sporadic or related to inherited genetic syndromes. Uncovering the molecular defects underlying these genetic syndromes has revealed key signaling pathways involved in adrenocortical tumorigenesis. Although the understanding of ACT biology has improved, to date, very few potential prognostic molecular markers of childhood ACTs have been identified. In this review, we summarize the current knowledge of the epidemiology, clinical presentation, diagnosis, prognosis and treatment options for pediatric patients with ACTs. A review of the genetic basis of adrenocortical tumorigenesis is presented, focusing on the main molecular abnormalities involved in the tumorigenic process and potential novel therapy targets that have been generated, or are being generated, with the discovery of these molecular defects.
Collapse
Affiliation(s)
| | - Letícia F Leal
- a Department of Pediatrics, Ribeirao Preto Medical-School - University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo M Cavalcanti
- a Department of Pediatrics, Ribeirao Preto Medical-School - University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Guillaud-Bataille M, Ragazzon B, de Reyniès A, Chevalier C, Francillard I, Barreau O, Steunou V, Guillemot J, Tissier F, Rizk-Rabin M, René-Corail F, Ghuzlan AA, Assié G, Bertagna X, Baudin E, Le Bouc Y, Bertherat J, Clauser E. IGF2 promotes growth of adrenocortical carcinoma cells, but its overexpression does not modify phenotypic and molecular features of adrenocortical carcinoma. PLoS One 2014; 9:e103744. [PMID: 25089899 PMCID: PMC4121173 DOI: 10.1371/journal.pone.0103744] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/01/2014] [Indexed: 12/04/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) overexpression is an important molecular marker of adrenocortical carcinoma (ACC), which is a rare but devastating endocrine cancer. It is not clear whether IGF2 overexpression modifies the biology and growth of this cancer, thus more studies are required before IGF2 can be considered as a major therapeutic target. We compared the phenotypical, clinical, biological, and molecular characteristics of ACC with or without the overexpression of IGF2, to address these issues. We also carried out a similar analysis in an ACC cell line (H295R) in which IGF2 expression was knocked down with si- or shRNA. We found no significant differences in the clinical, biological and molecular (transcriptomic) traits between IGF2-high and IGF2-low ACC. The absence of IGF2 overexpression had little influence on the activation of tyrosine kinase pathways both in tumors and in H295 cells that express low levels of IGF2. In IGF2-low tumors, other growth factors (FGF9, PDGFA) are more expressed than in IGF2-high tumors, suggesting that they play a compensatory role in tumor progression. In addition, IGF2 knock-down in H295R cells substantially impaired growth (>50% inhibition), blocked cells in G1 phase, and promoted apoptosis (>2-fold). Finally, analysis of the 11p15 locus showed a paternal uniparental disomy in both IGF2-high and IGF2-low tumors, but low IGF2 expression could be explained in most IGF2-low ACC by an additional epigenetic modification at the 11p15 locus. Altogether, these observations confirm the active role of IGF2 in adrenocortical tumor growth, but also suggest that other growth promoting pathways may be involved in a subset of ACC with low IGF2 expression, which creates opportunities for the use of other targeted therapies.
Collapse
Affiliation(s)
- Marine Guillaud-Bataille
- Paris Cardiovascular Center, Institut National de la Santé et de la Recherche Médicale U970, Université Paris Descartes, Paris, France
- Département de Biologie Hormonale, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Bruno Ragazzon
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Claire Chevalier
- Paris Cardiovascular Center, Institut National de la Santé et de la Recherche Médicale U970, Université Paris Descartes, Paris, France
| | - Isabelle Francillard
- Paris Cardiovascular Center, Institut National de la Santé et de la Recherche Médicale U970, Université Paris Descartes, Paris, France
- Département de Biologie Hormonale, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Olivia Barreau
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Paris, France
- Département d'Endocrinologie, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Virginie Steunou
- Institut National de la Santé et de la Recherche Médicale U938, Université Pierre et Marie Curie, Paris, France
- Laboratoire d'explorations fonctionnelles endocriniennes, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Johann Guillemot
- Paris Cardiovascular Center, Institut National de la Santé et de la Recherche Médicale U970, Université Paris Descartes, Paris, France
| | - Frédérique Tissier
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Paris, France
- Service d'Anatomie Pathologique, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpétrière, Université Pierre et Marie Curie, Paris, France
| | - Marthe Rizk-Rabin
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Paris, France
| | - Fernande René-Corail
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Paris, France
| | - Abir Al Ghuzlan
- Département de Biologie et Pathologie Médicales, Institut Gustave Roussy, Villejuif, France
| | - Guillaume Assié
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Paris, France
- Département d'Endocrinologie, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Xavier Bertagna
