1
|
Zhang H, Liu L, Ni JJ, Wei XT, Feng GJ, Yang XL, Xu Q, Zhang ZJ, Hai R, Tian Q, Shen H, Deng HW, Pei YF, Zhang L. Pleiotropic loci underlying bone mineral density and bone size identified by a bivariate genome-wide association analysis. Osteoporos Int 2020; 31:1691-1701. [PMID: 32314116 PMCID: PMC7883523 DOI: 10.1007/s00198-020-05389-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/11/2020] [Indexed: 01/30/2023]
Abstract
UNLABELLED Aiming to identify pleiotropic genomic loci for bone mineral density and bone size, we performed a bivariate GWAS in five discovery samples and replicated in two large-scale samples. We identified 2 novel loci at 2q37.1 and 6q26. Our findings provide insight into common genetic architecture underlying both traits. INTRODUCTION Bone mineral density (BMD) and bone size (BS) are two important factors that contribute to the development of osteoporosis and osteoporotic fracture. Both BMD and BS are highly heritable and they are genetically correlated. In this study, we aim to identify pleiotropic loci associated with BMD and BS. METHODS We conducted a bivariate genome-wide association (GWA) analysis of hip BMD and hip BS in 6180 participants from 5 samples, followed by in silico replication in the UK Biobank study of BMD (N = 426,824) and the deCODE study of BS (N = 28,954), respectively. RESULTS SNPs from 2 genomic loci were significant at the genome-wide significance (GWS) level (p lt; 5 × 10-8) in the discovery samples and were successfully replicated in the replication samples (2q37.1, lead SNP rs7575512, discovery p = 1.49 × 10-10, replication p = 0.05; 6q26, lead SNP rs1040724, discovery p = 1.95 × 10-8, replication p = 0.03). Functional annotations suggested functional relevance of the identified variants to bone development. CONCLUSION Our findings provide insight into the common genetic architecture underlying BMD and BS, and enhance our understanding of the potential mechanism of osteoporosis fracture.
Collapse
Affiliation(s)
- H Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China
| | - L Liu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China
- Kunshan Hospital of Traditional Chinese Medicine, SuZhou, Jiangsu, People's Republic of China
| | - J-J Ni
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China
| | - X-T Wei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, SuZhou, Jiangsu, People's Republic of China
| | - G-J Feng
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, SuZhou, Jiangsu, People's Republic of China
| | - X-L Yang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China
| | - Q Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, SuZhou, Jiangsu, People's Republic of China
| | - Z-J Zhang
- People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, People's Republic of China
| | - R Hai
- People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, People's Republic of China
| | - Q Tian
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - H Shen
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - H-W Deng
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St., Suite 2001, New Orleans, LA, 70112, USA.
| | - Y-F Pei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China.
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, SuZhou, Jiangsu, People's Republic of China.
| | - L Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China.
| |
Collapse
|
2
|
Pehlivantürk Kızılkan M, Akgül S, Derman O, Kanbur N. Bone mineral density comparison of adolescents with constitutional thinness and anorexia nervosa. J Pediatr Endocrinol Metab 2018; 31:545-550. [PMID: 29672273 DOI: 10.1515/jpem-2017-0342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The negative impact of anorexia nervosa (AN) on bone health is well defined. However, there are very few studies evaluating the effect of constitutional thinness on bone health, especially in the adolescent period and in the male gender. The aim of this study is to compare the bone mineral density (BMD) measurements of adolescents with AN and with constitutional thinness. METHODS Between April 2013 and March 2014, 40 adolescents with AN and 36 adolescents with constitutional thinness participated in the study. The femoral neck and lumbar spine BMD were measured by dual energy X-ray absorptiometry (DXA). RESULTS Mean lumbar z and BMD scores of adolescents with constitutional thinness were significantly lower than in adolescents with AN, whereas the mean femoral z and BMD scores were not significantly different. When males were compared separately, lumbar z and BMD values of the constitutionally thin group were found to be significantly lower than in the AN group. This difference was not significant for females. CONCLUSIONS The difference between the male and female results of our study suggested two hypotheses. The significantly lower BMD values in constitutionally thin boys are attributed to their longer duration of low body mass index (BMI). Although the duration of low BMI is also longer for constitutionally thin girls, similar BMD values of AN and constitutionally thin female groups are attributed to the additional negative impact of estrogen deficiency on the bone health of girls with AN.
Collapse
Affiliation(s)
- Melis Pehlivantürk Kızılkan
- Hacettepe University Ihsan Dogramaci Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Ankara, Turkey
| | - Sinem Akgül
- Hacettepe University Ihsan Dogramaci Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Ankara, Turkey
| | - Orhan Derman
- Hacettepe University Ihsan Dogramaci Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Ankara, Turkey
| | - Nuray Kanbur
- Hacettepe University Ihsan Dogramaci Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Deng FY, Dong SS, Xu XH, Liu YJ, Liu YZ, Shen H, Tian Q, Li J, Deng HW. Genome-wide association study identified UQCC locus for spine bone size in humans. Bone 2013; 53:129-133. [PMID: 23207799 PMCID: PMC3682469 DOI: 10.1016/j.bone.2012.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 11/17/2022]
Abstract
Bone size (BS) contributes significantly to the risk of osteoporotic fracture. Osteoporotic spine fracture is one of the most disabling outcomes of osteoporosis. This study aims to identify genomic loci underlying spine BS variation in humans. We performed a genome-wide association scan in 2286 unrelated Caucasians using Affymetrix 6.0 SNP arrays. Areal BS (cm(2)) at lumbar spine was measured using dual energy X-ray absorptiometry scanners. SNPs of interest were subjected to replication analyses and meta-analyses with additional two independent Caucasian populations (N=1000 and 2503) and one Chinese population (N=1627). In the initial GWAS, 91 SNPs were associated with spine BS (P<1.0E-4). Eight contiguous SNPs were found clustering in a haplotype block within UQCC gene (ubiquinol-cytochrome creductase complex chaperone). Association of the above eight SNPs with spine BS was replicated in one Caucasian and one Chinese populations. Meta-analyses (N=7416) generated much stronger association signals for these SNPs (e.g., P=1.86E-07 for SNP rs6060373), supporting association of UQCC with spine BS across ethnicities. This study identified a novel locus, i.e., the UQCC gene, for spine BS variation in humans. Future functional studies will contribute to elucidating the mechanisms by which UQCC regulates bone growth and development.
