1
|
Li C, Jin K. Chemical Strategies towards the Development of Effective Anticancer Peptides. Curr Med Chem 2024; 31:1839-1873. [PMID: 37170992 DOI: 10.2174/0929867330666230426111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 02/24/2023] [Indexed: 05/13/2023]
Abstract
Cancer is increasingly recognized as one of the primary causes of death and has become a multifaceted global health issue. Modern medical science has made significant advancements in the diagnosis and therapy of cancer over the past decade. The detrimental side effects, lack of efficacy, and multidrug resistance of conventional cancer therapies have created an urgent need for novel anticancer therapeutics or treatments with low cytotoxicity and drug resistance. The pharmaceutical groups have recognized the crucial role that peptide therapeutic agents can play in addressing unsatisfied healthcare demands and how these become great supplements or even preferable alternatives to biological therapies and small molecules. Anticancer peptides, as a vibrant therapeutic strategy against various cancer cells, have demonstrated incredible anticancer potential due to high specificity and selectivity, low toxicity, and the ability to target the surface of traditional "undruggable" proteins. This review will provide the research progression of anticancer peptides, mainly focusing on the discovery and modifications along with the optimization and application of these peptides in clinical practice.
Collapse
Affiliation(s)
- Cuicui Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kang Jin
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
2
|
Yadav R, Li QZ, Huang H, Bridges SL, Kahlenberg JM, Stecenko AA, Rada B. Cystic fibrosis autoantibody signatures associate with Staphylococcus aureus lung infection or cystic fibrosis-related diabetes. Front Immunol 2023; 14:1151422. [PMID: 37767091 PMCID: PMC10519797 DOI: 10.3389/fimmu.2023.1151422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction While cystic fibrosis (CF) lung disease is characterized by persistent inflammation and infections and chronic inflammatory diseases are often accompanied by autoimmunity, autoimmune reactivity in CF has not been studied in depth. Methods In this work we undertook an unbiased approach to explore the systemic autoantibody repertoire in CF using autoantibody microarrays. Results and discussion Our results show higher levels of several new autoantibodies in the blood of people with CF (PwCF) compared to control subjects. Some of these are IgA autoantibodies targeting neutrophil components or autoantigens linked to neutrophil-mediated tissue damage in CF. We also found that people with CF with higher systemic IgM autoantibody levels have lower prevalence of S. aureus infection. On the other hand, IgM autoantibody levels in S. aureus-infected PwCF correlate with lung disease severity. Diabetic PwCF have significantly higher levels of IgA autoantibodies in their circulation compared to nondiabetic PwCF and several of their IgM autoantibodies associate with worse lung disease. In contrast, in nondiabetic PwCF blood levels of IgA autoantibodies correlate with lung disease. We have also identified other autoantibodies in CF that associate with P. aeruginosa airway infection. In summary, we have identified several new autoantibodies and associations of autoantibody signatures with specific clinical features in CF.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hanwen Huang
- Department of Epidemiology & Biostatistics, College of Public Health, The University of Georgia, Athens, GA, United States
| | - S. Louis Bridges
- Department of Medicine, Hospital for Special Surgery, Division of Rheumatology, Weill Cornell Medical College, New York, NY, United States
| | - J. Michelle Kahlenberg
- Division of Rheumatology, University of Michigan, School of Medicine, Ann Arbor, MI, United States
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Lu F, Zhu Y, Zhang G, Liu Z. Renovation as innovation: Repurposing human antibacterial peptide LL-37 for cancer therapy. Front Pharmacol 2022; 13:944147. [PMID: 36081952 PMCID: PMC9445486 DOI: 10.3389/fphar.2022.944147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
In many organisms, antimicrobial peptides (AMPs) display wide activities in innate host defense against microbial pathogens. Mammalian AMPs include the cathelicidin and defensin families. LL37 is the only one member of the cathelicidin family of host defense peptides expressed in humans. Since its discovery, it has become clear that they have pleiotropic effects. In addition to its antibacterial properties, many studies have shown that LL37 is also involved in a wide variety of biological activities, including tissue repair, inflammatory responses, hemotaxis, and chemokine induction. Moreover, recent studies suggest that LL37 exhibits the intricate and contradictory effects in promoting or inhibiting tumor growth. Indeed, an increasing amount of evidence suggests that human LL37 including its fragments and analogs shows anticancer effects on many kinds of cancer cell lines, although LL37 is also involved in cancer progression. Focusing on recent information, in this review, we explore and summarize how LL37 contributes to anticancer effect as well as discuss the strategies to enhance delivery of this peptide and selectivity for cancer cells.