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Paris, France
- Département d'Endocrinologie, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Eric Baudin
- Département d'Imagerie Médicale, Médecine nucléaire, Institut Gustave Roussy, Villejuif, France
| | - Yves Le Bouc
- Institut National de la Santé et de la Recherche Médicale U938, Université Pierre et Marie Curie, Paris, France
- Laboratoire d'explorations fonctionnelles endocriniennes, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Jérôme Bertherat
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Paris, France
- Département d'Endocrinologie, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Eric Clauser
- Paris Cardiovascular Center, Institut National de la Santé et de la Recherche Médicale U970, Université Paris Descartes, Paris, France
- Département de Biologie Hormonale, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
- * E-mail:
| |
Collapse
|
3
|
Ramos-Vara JA, Miller MA. When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry--the red, brown, and blue technique. Vet Pathol 2013; 51:42-87. [PMID: 24129895 DOI: 10.1177/0300985813505879] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Once focused mainly on the characterization of neoplasms, immunohistochemistry (IHC) today is used in the investigation of a broad range of disease processes with applications in diagnosis, prognostication, therapeutic decisions to tailor treatment to an individual patient, and investigations into the pathogenesis of disease. This review addresses the technical aspects of immunohistochemistry (and, to a lesser extent, immunocytochemistry) with attention to the antigen-antibody reaction, optimal fixation techniques, tissue processing considerations, antigen retrieval methods, detection systems, selection and use of an autostainer, standardization and validation of IHC tests, preparation of proper tissue and reagent controls, tissue microarrays and other high-throughput systems, quality assurance/quality control measures, interpretation of the IHC reaction, and reporting of results. It is now more important than ever, with these sophisticated applications, to standardize the entire IHC process from tissue collection through interpretation and reporting to minimize variability among laboratories and to facilitate quantification and interlaboratory comparison of IHC results.
Collapse
Affiliation(s)
- J A Ramos-Vara
- Animal Disease Diagnostic Laboratory and Department of Comparative Pathobiology, Purdue University, 406 South University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
4
|
The insulin and igf-I pathway in endocrine glands carcinogenesis. JOURNAL OF ONCOLOGY 2012; 2012:635614. [PMID: 22927847 PMCID: PMC3423951 DOI: 10.1155/2012/635614] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/20/2012] [Indexed: 12/26/2022]
Abstract
Endocrine cancers are a heterogeneous group of diseases that may arise from endocrine cells in any gland of the endocrine system. These malignancies may show an aggressive behavior and resistance to the common anticancer therapies. The etiopathogenesis of these tumors remains mostly unknown. The normal embryological development and differentiation of several endocrine glands are regulated by specific pituitary tropins, which, in adult life, control the function and trophism of the endocrine gland. Pituitary tropins act in concert with peptide growth factors, including the insulin-like growth factors (IGFs), which are considered key regulators of cell growth, proliferation, and apoptosis. While pituitary TSH is regarded as tumor-promoting factor for metastatic thyroid cancer, the role of other pituitary hormones in endocrine cancers is uncertain. However, multiple molecular abnormalities of the IGF system frequently occur in endocrine cancers and may have a role in tumorigenesis as well as in tumor progression and resistance to therapies. Herein, we will review studies indicating a role of IGF system dysregulation in endocrine cancers and will discuss the possible implications of these findings for tumor prevention and treatment, with a major focus on cancers from the thyroid, adrenal, and ovary, which are the most extensively studied.
Collapse
|
5
|
Antonini SRR, Colli LM, Ferro L, Mermejo L, Castro MD. Tumores adrenocorticais na criança: da abordagem clínica à avaliação molecular. ACTA ACUST UNITED AC 2011; 55:599-606. [DOI: 10.1590/s0004-27302011000800014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 10/16/2011] [Indexed: 11/21/2022]
Abstract
Tumores do córtex adrenal (TCA) são mais frequentes em crianças, mas podem ocorrer em qualquer faixa etária. São classificados como funcionantes, não funcionantes (predominam no adulto), e mistos. O diagnóstico é baseado na avaliação clínica, hormonal e exames de imagem. Em crianças, o método de escolha para diferenciar entre benigno ou maligno é a classificação baseada no estadiamento do tumor. Alguns marcadores moleculares merecem destaque: além de mutações inativadoras no gene supressor tumoral TP53, há evidências de envolvimento do IGF2 em 90% de TAC malignos, e mutações no éxon 3 do gene CTNNB1 foram encontradas em 6% dos TAC pediátricos. Além disso, microRNAs podem atuar como reguladores negativos da expressão gênica e participar da tumorigênese adrenocortical. Métodos para análise da expressão gênica permitem identificar TCA com prognóstico bom ou ruim, e espera-se que esses estudos possam facilitar o desenvolvimento de drogas para tratar pacientes de acordo com as vias de sinalização específicas que estiverem alteradas.