Collapse
Affiliation(s)
- Fei-Yan Deng
- Center of Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Shan-Shan Dong
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Xiang-Hong Xu
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Yong-Jun Liu
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Yao-Zhong Liu
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hui Shen
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Qing Tian
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Jian Li
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| |
Collapse
|
4
|
Guo YF, Zhang LS, Liu YJ, Hu HG, Li J, Tian Q, Yu P, Zhang F, Yang TL, Guo Y, Peng XL, Dai M, Chen W, Deng HW. Suggestion of GLYAT gene underlying variation of bone size and body lean mass as revealed by a bivariate genome-wide association study. Hum Genet 2013; 132:189-199. [PMID: 23108985 PMCID: PMC3682481 DOI: 10.1007/s00439-012-1236-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/08/2012] [Indexed: 12/11/2022]
Abstract
Bone and muscle, two major tissue types of musculoskeletal system, have strong genetic determination. Abnormality in bone and/or muscle may cause musculoskeletal diseases such as osteoporosis and sarcopenia. Bone size phenotypes (BSPs), such as hip bone size (HBS), appendicular bone size (ABS), are genetically correlated with body lean mass (mainly muscle mass). However, the specific genes shared by these phenotypes are largely unknown. In this study, we aimed to identify the specific genes with pleiotropic effects on BSPs and appendicular lean mass (ALM). We performed a bivariate genome-wide association study (GWAS) by analyzing ~690,000 SNPs in 1,627 unrelated Han Chinese adults (802 males and 825 females) followed by a replication study in 2,286 unrelated US Caucasians (558 males and 1,728 females). We identified 14 interesting single nucleotide polymorphisms (SNPs) that may contribute to variation of both BSPs and ALM, with p values <10(-6) in discovery stage. Among them, the association of three SNPs (rs2507838, rs7116722, and rs11826261) in/near GLYAT (glycine-N-acyltransferase) gene was replicated in US Caucasians, with p values ranging from 1.89 × 10(-3) to 3.71 × 10(-4) for ALM-ABS, from 5.14 × 10(-3) to 1.11 × 10(-2) for ALM-HBS, respectively. Meta-analyses yielded stronger association signals for rs2507838, rs7116722, and rs11826261, with pooled p values of 1.68 × 10(-8), 7.94 × 10(-8), 6.80 × 10(-8) for ALB-ABS and 1.22 × 10(-4), 9.85 × 10(-5), 3.96 × 10(-4) for ALM-HBS, respectively. Haplotype allele ATA based on these three SNPs was also associated with ALM-HBS and ALM-ABS in both discovery and replication samples. Interestingly, GLYAT was previously found to be essential to glucose metabolism and energy metabolism, suggesting the gene's dual role in both bone development and muscle growth. Our findings, together with the prior biological evidence, suggest the importance of GLYAT gene in co-regulation of bone phenotypes and body lean mass.
Collapse
Affiliation(s)
- Yan-Fang Guo
- Institute of Bioinformatics, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Li-Shu Zhang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, PR China
| | - Yong-Jun Liu
- Center for Bioinformatics and Genomics, Department of Biostatistics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA70112, United States of America
| | - Hong-Gang Hu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, PR China
| | - Jian Li
- Center for Bioinformatics and Genomics, Department of Biostatistics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA70112, United States of America
| | - Qing Tian
- Center for Bioinformatics and Genomics, Department of Biostatistics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA70112, United States of America
| | - Ping Yu
- Center for Bioinformatics and Genomics, Department of Biostatistics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA70112, United States of America
| | - Feng Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P R China
| | - Tie-Lin Yang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P R China
| | - Yan Guo
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P R China
| | - Xiang-Lei Peng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, PR China
| | - Meng Dai
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, PR China
| | - Wei Chen
- Center for Cardiovascular Health Department of Epidemiology, School of Public Health and Tropical Medicine Tulane University, New Orleans, LA70112, United States of America
| | - Hong-Wen Deng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, PR China
- Center for Bioinformatics and Genomics, Department of Biostatistics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA70112, United States of America
- Center of System Biomedical Sciences, Shanghai University of Science and Technology, Shanghai 200093, PR China
| |
Collapse
|
5
|
Lei SF, Shen H, Yang TL, Guo Y, Dong SS, Xu XH, Deng FY, Tian Q, Liu YJ, Liu YZ, Li J, Deng HW. Genome-wide association study identifies HMGN3 locus for spine bone size variation in Chinese. Hum Genet 2012; 131:463-9. [PMID: 21947420 PMCID: PMC4450081 DOI: 10.1007/s00439-011-1093-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 09/16/2011] [Indexed: 11/28/2022]
Abstract
Bone size (BS) is one of the major risk factors for osteoporotic fractures. BS variation is genetically determined to a substantial degree with heritability over 50%, but specific genes underlying variation of BS are still largely unknown. To identify specific genes for BS in Chinese, initial genome-wide association scan (GWAS) study and follow-up replication study were performed. In initial GWAS study, a group of 12 contiguous single-nucleotide polymorphism (SNP)s, which span a region of ~25 kb and locate at the upstream of HMGN3 gene (high-mobility group nucleosomal binding domain 3), achieved moderate association signals for spine BS, with P values ranging from 6.2E-05 to 1.8E-06. In the follow-up replication study, eight of the 12 SNPs were detected suggestive replicate associations with BS in 1,728 unrelated female Caucasians, which have well-known differences from Chinese in ethnic genetic background. The SNPs in the region of HMGN3 gene formed a tightly combined haplotype block in both Chinese and Caucasians. The results suggest that the genomic region containing HMGN3 gene may be associated with spine BS in Chinese.