Collapse
|
4
|
Cathelicidin hCAP18/LL-37 promotes cell proliferation and suppresses antitumor activity of 1,25(OH) 2D 3 in hepatocellular carcinoma. Cell Death Dis 2022; 8:27. [PMID: 35039485 PMCID: PMC8763942 DOI: 10.1038/s41420-022-00816-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/06/2021] [Accepted: 12/21/2021] [Indexed: 01/15/2023]
Abstract
Cathelicidin hCAP18/LL-37 can resist infection from various pathogens and is an essential component of the human immune system. Accumulating evidence has indicated that hCAP18/LL-37 plays a tissue-specific role in human cancer. However, its function in hepatocellular carcinoma (HCC) is poorly understood. The present study investigated the effects of hCAP18/LL-37 on HCC in vitro and in vivo. Results showed that hCAP18/LL-37 overexpression significantly promoted the proliferation of cultured HCC cells and the growth of PLC/PRF-5 xenograft tumor. Transcriptome sequencing analyses revealed that the PI3K/Akt pathway was the most significant upregulated pathway induced by LL-37 overexpression. Further analysis demonstrated that hCAP18/LL-37 stimulated the phosphorylation of EGFR/HER2 and activated the PI3K/Akt pathway in HCC cells. Furthermore, stronger EGFR/HER2/Akt signals were observed in the PLC/PRF-5LL-37 xenograft tumor. Interestingly, even though the expression of hCAP18/LL-37 was significantly downregulated in HCC cells and tumors, 1,25(OH)2D3 treatment significantly upregulated the hCAP18/LL-37 level both in HCC cells and xenograft tumors. Moreover, 1,25(OH)2D3 together with si-LL-37 significantly enhanced the antitumor activity of 1,25(OH)2D3 in the PLC/PRF-5 xenograft tumor. Collectively, these data suggest that hCAP18/LL-37 promotes HCC cells proliferation through stimulation of the EGFR/HER2/Akt signals and appears to suppress the antitumor activity of 1,25(OH)2D3 in HCC xenograft tumor. This implies that hCAP18/LL-37 may be an important target when aiming to improve the antitumor activity of 1,25(OH)2D3 supplementation therapy in HCC.
Collapse
|
5
|
Holch A, Bauer R, Olari LR, Rodriguez AA, Ständker L, Preising N, Karacan M, Wiese S, Walther P, Ruiz-Blanco YB, Sanchez-Garcia E, Schumann C, Münch J, Spellerberg B. Respiratory ß-2-Microglobulin exerts pH dependent antimicrobial activity. Virulence 2021; 11:1402-1414. [PMID: 33092477 PMCID: PMC7588194 DOI: 10.1080/21505594.2020.1831367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The respiratory tract is a major entry site for microbial pathogens. To combat bacterial infections, the immune system has various defense mechanisms at its disposal, including antimicrobial peptides (AMPs). To search for novel AMPs from the respiratory tract, a peptide library from human broncho-alveolar-lavage (BAL) fluid was screened for antimicrobial activity by radial diffusion assays allowing the efficient detection of antibacterial activity within a small sample size. After repeated testing-cycles and subsequent purification, we identified ß-2-microglobulin (B2M) in antibacterially active fractions. B2M belongs to the MHC-1 receptor complex present at the surface of nucleated cells. It is known to inhibit the growth of Listeria monocytogenes and Escherichia coli and to facilitate phagocytosis of Staphylococcus aureus. Using commercially available B2M we confirmed a dose-dependent inhibition of Pseudomonas aeruginosa and L. monocytogenes. To characterize AMP activity within the B2M sequence, peptide fragments of the molecule were tested for antimicrobial activity. Activity could be localized to the C-terminal part of B2M. Investigating pH dependency of the antimicrobial activity of B2M demonstrated an increased activity at pH values of 5.5 and below, a hallmark of infection and inflammation. Sytox green uptake into bacterial cells following the exposure to B2M was determined and revealed a pH-dependent loss of bacterial membrane integrity. TEM analysis showed areas of disrupted bacterial membranes in L. monocytogenes incubated with B2M and high amounts of lysed bacterial cells. In conclusion, B2M as part of a ubiquitous cell surface complex may represent a potent antimicrobial agent by interfering with bacterial membrane integrity.