Collapse
|
6
|
Couvelard A, Hu J, Steers G, O'Toole D, Sauvanet A, Belghiti J, Bedossa P, Gatter K, Ruszniewski P, Pezzella F. Identification of potential therapeutic targets by gene-expression profiling in pancreatic endocrine tumors. Gastroenterology 2006; 131:1597-610. [PMID: 17064702 DOI: 10.1053/j.gastro.2006.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 06/02/2006] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Prediction of biological behavior in pancreatic endocrine tumors (PET) is difficult on histologic criteria alone. The aim of this study was to characterize PET gene expression by complementary DNA (cDNA) microarray and identify specific differences in gene-expression profiles between nonmetastatic and metastatic tumors. METHODS We studied 24 well-differentiated PETs corresponding to 12 benign tumors and to 12 carcinomas with metastasis. Total RNAs were extracted followed by microarray hybridization, imaging scan procedure, and statistical anaylsis. PET tissue arrays were constructed from 129 archival tumors for immunohistochemical validation of microarray data. RESULTS A total of 123 transcripts were found to separate nonmetastatic from metastatic PETs (ie, 72 up-regulated and 51 down-regulated genes in malignant tumors). Some of these genes were involved in pathways related to (1) angiogenesis and remodeling (CD34, cadherin-5, E-selectin, semaphorin E, and fibrillin), (2) signal transduction through tyrosine kinases (tyrosine kinase-2, platelet-derived growth factor-Rbeta, MKK4, and discoidin domain receptor-1), (3) calcium-dependent cell signaling (transient receptor potential cation channel-1, calcium channel voltage-dependent beta2, neurocalcin delta, and GABA-A receptor gamma2), and (4) response to drug (MDR1 and carcinoembryonic antigen-related cell adhesion molecule 6). By using tissue arrays, we confirmed the differential expression of CD34 (P = .0008), E-selectin (P = .003), MKK4 (P = .0001), and MDR1 (P = .0003) in metastatic vs nonmetastatic PETs. CONCLUSIONS This study provides insight into tumorigenic pathways in PET. Some of the genes identified are potentially new molecular markers for the detection and treatment of these tumors.
Collapse
Affiliation(s)
- Anne Couvelard
- Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Clichy, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Velázquez-Fernández D, Laurell C, Saqui-Salces M, Pantoja JP, Candanedo-Gonzalez F, Reza-Albarrán A, Gamboa-Dominguez A, Herrera MF. Differential RNA expression profile by cDNA microarray in sporadic primary hyperparathyroidism (pHPT): primary parathyroid hyperplasia versus adenoma. World J Surg 2006; 30:705-13. [PMID: 16680586 DOI: 10.1007/s00268-005-0708-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Differential diagnosis between adenoma and hyperplasia in primary hyperparathyroidism (pHPT) remains a dilemma. The aim of this study was to assess differences in transcriptional genomic expression profiles between sporadic (nonfamilial) parathyroid hyperplasia (SPH), adenoma, and normal tissue. METHODS Parathyroid tissue from 12 patients with parathyroid adenoma, 3 with SPH, and 2 with normal glands was selected for analysis. Histopathology was reviewed in all cases, and all patients with adenomas presented normocalcemia for a minimum of 6 months after one gland resection. Hybridizations were performed in a microarray containing 19,968 human cDNA clones including contiguous replicates. Direct comparisons were performed with reverse labeling for every different pooled sample entity. Expression levels were analyzed using the SAM, SMA, LIMMA, Cluster, and PAM packages in the R environment for statistical computing. RESULTS There were significant statistical differences between SPH and adenomas. In the direct comparison, a total of 200 genes showed differential expression (P < 0.03): 61 genes were upregulated (> 1.65-fold increase) and 139 were downregulated (> 1.58-fold decrease) with a B value > 4.68 (99.08% probability of real differential expression). When SPH was compared to normal parathyroid tissue, 50 genes were differentially expressed: 42 were upregulated (> 1.89) and 8 were downregulated (> 1.7) with a B > 4.26 (98.6% probability of real differential expression). At least 17 genes were differentially expressed and able to discriminate SPH from adenoma or normal tissue. Upregulated genes were related to apoptosis inhibition, cell proliferation, transcriptional activity and cell adhesion, among other activities. Downregulated genes were mainly related to ion channel activity, lipopolysaccharides, prostaglandin-d synthase, and integral membrane proteins. CONCLUSIONS Our data suggest that SPH and adenoma have a singular molecular signature that, theoretically, could be used for the differential diagnosis of these entities and normal parathyroid tissue.