Collapse
Affiliation(s)
- Shu-Feng Lei
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, People’s Republic of China
| | - Hui Shen
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Tie-Lin Yang
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shanxi, People’s Republic of China
| | - Yan Guo
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shanxi, People’s Republic of China
| | - Shan-Shan Dong
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shanxi, People’s Republic of China
| | - Xiang-Hong Xu
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shanxi, People’s Republic of China
| | - Fei-Yan Deng
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Qing Tian
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Yong-Jun Liu
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Yao-Zhong Liu
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Jian Li
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hong-Wen Deng
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, People’s Republic of China. Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA. Center of Systematic Biomedical Research, University of Shanghai for Science and Technology, Shanghai 200093, People’s Republic of China
| |
Collapse
|
6
|
Liu SL, Lei SF, Yang F, Li X, Liu R, Nie S, Liu XG, Yang TL, Guo Y, Deng FY, Tian Q, Li J, Liu YZ, Liu YJ, Shen H, Deng HW. Copy number variation in CNP267 region may be associated with hip bone size. PLoS One 2011; 6:e22035. [PMID: 21789208 PMCID: PMC3137628 DOI: 10.1371/journal.pone.0022035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/13/2011] [Indexed: 12/29/2022] Open
Abstract
Osteoporotic hip fracture (HF) is a serious global public health problem associated with high morbidity and mortality. Hip bone size (BS) has been identified as one of key measurable risk factors for HF, independent of bone mineral density (BMD). Hip BS is highly genetically determined, but genetic factors underlying BS variation are still poorly defined. Here, we performed an initial genome-wide copy number variation (CNV) association analysis for hip BS in 1,627 Chinese Han subjects using Affymetrix GeneChip Human Mapping SNP 6.0 Array and a follow-up replicate study in 2,286 unrelated US Caucasians sample. We found that a copy number polymorphism (CNP267) located at chromosome 2q12.2 was significantly associated with hip BS in both initial Chinese and replicate Caucasian samples with p values of 4.73E-03 and 5.66E-03, respectively. An important candidate gene, four and a half LIM domains 2 (FHL2), was detected at the downstream of CNP267, which plays important roles in bone metabolism by binding to several bone formation regulator, such as insulin-like growth factor-binding protein 5 (IGFBP-5) and androgen receptor (AR). Our findings suggest that CNP267 region may be associated with hip BS which might influence the FHL2 gene downstream.
Collapse
Affiliation(s)
- Shan-Lin Liu
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Shu-Feng Lei
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Fang Yang
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Xi Li
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Rong Liu
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Shan Nie
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Xiao-Gang Liu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| | - Tie-Lin Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| | - Yan Guo
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| | - Fei-Yan Deng
- Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Qing Tian
- Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Jian Li
- Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Yao-Zhong Liu
- Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Yong-Jun Liu
- Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Hui Shen
- Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| | - Hong-Wen Deng
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
- Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
- Center of Systematic Biomedical Research, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Zhang F, Tan LJ, Lei SF, Deng HW. The differences of femoral neck geometric parameters: effects of age, gender and race. Osteoporos Int 2010; 21:1205-14. [PMID: 19802512 PMCID: PMC2921984 DOI: 10.1007/s00198-009-1057-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 08/10/2009] [Indexed: 12/01/2022]
Abstract
UNLABELLED This study aims at investigating the effects of age, sex, and ethnicity on five femoral neck geometric parameters (FNGPs): femoral neck periosteal diameter, cross-sectional area, cortical thickness, sectional modulus, and buckling ratio and found that the three factors would influence the FNGPs. INTRODUCTION Bone geometry is one of the most important predictors of bone strength and osteoporotic fractures. This study aims at investigating the effects of age, sex, and ethnicity on five femoral neck geometric parameters (FNGPs): femoral neck periosteal diameter (W), cross-sectional area (CSA), cortical thickness (CT), sectional modulus (Z), and buckling ratio (BR). METHODS In the studied 861 Caucasian subjects and 3,021 Chinese individuals, CSA, CT, and Z displayed trends of decrease with age, but W and BR showed increasing trends with age in both Chinese and Caucasian females and males (p < 0.05). W, CSA, CT, and Z were significantly higher (p <or= 0.001) in Caucasians than in Chinese and higher in males than in females except for BR between Chinese males and Chinese females. CONCLUSION In conclusion, the differences of FNGPs according to gender and ethnicity provide important implications in the different prevalence of osteoporotic fracture among different gender and ethnic groups.