Collapse
Affiliation(s)
- Armin Holch
- Institute of Medical Microbiology and Hygiene, University Hospital , Ulm, Germany
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, University Hospital , Ulm, Germany
| | - Lia-Raluca Olari
- Institute of Molecular Virology, University Hospital , Ulm, Germany
| | - Armando A Rodriguez
- Core Facility Functional Peptidomics, Ulm University Medical Center , Ulm, Germany.,Core Unit Mass Spectrometry and Proteomics, Ulm University , Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center , Ulm, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University Medical Center , Ulm, Germany
| | - Merve Karacan
- Core Facility Functional Peptidomics, Ulm University Medical Center , Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University , Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University Medical Center , Ulm, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen , Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen , Essen, Germany
| | - Christian Schumann
- Pneumology, Thoracic Oncology, Sleep and Respiratory Critical Care Medicine, Clinics Kempten-Allgäu, Kempten and Immenstadt , Germany
| | - Jan Münch
- Institute of Molecular Virology, University Hospital , Ulm, Germany.,Core Facility Functional Peptidomics, Ulm University Medical Center , Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital , Ulm, Germany
| |
Collapse
|
6
|
Yang T, Li J, Jia Q, Zhan S, Zhang Q, Wang Y, Wang X. Antimicrobial peptide 17BIPHE2 inhibits the proliferation of lung cancer cells in vitro and in vivo by regulating the ERK signaling pathway. Oncol Lett 2021; 22:501. [PMID: 33981363 PMCID: PMC8108245 DOI: 10.3892/ol.2021.12762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
In 2018, there were 18.1 million new cancer cases and 9.6 million cancer-related deaths worldwide, among which the incidence rate of lung cancer (11.6%) and fatality rate (18.4%) both ranked first. The antimicrobial peptide LL-37 is an important component of the natural immune system and possesses several biological properties, including antibacterial, antiviral and anticancer effects. The antimicrobial peptide 17BIPHE2, the shortest synthetic peptide derivative of LL-37, exhibits biological activities similar to those of LL-37. The objective of the present study was to investigate the mechanism of action of exogenous 17BIPHE2 against lung cancer cells. The human lung adenocarcinoma cell line A549 was treated with 17BIPHE2. Changes in cell proliferation, migration, invasion, mitochondrial membrane potential (ΔΨm), and the levels of reactive oxygen species (ROS), Ca2+ and apoptosis-related proteins, including BAX, BCL-2 and ERK, were detected using flow cytometry, transmission electron microscopy and western blotting. The results showed that 17BIPHE2 significantly increased the apoptosis rate of A549 cells and elevated BAX expression, ERK phosphorylation, and ROS and Ca2+ levels, but decreased the expression of BCL-2, ERK and Ki67. In addition, the peptide reduced ΔΨm and the cell migration ability of A549 cells and inhibited tumor growth. ERK inhibition significantly attenuated the anticancer effect of 17BIPHE2. The present observations suggested that 17BIPHE2 can effectively inhibit cancer cells by regulating the ERK signaling pathway.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Clinical Laboratory, Yinchuan Maternal and Child Health Care Hospital, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jun Li
- Department of Clinical Laboratory, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Qinqin Jia
- Department of Laboratory Medicine, Health Center, Chun Rong, Gansu 745211, P.R. China
| | - Shisheng Zhan
- Department of Clinical Laboratory, Hebei Yanda Lu Daopei Hospital, Langfang, Hebei 065200, P.R. China
| | - Qiannan Zhang
- Department of Laboratory Medicine, College of Clinical Medicine, Shuangyi Campus, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yarong Wang
- Department of Pathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, P.R. China