Collapse
Affiliation(s)
- David Velázquez-Fernández
- Department of Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Vasco de Quiroga 15, Tlalpan, 14000, Mexico D.F., Mexico
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Giordano TJ. Molecular pathology of adrenal cortical tumors: separating adenomas from carcinomas. Endocr Pathol 2006; 17:355-63. [PMID: 17525484 DOI: 10.1007/s12022-006-0007-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/10/2023]
Abstract
Adrenal cortical carcinoma is a rare but interesting endocrine tumor. Its diagnosis is usually straightforward using morphologic assessment and supplemental immunohistochemistry. However, diagnostically challenging cases exist and pathologic evaluation would benefit from the availability of adjunctive molecular testing. Here, the relevant molecular pathology of adrenal cortical tumors is reviewed with special reference to those methods (e.g., DNA microarrays) that hold promise for improved diagnosis and prognosis, and prediction of therapeutic response.
Collapse
Affiliation(s)
- Thomas J Giordano
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0054, USA.
| |
Collapse
|
9
|
Abstract
Immunohistochemistry is an integral technique in many veterinary laboratories for diagnostic and research purposes. In the last decade, the ability to detect antigens (Ags) in tissue sections has improved dramatically, mainly by countering the deleterious effects of formaldehyde with antigen retrieval (AR) and increasing sensitivity of the detection systems. In this review, I address these topics and provide an overview of technical aspects of immunohistochemistry, including those related to antibodies (Abs) and Ags, fixation, AR, detection methods, background, and troubleshooting. Microarray technology and the use of rabbit monoclonal Abs in immunohistochemistry are also discussed.
Collapse
Affiliation(s)
- J A Ramos-Vara
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
10
|
Goodkind JR, Edwards JS. Gene expression measurement technologies: innovations and ethical considerations. Comput Chem Eng 2005. [DOI: 10.1016/j.compchemeng.2004.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Abstract
A great majority of adrenocortical tumors are benign, and many adrenocortical carcinomas (ACC) are obviously malignant at presentation. The histopathological diagnosis of ACC is occasionally difficult, particularly with stage I and stage II disease. The prognosis of ACC is generally poor. Surgery is the major treatment, with chemotherapy and radiotherapy being applicable to only restricted patients. The Weiss criteria are useful in diagnosing the common adult type of ACC. Histopathological prognostic factors of ACC have not been fully established because of the rarity of the disease. In this article, we first describe the current histopathological diagnostic and prognostic factors of ACC, highlighting the special types of ACC to which Weiss's criteria are not fully applicable. These special type tumors include pediatric adrenocortical tumors, oncocytomas, and aldosterone-producing tumors of pure zona glomerulosa type. Then we present three cases with unusual small adrenocortical tumors. One patient had an unequivocal ACC showing metastatic disease. One had a histologically defined ACC with no metastasis or macroscopic invasion. The third was a pediatric patient with a tumor showing a nodule-in-nodule pattern with insulin-like growth factor II expression.
Collapse
Affiliation(s)
- Motohiko Aiba
- Department of Surgical Pathology, Tokyo Women's Medical University Daini Hospital, 2-1-10 Nishiogu Arakawa-ku, Tokyo 116-8567, Japan.
| | | |
Collapse
|
12
|
Emmer T, Volante M, Pagani A, Allia E, Crafa P, Bussolati G. Potential applications of molecular biology in neuroendocrine tumors. Endocr Pathol 2003; 14:319-28. [PMID: 14739489 DOI: 10.1385/ep:14:4:319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The impact of molecular biology procedures on neuroendocrine (NE) tumor biology is gradually evolving from purely academic and research studies to clinical applications. This review deals with applications of molecular techniques in neuroendocrine tumors, with special reference to their potential for diagnostic, prognostic, or therapeutic impact. Since the cloning of the genes involved in inherited endocrine tumor syndromes, molecular analysis of the responsible genetic alterations has become a routine diagnostic tool to select affected patients and their relatives, and also an interesting approach to investigate the pathogenesis of neuroendocrine tumors. Assessment of the clonal composition of endocrine tumors could be useful to differentiate hyperplastic versus either adenomatous or carcinomatous conditions, as well as to better understand the clonal relationship between different neoplastic populations in mixed tumors. In addition, molecular approaches allow high sensitivity both in defining the neuroendocrine phenotype in poorly differentiated tumors and in searching for micrometastasis during the follow up of patients with endocrine tumors. Finally, the detection of peptide hormone receptors (e.g., oxytocin and somatostatin receptors) and the development of potent synthetic analogs of such peptides, are opening promising applications in the diagnosis and therapy of endocrine tumors.
Collapse
Affiliation(s)
- Tommaso Emmer
- Department of Biomedical Sciences and Oncology, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|