Collapse
Affiliation(s)
- F. Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China
| | - L.-J. Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China
| | - S.-F. Lei
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China. Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes St., Room M3-C03, Kansas City, MO 64108-2792, USA
| | - H.-W. Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China. Center of Systematic Biomedical Research, Shanghai University of Science and Technology, Shanghai, China. Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes St., Room M3-C03, Kansas City, MO 64108-2792, USA
| |
Collapse
|
8
|
Cauchi S, Byrjalsen I, Durand E, Karsdal MA, Froguel P. PLCL1 rs7595412 variation is not associated with hip bone size variation in postmenopausal Danish women. BMC MEDICAL GENETICS 2009; 10:145. [PMID: 20030815 PMCID: PMC2803169 DOI: 10.1186/1471-2350-10-145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 12/23/2009] [Indexed: 01/23/2023]
Abstract
BACKGROUND Bone size (BS) variation is under strong genetic control and plays an important role in determining bone strength and fracture risk. Recently, a genome-wide association study identified polymorphisms associated with hip BS variation in the PLCL1 (phospholipase c-like 1) locus. Carriers of the major A allele of the most significant polymorphism, rs7595412, have around 17% larger hip BS than non-carriers. We therefore hypothesized that this polymorphism may also influence postmenopausal complications. METHODS The effects of rs7595412 on hip BS, bone mineral density (BMD), vertebral fractures, serum Crosslaps and osteocalcin levels were analyzed in 1,191 postmenopausal Danish women. RESULTS This polymorphism had no influence on hip and spine BS as well as on femur and spine BMD. Women carrying at least one copy of the A allele had lower levels of serum osteocalcin as compared with those homozygous for the G allele (p = 0.03) whereas no effect on serum Crosslaps was detected. Furthermore, women homozygous for the A allele were more affected by vertebral fractures than those carrying at least one copy of the G allele (p = 0.04). CONCLUSIONS In postmenopausal women, our results suggest that the PLCL1 rs7595412 polymorphism has no obvious effect on hip BS or BMD but may be nominally associated with increased proportion of vertebral fracture and increased levels of osteocalcin.
Collapse
Affiliation(s)
- Stéphane Cauchi
- CNRS 8090-Institute of Biology, Pasteur Institute, Lille, France
| | | | | | | | | |
Collapse
|
9
|
Bivariate genome-wide linkage analysis for traits BMD and AAM: effect of menopause on linkage signals. Maturitas 2008; 62:16-20. [PMID: 19019586 DOI: 10.1016/j.maturitas.2008.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/29/2008] [Accepted: 10/02/2008] [Indexed: 11/22/2022]
Abstract
Osteoporosis is an age-related systemic skeletal disease, characterized by low bone mineral density (BMD). Low BMD is closely associated with late age at menarche (AAM). Our previous bivariate genome-wide linkage analyses (GWLAs) between BMD and AAM identified two shared genomic regions in 2584 Caucasian females including both pre- and post-menopausal females. However, menopause often causes dramatic bone loss in post-menopausal females; this may introduce some confounding effects on the bivariate GWLA for BMD and AAM. To address the effect of menopause on the identification of genetic factors shared by BMD and AAM, we segregated the previously studied population of 2584 females into two separate subgroups consisting of 1462 pre-menopause subjects and 1122 post-menopausal subjects, and performed further bivariate GWLAs. The BMD was measured by Hologic Dual-energy X-ray (DXA) scanners (Hologic Inc., Bedford, MA, USA). Based on the genome-wide thresholds corrected for multiple testing, we found more significant genomic regions in the pre-menopausal group than in total group (including pre- and post-menopausal women), e.g., we found 4, 1, and 2 shared by spine BMD and AAM, femoral neck (FNK) BMD and AAM and ultra distal (UD) BMD and AAM, respectively. We did not found any significant linkage signals in the post-menopausal group. Importantly, the linkage signals at all significant regions were much stronger in pre-menopausal group than in the other groups: post-menopausal females and total females. For example, the linkage LOD score for FNK BMD and AAM is as high as 4.88 in pre-menopausal females, but only 0.24 and 0.31 in post-menopausal and total females, respectively. These results suggest that menopause introduces some noise signals into GWLAs when estimating the shared genetic factors by BMD and AAM. Therefore, it is very important to classify female subjects properly according to their menopause stage when performing such studies.
Collapse
|
10
|
Deng FY, Liu YZ, Li LM, Jiang C, Wu S, Chen Y, Jiang H, Yang F, Xiong JX, Xiao P, Xiao SM, Tan LJ, Sun X, Zhu XZ, Liu MY, Lei SF, Chen XD, Xie JY, Xiao GG, Liang SP, Deng HW. Proteomic analysis of circulating monocytes in Chinese premenopausal females with extremely discordant bone mineral density. Proteomics 2008; 8:4259-72. [PMID: 18924182 PMCID: PMC2760933 DOI: 10.1002/pmic.200700480] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) is a major public health problem, mainly characterized by low bone mineral density (BMD). Circulating monocytes (CMCs) may serve as progenitors of osteoclasts and produce a wide variety of factors important to bone metabolism. However, the specific action mechanism of CMCs in the pathogenesis of OP is far from clear. We performed a comparative protein expression profiling study of CMCs in Chinese premenopausal females with extremely discordant BMD, identified a total of 38 differentially expressed proteins, and confirmed with Western blotting five proteins: ras suppressor protein1 (RSU1), gelsolin (GSN), manganese-containing superoxide dismutase (SOD2), glutathione peroxidase 1(GPX1), and prolyl 4-hydroxylase beta subunit (P4HB). These proteins might affect CMCs' trans-endothelium, differentiation, and/or downstream osteoclast functions, thus contribute to differential osteoclastogenesis and finally lead to BMD variation. The findings promote our understanding of the role of CMCs in BMD determination, and provide an insight into the pathogenesis of human OP.