| | - Xiuqing Wang
- Department of Laboratory Medicine, College of Clinical Medicine, Shuangyi Campus, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
7
|
Quraishi SA, Bhan I, Matthay MA, Thompson BT, Camargo CA, Bajwa EK. Vitamin D Status and Clinical Outcomes in Acute Respiratory Distress Syndrome: A Secondary Analysis From the Assessment of Low Tidal Volume and Elevated End-Expiratory Volume to Obviate Lung Injury (ALVEOLI) Trial. J Intensive Care Med 2021; 37:793-802. [PMID: 34165010 DOI: 10.1177/08850666211028139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a highly morbid condition that has limited therapeutic options. Optimal vitamin D status has been linked to immunological effects that may benefit critically ill patients. Therefore, we investigated whether admission 25-hydroxyvitamin D levels (25OHD) are associated with clinical outcomes in ARDS patients. METHODS We performed a secondary analysis of data from a randomized, controlled trial comparing oxygenation strategies in 549 patients with ARDS (NCT00000579). Baseline 25OHD was measured in stored plasma samples. We investigated the relationship between vitamin D status and ventilator-free days (VFD) as well as 90-day survival, using linear regression and Cox proportional hazard models, respectively. Analyses were adjusted for age, race, and Acute Physiology and Chronic Health Evaluation III score. RESULTS Baseline 25OHD was measured in 476 patients. 90% of these individuals had 25OHD <20 ng/ml and 40% had 25OHD <10 ng/ml. Patients with 25OHD <20 ng/ml were likely to be ventilated for 3 days longer than patients with levels ≥20 ng/ml (ß 3.41; 95%CI 0.42-6.39: P = 0.02). Patients with 25OHD <10 ng/ml were likely to be ventilated for 9 days longer (ß 9.27; 95%CI 7.24-11.02: P < 0.001) and to have a 34% higher risk of 90-day mortality (HR 1.34; 95% CI 1.06-1.71: P = 0.02) compared to patients with levels >10 ng/ml. CONCLUSIONS In patients with ARDS, vitamin D status is associated with duration of mechanical ventilation and 90-day mortality. Randomized, controlled trials are warranted to determine whether vitamin D supplementation improves clinical outcomes in ARDS patients.
Collapse
Affiliation(s)
- Sadeq A Quraishi
- Department of Anesthesiology and Perioperative Medicine, 1867Tufts Medical Center, Boston, MA, USA.,Tufts University School of Medicine, Boston, MA, USA
| | - Ishir Bhan
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.,10774Alnylam Pharmaceuticals Inc, Cambridge, MA, USA
| | - Michael A Matthay
- Department of Medicine, 8785University of California San Francisco, CA, USA
| | - Boyd T Thompson
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Harvard Medical School, Boston, MA, USA.,Department of Emergency Medicine, 2348Massachusetts General Hospital, Boston, MA, USA
| | - Ednan K Bajwa
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
8
|
Luan X, Wu Y, Shen YW, Zhang H, Zhou YD, Chen HZ, Nagle DG, Zhang WD. Cytotoxic and antitumor peptides as novel chemotherapeutics. Nat Prod Rep 2020; 38:7-17. [PMID: 32776055 DOI: 10.1039/d0np00019a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: up to 2020Treatment resistance and drug-induced refractory malignancies pose significant challenges for current chemotherapy drugs. There have been increasing research efforts aimed at developing novel chemotherapeutics, especially from natural products and related derivatives. Natural cytotoxic peptides, an emerging source of chemotherapeutics, have exhibited the advantage of overcoming drug resistance and displayed broad-spectrum antitumor activities in the clinic. This highlight examines the increasingly popular cytotoxic peptides from isolated natural products. In-depth review of several peptides provides examples for how this novel strategy can lead to the improved anti-tumor effects. The mechanisms and current application of representative natural cytotoxic peptides (NCPs) have also been discussed, with a particular focus on future directions for interdisciplinary research.