Collapse
Affiliation(s)
- Fei-Yan Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China, Departments of Orthopedics Surgery and Basic Medical Sciences, University of Missouri, Kansas City, MO, USA
| | - Yao-Zhong Liu
- Departments of Orthopedics Surgery and Basic Medical Sciences, University of Missouri, Kansas City, MO, USA
| | - Li-Ming Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Chen Jiang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Shan Wu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Yuan Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Hui Jiang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Fang Yang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Ji-Xian Xiong
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Peng Xiao
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, USA
| | - Su-Mei Xiao
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Xiao Sun
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Xue-Zhen Zhu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Man-Yuan Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Shu-Feng Lei
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Jing-Yun Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Gary G. Xiao
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China, Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, USA
| | - Song-Ping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Hong-Wen Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China, Departments of Orthopedics Surgery and Basic Medical Sciences, University of Missouri, Kansas City, MO, USA
| |
Collapse
|
11
|
Tan LJ, Liu YZ, Xiao P, Yang F, Tang ZH, Liu PY, Recker RR, Deng HW. Evidence for major pleiotropic effects on bone size variation from a principal component analysis of 451 Caucasian families. Acta Pharmacol Sin 2008; 29:745-51. [PMID: 18501122 DOI: 10.1111/j.1745-7254.2008.00806.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To identify pleiotropic quantitative trait loci (QTL) influencing bone size (BS) at different skeletal sites in Caucasians. METHODS In a sample containing 3899 Caucasians from 451 pedigrees, 410 microsatellite markers spaced approximately 8.9 cM apart across the human genome were genotyped. Phenotypical and genetic correlations of BS at lumbar spine, hip (femoral neck, trochanter, and intertrochanter regions), and wrist (ultradistal, mid-distal, and one-third distal sites) were determined using bivariate quantitative genetic analysis. A principal component analysis (PCA) was performed to obtain principal component (PC) factors that were then subjected to variance components linkage analysis to identify regions linked to the PC. RESULTS Genetic correlations of BS at different skeletal sites ranged from 0.40 to 0.79 (P<0.001). The PCA yielded a PC named PCtotal, which explained up to 76% of the total (co)variation of all the BS at the 7 skeletal sites for the whole sample. We identified a QTL influencing the BS of multiple skeletal sites on chromosome 7 at 140 cM [logarithm of odds (LOD)=2.85] in the overall sample. Sex-specific evidence for linkage was observed on chromosome 11 at 53 cM (LOD =2.82) in the male-only data subset. CONCLUSION Our study identified several genomic regions that may have pleiotropic effects on different skeletal sites. These regions may contain genes that play a critical role in overall bone development and osteoporosis at multiple skeletal sites, hence are biologically and clinically important.
Collapse
Affiliation(s)
- Li-jun Tan
- Laboratory of Molecular and Statistical Genetics, Hunan Normal University, Changsha 410081, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Deng FY, Xiao P, Lei SF, Zhang L, Yang F, Tang ZH, Liu PY, Liu YJ, Recker RR, Deng HW. Bivariate whole genome linkage analysis for femoral neck geometric parameters and total body lean mass. J Bone Miner Res 2007; 22:808-16. [PMID: 17352645 DOI: 10.1359/jbmr.070303] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED A genome-wide bivariate analysis was conducted for femoral neck GPs and TBLM in a large white sample. We found QTLs shared by GPs and TBLM in the total sample and the sex-specific samples. QTLs with potential pleiotropy were also disclosed. INTRODUCTION Previous studies have suggested that femoral neck cross-section geometric parameters (FNCS-GPs), including periosteal diameter (W), cross-sectional area (CSA), cortical thickness (CT), buckling ratio (BR), and section modulus (Z), are genetically correlated with total body lean mass (TBLM). However, the shared genetic factors between them are unknown. MATERIALS AND METHODS To identify the specific QTLs shared by FNCS-GPs and TBLM, we performed bivariate whole genome linkage analysis (WGLA) in a large sample of 451 white families made up of 4498 subjects. RESULTS Multipoint bivariate linkage analyses for 22 autosomes showed evidence of suggestive or significant linkages (thresholds of LOD = 2.3 and 3.7, respectively) to chromosomes 3q12 and 20q13 in the entire sample, 6p25 and 10q24 in women, and 4p15, 5q34-35 and 7q21 in men. Two-point linkage analyses for chromosome X showed strong linkage to Xp22.13, Xp11.4, Xq22.3, Xq23-24, and Xq25. Complete pleiotropy was identified on 10q24 and 5q35 for TBLM and BR in women and for TBLM and CT in men, respectively. Furthermore, chromosomes 5q34-35, 7q21, 10q24, 20q13, Xp22.13, Xp11.4, and Xq25 are also of importance because of their linkage to multiple trait pairs. For example, linkage to chromosome 10q24 was found for TBLM x W (LOD = 2.31), TBLM x CT (LOD = 2.51), TBLM x CSA (LOD = 2.51), TBLM x BR (LOD = 2.64), and TBLM x Z (LOD = 2.55) in women. CONCLUSIONS In this study, we identified several genomic regions (e.g., 3q12 and 20q13) that seem to be linked to both FNCS-GPs and TBLM. These regions are of interesting because they may harbor genes that may contribute to variation in both FNCS-GPs and TBLM.
Collapse
Affiliation(s)
- Fei-Yan Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yang TL, Shen H, Xiong DH, Xiao P, Guo Y, Guo YF, Liu YZ, Recker RR, Deng HW. Epistatic interactions between genomic regions containing the COL1A1 gene and genes regulating osteoclast differentiation may influence femoral neck bone mineral density. Ann Hum Genet 2007; 71:152-9. [PMID: 17331078 DOI: 10.1111/j.1469-1809.2006.00313.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bone mineral density (BMD) is a primary risk indicator of osteoporotic fractures, which are largely determined by the actions of multiple genes. Genetic linkage studies have seldom explored epistatic interaction of genes for BMD. To evaluate potential genetic interactions for BMD at the femoral neck (FN) we conducted a variance component linkage analysis, to test epistatic effects between the genomic region containing the COL1A1 (collagen type I alpha 1) gene and the genomic regions containing genes regulating osteoclast differentiation (e.g. TNFRSF11A encoding RANK (receptor for activation of nuclear factor kappa B), TNFSF11 encoding RANKL (RANK ligand), IL1A (interleukin-1 alpha), IL6 (interleukin-6), etc) in 3998 Caucasian subjects from 434 pedigrees. We detected significant epistatic interactions between the regions containing COL1A1 with IL6 (p=0.004) and TNFRSF1B encoding TNFR2 (tumor necrosis factor receptor 2) (p=0.003), respectively. In summary, we identified the epistatic effects on BMD between regions containing several prominent candidate genes. Our results suggested that the IL6 and TNFRSF1B genes may regulate FN BMD variation through interactions with the COL1A1 gene, which should be substantiated by other, or population-based, association studies.
Collapse
Affiliation(s)
- Tie-Lin Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shen H, Long JR, Xiong DH, Guo YF, Xiao P, Liu YZ, Zhao LJ, Liu YJ, Deng HY, Li JL, Recker RR, Deng HW. A genomewide scan for quantitative trait loci underlying areal bone size variation in 451 Caucasian families. J Med Genet 2006; 43:873-80. [PMID: 16825438 PMCID: PMC2563191 DOI: 10.1136/jmg.2006.041251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 05/02/2006] [Accepted: 05/18/2006] [Indexed: 11/03/2022]
Abstract
BACKGROUND Bone size is an important determinant of bone strength and is under strong genetic control. OBJECTIVE To identify quantitative trait loci (QTL) for areal bone size variation, a large-scale genomewide linkage scan was carried out in 451 Caucasian families. PARTICIPANTS AND METHODS Of 4124 people with phenotypes, 3899 were genotyped with 410 microsatellite markers. Multipoint linkage analyses were carried out in the entire sample, as well as in men and women separately. Potential epistatic interactions between identified genomic regions were also assessed. RESULTS Several potentially important genomic regions were identified, such as 8q24 for hip bone size (logarithm of the ratio of the odds that two loci are linked (LOD) 3.27) and 2p24 (LOD 2.04) for spine bone size. 8q24 may also interact with 19p13 to affect hip bone size. Several sex-specific QTL were also detected, such as 14q21 (LOD 2.94) for wrist bone size in women and 16q12 (LOD 2.19) for hip bone size in men. CONCLUSIONS Together with previous findings, this study has further delineated the genetic basis of bone size and laid a foundation for future studies to eventually elucidate the mechanisms of bone size regulation and associated fracture risks.
Collapse
|
15
|
Tinkle BT, Wenstrup RJ. A genetic approach to fracture epidemiology in childhood. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2006; 139C:38-54. [PMID: 16278883 DOI: 10.1002/ajmg.c.30073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of this report is to provide a review of both childhood fracture epidemiology and known heritable causes for fracture predisposition to the Medical Geneticist, who is frequently consulted to assess children with multiple or unexplained fractures for a physiologic etiology. A detailed knowledge of the clinical and laboratory evaluation for osteogenesis imperfecta (OI) and other single-gene disorders is obviously essential to complete a useful evaluation of such children. The experienced clinician will immediately recognize that single gene disorders represent only a small fraction of these patients. In infants, non-accidental trauma (NAT) unfortunately is the likely explanation for the fracture pattern, but in some infants, and certainly in older children with recurrent fractures, no medical explanations can be found. Recent studies in which bone mineral density (BMD) has been associated with genetic variation at a number of candidate genes are promising but these studies are too premature yet to be used clinically. Nonetheless, we do expect that in the future whole-genome approaches in conjunction with key clinical and epidemiological variables may be combined through an informatics approach to create better predictors of fracture susceptibility for these populations of patients.