Collapse
Affiliation(s)
- Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Potey PM, Rossi AG, Lucas CD, Dorward DA. Neutrophils in the initiation and resolution of acute pulmonary inflammation: understanding biological function and therapeutic potential. J Pathol 2019; 247:672-685. [PMID: 30570146 PMCID: PMC6492013 DOI: 10.1002/path.5221] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is the often fatal sequelae of a broad range of precipitating conditions. Despite decades of intensive research and clinical trials there remain no therapies in routine clinical practice that target the dysregulated and overwhelming inflammatory response that characterises ARDS. Neutrophils play a central role in the initiation, propagation and resolution of this complex inflammatory environment by migrating into the lung and executing a variety of pro-inflammatory functions. These include degranulation with liberation of bactericidal proteins, release of cytokines and reactive oxygen species as well as production of neutrophil extracellular traps. Although these functions are advantageous in clearing bacterial infection, the consequence of associated tissue damage, the contribution to worsening acute inflammation and prolonged neutrophil lifespan at sites of inflammation are deleterious. In this review, the importance of the neutrophil will be considered, together with discussion of recent advances in understanding neutrophil function and the factors that influence them throughout the phases of inflammation in ARDS. From a better understanding of neutrophils in this context, potential therapeutic targets are identified and discussed. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Philippe Md Potey
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher D Lucas
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David A Dorward
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Pechous RD. With Friends Like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia. Front Cell Infect Microbiol 2017; 7:160. [PMID: 28507954 PMCID: PMC5410563 DOI: 10.3389/fcimb.2017.00160] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/12/2017] [Indexed: 01/12/2023] Open
Abstract
Pneumonia is a leading cause of death from infection in the United States and across the globe. During pulmonary infection, clear resolution of host inflammatory responses occurs in the absence of appreciable lung damage. Neutrophils are the first wave of leukocytes to arrive in the lung upon infection. After activation, neutrophils traffic from the vasculature via transendothelial migration through the lung interstitium and into the alveolar space. Successful pulmonary immunity requires neutrophil-mediated killing of invading pathogens by phagocytosis and release of a myriad of antimicrobial molecules, followed by resolution of inflammation, neutrophil apoptosis, and clearing of dead or dying neutrophils by macrophages. In addition to their antimicrobial role, it is becoming clear that neutrophils are also important modulators of innate and adaptive immune responses, primarily through the release of cytokines and recruitment of additional waves of neutrophils into the airways. Though typically essential to combating severe pneumonia, neutrophil influx into the airways is a double-edged sword: Overzealous neutrophil activation can cause severe tissue damage as a result of the release of toxic agents including proteases, cationic polypeptides, cytokines, and reactive oxygen species (ROS) aimed at killing invading microbes. In extreme cases, the damage caused by neutrophils and other innate immune mediators become the primary source of morbidity and mortality. Here, we review the complex role of neutrophils during severe pneumonia by highlighting specific molecules and processes that contribute to pulmonary immunity, but can also drive progression of severe disease. Depending on the identity of the infectious agent, enhancing or suppressing neutrophil-mediated responses may be key to effectively treating severe and typically lethal pneumonia.