Collapse
Affiliation(s)
- Brad T Tinkle
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, OH 45229, USA.
| | | |
Collapse
|
16
|
Wang YB, Lei SF, Dvornyk V, Sun X, Jiang DK, Li MX, Deng HW. The genetic, environmental and phenotypic correlations of bone phenotypes at the spine and hip in Chinese. Ann Hum Biol 2006; 33:500-509. [PMID: 17060072 DOI: 10.1080/03014460600814135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Bone mineral density (BMD), bone mineral content (BMC), and bone size have been widely studied individually as important risk factors for osteoporotic fracture, but little is known about the correlation and the degree of sharing genetic and environmental factors between the pairs of the three phenotypes. AIM The study investigated genetic correlation (rhoG), environmental correlation (rhoE) and phenotypic correlation (rhoP) between BMD, BMC and bone size. SUBJECTS AND METHODS Bivariate variance decomposition analyses were performed in 904 subjects from 287 Chinese nuclear families. RESULTS Significant rhoE, rhoG and rhoP were detected between BMD, BMC and bone size, except for rhoE between BMD and bone size at the hip (rhoE = 0.121, p = 0.361). Common shared genetic factors explained 86.1% and 60% of BMD and BMC genetic variations at the spine and hip, respectively. However, the genetic and environmental correlations between BMD and bone size were limited. rhoE and rhoG at the spine were 0.392 and 0.381, and at the hip were 0.121 and -0.205, respectively. Only 14.5% and 4.2% of variations between BMD and bone size at the spine and hip may be due to the shared genetic factors. CONCLUSION The obtained results suggested that bone size may be used as another surrogate phenotype independently of BMD for eventual elucidation of the pathogenesis of osteoporosis because of the limited correlations between BMD and bone size.
Collapse
Affiliation(s)
- Yan-Bo Wang
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Malkin I, Ermakov S, Kobyliansky E, Livshits G. Strong association between polymorphisms in ANKH locus and skeletal size traits. Hum Genet 2006; 120:42-51. [PMID: 16724232 DOI: 10.1007/s00439-006-0173-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Accepted: 03/05/2006] [Indexed: 10/24/2022]
Abstract
Loss of bone strength is the main determinant of bone fragility. Bone strength is directly dependent on bone size (BS). A substantial portion of BS variation is attributable to genetic effects. However, the list of genes and allelic variants involved in the determination of BS variation is far from being complete. Polymorphisms in the ANKH gene have been shown to be associated with radiographic hand BS-related phenotypes. The present study examined the possible association of the ANKH gene with skeletal size and shape in order to test the universality of the ANKH effect on BS traits. Our sample consisted of a total of 212 ethnically homogeneous nuclear families (743 individuals) of European origin. Each individual was measured for body height, weight, and several other anthropometrical measurements, and genotyped for nine polymorphic markers (the average heterozygosity level was 0.4). We observed significant associations with practically all the anthropometrical phenotypes studied. More specifically, we found associations with body weight and height, limb length (P</=0.001; promoter region). After adjustment for body height, we demonstrated the substantial association increase for biacromial breadth (P=0.0012; some 140 kb downstream from ANKH) and vertebral column length (P=0.0008; exons 2-7 region). The majority of the observed associations persisted even after correction for multiple testing. For the first time the reliable evidence in support of universality of ANKH gene polymorphisms effect on bone size was provided.
Collapse
Affiliation(s)
- Ida Malkin
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
18
|
Xiong DH, Shen H, Xiao P, Guo YF, Long JR, Zhao LJ, Liu YZ, Deng HY, Li JL, Recker RR, Deng HW. Genome-wide scan identified QTLs underlying femoral neck cross-sectional geometry that are novel studied risk factors of osteoporosis. J Bone Miner Res 2006; 21:424-37. [PMID: 16491291 DOI: 10.1359/jbmr.051202] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/03/2005] [Accepted: 12/02/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED A genome-wide screen was conducted using a large white sample to identify QTLs for FNCS geometry. We found significant linkage of FNCS parameters to 20q12 and Xq25, plus significant epistatic interactions and sex-specific QTLs influencing FNCS geometry variation. INTRODUCTION Bone geometry, a highly heritable trait, is a critical component of bone strength that significantly determines osteoporotic fracture risk. Specifically, femoral neck cross-sectional (FNCS) geometry is significantly associated with hip fracture risk as well as genetic factors. However, genetic research in this respect is still in its infancy. MATERIALS AND METHODS To identify the underlying genomic regions influencing FNCS variables, we performed a remarkably large-scale whole genome linkage scan involving 3998 individuals from 434 pedigrees for four FNCS geometry parameters, namely buckling ratio (BR), cross-sectional area (CSA), cortical thickness (CT), and section modulus (Z). The major statistical approach adopted is the variance component method implemented in SOLAR. RESULTS Significant linkage evidence (threshold LOD = 3.72 after correction for tests of multiple phenotypes) was found in the regions of 20q12 and Xq25 for CT (LOD = 4.28 and 3.90, respectively). We also identified eight suggestive linkage signals (threshold LOD = 2.31 after correction for multiple tests) for the respective geometry traits. The above findings were supported by principal component linkage analysis. Of them, 20q12 was of particular interest because it was linked to multiple FNCS geometry traits and significantly interacted with five other genomic loci to influence CSA variation. The effects of 20q12 on FNCS geometry were present in both male and female subgroups. Subgroup analysis also revealed the presence of sex-specific quantitative trait loci (QTLs) for FNCS traits in the regions such as 2p14, 3q26, 7q21 and 15q21. CONCLUSIONS Our findings laid a foundation for further replication and fine-mapping studies as well as for positional and functional candidate gene studies, aiming at eventually finding the causal genetic variants and hidden mechanisms concerning FNCS geometry variation and the associated hip fractures.