Collapse
Affiliation(s)
- Roger D Pechous
- Department of Microbiology and Immunology, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| |
Collapse
|
11
|
Short, Synthetic Cationic Peptides Have Antibacterial Activity against Mycobacterium smegmatis by Forming Pores in Membrane and Synergizing with Antibiotics. Antibiotics (Basel) 2015; 4:358-78. [PMID: 27025629 PMCID: PMC4790291 DOI: 10.3390/antibiotics4030358] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/23/2015] [Accepted: 08/07/2015] [Indexed: 01/24/2023] Open
Abstract
Multicellular organisms are constantly exposed to a multitude of pathogenic microbes. Infection is inhibited in vivo by the innate and adaptive immune system. Mycobacterium species have emerged that are resistant to most antibiotics. We identified several naturally occurring cationic antimicrobial peptides that were active at low micromolar concentrations against Mycobacterium smegmatis. Human-derived cathelicidin LL-37 is well characterized and studied against M. smegmatis; we compared LL-37 with Chinese cobra-derived cathelicidin NA-CATH and mouse cathelicidin (mCRAMP). Two synthetic 11-residue peptides (ATRA-1A and ATRA-2) containing variations of a repeated motif within NA-CATH were tested for their activity against M. smegmatis along with a short synthetic peptide derivative from the human beta-defensin hBD3 (hBD3-Pep4). We hypothesized that these smaller synthetic peptides may demonstrate antimicrobial effectiveness with shorter length (and at less cost), making them strong potential candidates for development into broad-spectrum antimicrobial compounds or use in combination with antibiotics. These peptides have antimicrobial activity with EC50 ranging from 0.05 to 1.88 μg/mL against Mycobacterium smegmatis. The ATRA-1A short peptide was found to be the most effective antimicrobial peptide (AMP) (EC50 = 0.05 μg/mL). High bactericidal activity correlated with bacterial membrane depolarization and permeabilization activities. The efficacy of the peptides was further analyzed through Minimal Inhibitory Concentration (MIC) assays. The MICs were determined by the microdilution method. The peptide mCRAMP showed the best MIC activity at 15.6 μg/mL. Neither of the effective short synthetic peptides demonstrated synergy with the antibiotic rifampicin, although both demonstrated synergy with the cyclic peptide antibiotic polymyxin B. The peptides LL-37 and mCRAMP displayed synergism with rifampicin in MIC assays, whereas antibiotic polymyxin B displayed synergism with LL-37, ATRA-1A, and hBD3-Pep4. In further studies, polymyxin B synergized with LL-37, ATRA-1A, and hBD3-Pep4 while Rifampicin synergized with LL-37 and mCRAMP for intracellular killing of mycobacteria residing inside macrophages. These studies provide the foundation for the potential development of synthetic cationic antimicrobial peptides with activity against mycobacteria.
Collapse
|
12
|
Abstract
Our understanding of the virulence and pathogenesis of Francisella spp. has significantly advanced in recent years, including a new understanding that this organism can form biofilms. What is known so far about Francisella spp. biofilms is summarized here and future research questions are suggested. The molecular basis of biofilm production has begun to be studied, especially the role of extracellular carbohydrates and capsule, quorum sensing and two-component signaling systems. Further work has explored the contribution of amoebae, pili, outer-membrane vesicles, chitinases, and small molecules such as c-di-GMP to Francisella spp. biofilm formation. A role for Francisella spp. biofilm in feeding mosquito larvae has been suggested. As no strong role in virulence has been found yet, Francisella spp. biofilm formation is most likely a key mechanism for environmental survival and persistence. The significance and importance of Francisella spp.’s biofilm phenotype as a critical aspect of its microbial physiology is being developed. Areas for further studies include the potential role of Francisella spp. biofilms in the infection of mammalian hosts and virulence regulation.
Collapse
Affiliation(s)
- Monique L van Hoek
- School of Systems Biology and National Center for Biodefense and Infectious Diseases; George Mason University; Manassas, VA USA
| |
Collapse
|
13
|
Shin DM, Jo EK. Antimicrobial Peptides in Innate Immunity against Mycobacteria. Immune Netw 2011; 11:245-52. [PMID: 22194707 PMCID: PMC3242998 DOI: 10.4110/in.2011.11.5.245] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/16/2011] [Accepted: 09/23/2011] [Indexed: 01/14/2023] Open
Abstract
Antimicrobial peptides/proteins are ancient and naturallyoccurring antibiotics in innate immune responses in a variety of organisms. Additionally, these peptides have been recognized as important signaling molecules in regulation of both innate and adaptive immunity. During mycobacterial infection, antimicrobial peptides including cathelicidin, defensin, and hepcidin have antimicrobial activities against mycobacteria, making them promising candidates for future drug development. Additionally, antimicrobial peptides act as immunomodulators in infectious and inflammatory conditions. Multiple crucial functions of cathelicidins in antimycobacterial immune defense have been characterized not only in terms of direct killing of mycobacteria but also as innate immune regulators, i.e., in secretion of cytokines and chemokines, and mediating autophagy activation. Defensin families are also important during mycobacterial infection and contribute to antimycobacterial defense and inhibition of mycobacterial growth both in vitro and in vivo. Hepcidin, although its role in mycobacterial infection has not yet been characterized, exerts antimycobacterial effects in activated macrophages. The present review focuses on recent efforts to elucidate the roles of host defense peptides in innate immunity to mycobacteria.
Collapse
Affiliation(s)
- Dong-Min Shin
- Department of Microbiology and Infection Signaling Network Research Center, Chungnam National University, School of Medicine, Daejeon 301-747, Korea
| | | |
Collapse
|
14
|
Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med 2010; 17:293-307. [PMID: 21046059 DOI: 10.2119/molmed.2010.00138] [Citation(s) in RCA: 1012] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/18/2010] [Indexed: 12/27/2022] Open
Abstract
Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neutrophils are regarded to play a key role in progression of ALI/ARDS. Neutrophils are the first cells to be recruited to the site of inflammation and have a potent antimicrobial armour that includes oxidants, proteinases and cationic peptides. Under pathological circumstances, however, unregulated release of these microbicidal compounds into the extracellular space paradoxically can damage host tissues. This review focuses on the mechanisms of neutrophil recruitment into the lung and on the contribution of neutrophils to tissue damage in ALI.
Collapse
Affiliation(s)
- Jochen Grommes
- Department of Vascular Surgery, University Hospital, RWTH Aachen, Germany.
| | | |
Collapse
|
15
|
Méndez-Samperio P. The human cathelicidin hCAP18/LL-37: a multifunctional peptide involved in mycobacterial infections. Peptides 2010; 31:1791-8. [PMID: 20600427 DOI: 10.1016/j.peptides.2010.06.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/18/2010] [Accepted: 06/18/2010] [Indexed: 02/06/2023]
Abstract
Antimicrobial peptides are predominantly small cationic polypeptides that are classified together on the basis of these molecules to directly kill or inhibit the growth of microorganisms including mycobacteria, and to activate mechanisms of cellular and adaptive immunity. Various families of antimicrobial peptides have been identified, including the cathelicidins. The cathelicidin family is characterised by a conserved N-terminal cathelin domain and a variable C-terminal antimicrobial domain that can be released from the precursor protein after cleavage by proteinases. LL-37 is the C-terminal part of the only human cathelicidin identified to date called human cationic antimicrobial protein (hCAP18), which is mainly expressed by neutrophils and epithelial cells. The cathelicidin hCAP18/LL-37 is a multifunctional molecule that may mediate various host responses, including bactericidal action, chemotaxis, epithelial cell activation, angiogenesis, epithelial wound repair and activation of chemokine secretion. The antimicrobial peptide LL-37 is produced from human cells during infection of mycobacteria and exerts a microbicidal effect. The discussion will (1) describe recent work on the antimicrobial and immunomodulatory functions of the cathelicidin hCAP18/LL-37, (2) highlight the effectiveness of the cathelicidin hCAP18/LL-37 as a potent component in antimycobacterial immune responses and (3) summarise current progress in the understanding of the therapeutic application of hCAP18/LL-37 and its derivates antimicrobial peptides in mycobacterial infection.
Collapse
Affiliation(s)
- Patricia Méndez-Samperio
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, IPN., Prol. Carpio y Plan de Ayala, 11340 Mexico, D.F., Mexico.
| |
Collapse
|
16
|
Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochem Biophys Res Commun 2010; 396:246-51. [PMID: 20399752 DOI: 10.1016/j.bbrc.2010.04.073] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 11/23/2022]
Abstract
Francisella infects the lungs causing pneumonic tularemia. Focusing on the lung's host defense, we have examined antimicrobial peptides as part of the innate immune response to Francisella infection. Interest in antimicrobial peptides, such as the cathelicidins, has grown due their potential therapeutic applications and the increasing problem of bacterial resistance to commonly used antibiotics. Only one human cathelicidin, LL-37, has been characterized. Helical cathelicidins have also been discovered in snakes including the Chinese King Cobra, Naja atra (NA-CATH). Four synthetic 11-residue peptides (ATRA-1, -2, -1A and -1P) containing variations of a repeated motif within NA-CATH were designed. We hypothesized that these smaller synthetic peptides could have excellent antimicrobial effectiveness with shorter length (and less cost), making them strong potential candidates for development into broad-spectrum antimicrobial compounds. We tested the susceptibility of F. novicida to four ATRA peptides, LL-37, and NA-CATH. Two of the ATRA peptides had high antimicrobial activity (microM), while the two proline-containing ATRA peptides had low activity. The ATRA peptides did not show significant hemolytic activity even at high peptide concentration, indicating low cytotoxicity against host cells. NA-CATH killed Francisella bacteria more quickly than LL-37. However, LL-37 was the most effective peptide against F. novicida (EC50=50 nM). LL-37 mRNA was induced in A549 cells by Francisella infection. We recently demonstrated that F. novicida forms in vitro biofilms. LL-37 inhibited F. novicida biofilm formation at sub-antimicrobial concentrations. Understanding the properties of these peptides, and their endogenous expression in the lung could lead to potential future therapeutic interventions for this lung infection.
Collapse
|
17
|
Benincasa M, Mattiuzzo M, Herasimenka Y, Cescutti P, Rizzo R, Gennaro R. Activity of antimicrobial peptides in the presence of polysaccharides produced by pulmonary pathogens. J Pept Sci 2009; 15:595-600. [PMID: 19466693 DOI: 10.1002/psc.1142] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Antimicrobial peptides (AMPs) are secreted in the airway and contribute to initial defence against inhaled pathogens. Infections of the respiratory tract are a major cause of morbidity and mortality in preterm newborns and in patients with cystic fibrosis (CF). In this latter group, the state of chronic lung infection is due to the ability of bacteria to grow as mucoid biofilm, a condition characterised by overproduction and release of polysaccharides (PSs). In this study, we investigate the effect of PSs produced by lung pathogens such as Pseudomonas aeruginosa, Klebsiella pneumoniae and members of the Burkholderia cepacia complex on the antibacterial activity of structurally different peptides. The AMPs tested in this study include the cathelicidin LL-37 and the beta-defensin hBD-3 from humans, both released at the alveolar level, as well as peptides from other mammals, i.e. SMAP-29, PG-1 and Bac7(1-35). Susceptibility assays, time killing and membrane permeabilization kinetics experiments were carried out to establish whether PSs produced by lung pathogens may be involved in the poor defence reaction of infected lungs and thus explain infection persistence. All the PSs investigated inhibited, albeit to a different extent, the antibacterial activity of the peptides tested, suggesting that their presence in the lungs of patients with CF may contribute to the decreased defence response of this district upon infection by PS-producing microorganisms. The results also show that inhibition of the antibacterial activity is not simply due to ionic interaction between the negatively charged PSs and the cationic AMPs, but it also involves other structural features of both interactors.
Collapse
Affiliation(s)
- M Benincasa
- Department of Life Sciences, University of Trieste, I-34127 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Wewers MD, Sarkar A. P2X(7) receptor and macrophage function. Purinergic Signal 2009; 5:189-95. [PMID: 19214778 DOI: 10.1007/s11302-009-9131-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 10/16/2008] [Indexed: 01/07/2023] Open
Abstract
Macrophages are unique innate immune cells that play an integral role in the defense of the host by virtue of their ability to recognize, engulf, and kill pathogens while sending out danger signals via cytokines to recruit and activate inflammatory cells. It is becoming increasingly clear that purinergic signaling events are essential components of the macrophage response to pathogen challenges and disorders such as sepsis may be, at least in part, regulated by these important sensors. The activation of the P2X(7) receptor is a powerful event in the regulation of the caspase-1 inflammasome. We provide evidence that the inflammasome activation requires "priming" of macrophages prior to ATP activation of the P2X(7)R. Inhibition of the inflammasome activation by the tyrosine kinase inhibitor, AG126, suggests regulation by phosphorylation. Finally, the P2X(7)R may also be activated by other elements of the host response such as the antimicrobial peptide LL-37, which adds a new, physiologically relevant agonist to the P2X(7)R pathway. Therapeutic approaches to inflammation and sepsis will certainly be enhanced by an increased understanding of how purinergic receptors modulate the inflammasomes.
Collapse
Affiliation(s)
- Mark D Wewers
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, USA,
| | | |
Collapse
|