Collapse
Affiliation(s)
- Dong-Hai Xiong
- Osteoporosis Research Center and Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ermakov S, Malkin I, Kobyliansky E, Livshits G. Variation in femoral length is associated with polymorphisms in RUNX2 gene. Bone 2006; 38:199-205. [PMID: 16198163 DOI: 10.1016/j.bone.2005.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/10/2005] [Accepted: 08/12/2005] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Bone size is an important determinant of bone strength. Although it is well established that bone size traits are under the strong genetic control, genes involved in their determination are poorly characterized. The major objective of the present study was to test hypothesis of possible association between three RUNX2 SNP polymorphisms (rs2819858, rs1406846, rs2819854) and anthropometrical femoral length (FEML). In addition, the possibility of association between anthropometrical tibial length (TIBL) and stature and chosen RUNX2 polymorphisms was tested. MATERIALS AND METHODS The study was conducted on 265 nuclear families comprised of a total of 904 individuals. DNA samples were available for 705 individuals, belonging to 212 nuclear families. Three different transmission disequilibrium tests (TDTs), population-based and pedigree-based (PDT) association analyses were implemented in order to test the working hypothesis. RESULTS The results unambiguously and consistently demonstrated significant association for FEML regardless of the specific polymorphism tested and type of analysis implemented. The P values obtained by TDTs ranged between 0.0155 and 0.0007. The effect of RUNX2 polymorphisms was estimated to explain 1.9% of the total FEML variation after adjustment for sex and age. The data suggested that the strength of association between RUNX2 polymorphisms and FEML may be higher in females (P = 0.007) than in males (P = 0.046), according to PDT. Conversely, no reliable evidence of association between RUNX2 polymorphisms and either TIBL or stature was found. CONCLUSIONS For the first time, the evidence of association between RUNX2 polymorphisms and FEML was provided. The results of the present research contribute to the deeper understanding of the genetic architecture of femoral size and introduce the issues of site and sex dependency of the extent of RUNX2 effect. Further studies are required to confirm our findings, specifically focused on clinically oriented sites of skeleton, like femoral neck.
Collapse
Affiliation(s)
- Sergey Ermakov
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
20
|
Chen XD, Shen H, Recker RR, Deng HW. Linkage exclusion mapping with bone size in 79 Caucasian pedigrees. J Bone Miner Metab 2006; 24:337-43. [PMID: 16816929 DOI: 10.1007/s00774-006-0692-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 01/23/2006] [Indexed: 12/29/2022]
Abstract
Bone size is an important risk factor of osteoporotic fractures and has strong genetic determination. However, genetic studies on bone size variation are relatively rare. In the present study, we conducted a linkage exclusion mapping for bone size variation on chromosomes 1, 4, 6, and 17 in 79 Caucasian pedigrees. For hip bone size variation, several genomic regions were excluded at effect sizes of 10% or greater, including regions of 61-77cM at 1p35-p34, 43-59cM at 4p15-p13, 1-59cM at 6p25-p21, 82-88cM at 17q23-q24, and 113-114cM at 17q25. For spine bone size, at effect sizes of 10% or greater, we excluded regions of 115-122cM at 1p31-p22, 136-141cM at 1p21, 207-260cM at 1q31-q42, 20-89cM at 4p16-q21, 11-21cM at 6p24-p23, and 1-6cM at 17p13. These results suggested that a number of candidate genes located in the excluded regions, such as the growth hormone (GH) gene, tumor necrosis factor-alpha (TNF-alpha) gene, and bone morphogenetic protein-3 (BMP3) gene, are unlikely to have a substantial effect on bone size variation in this Caucasian population.
Collapse
Affiliation(s)
- Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | | | | | | |
Collapse
|
21
|
Guo Y, Zhao LJ, Shen H, Guo Y, Deng HW. Genetic and environmental correlations between age at menarche and bone mineral density at different skeletal sites. Calcif Tissue Int 2005; 77:356-60. [PMID: 16362457 DOI: 10.1007/s00223-005-0181-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 08/30/2005] [Indexed: 11/27/2022]
Abstract
Low bone mineral density (BMD) is an important risk factor for osteoporotic fractures. Though previous studies have demonstrated that age at menarche (AAM) is phenotypically associated with BMD, the contributions of genetic and environmental factors to this association remain unknown. In this study, using variance decomposition analyses, we provided an accurate estimation of the genetic and environmental correlations between AAM and BMD in 2,667 Caucasian women from 512 pedigrees. After adjustment for significant covariates, we detected significant genetic correlations between AAM and BMD at the lumbar spine, femoral neck, and ultradistal radius (rho(G) = -0.1316, -0.1417, and -0.1137, respectively; all P < 0.01). However, all environmental correlations between AAM and BMD were nonsignificant (P > 0.05). We also generated a principal component factor for BMD (PC_BMD) and evaluated the relationship between this factor and AAM. The genetic and environmental correlations between PC_BMD and AAM (rho(P) = -0.0847, P < 0.001; rho(G) = -0.1737, P < 0.01; rho(E) = -0.0348, P > 0.05) were consistent with the results of BMD at the three skeletal sites and AAM. Our results confirmed the significant phenotypic association between BMD and AAM and for the first time suggested that this association is mainly attributable to shared genetic, rather than environmental, factors.
Collapse
Affiliation(s)
- Y Guo
- Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Shen H, Long JR, Xiong DH, Liu YJ, Liu YZ, Xiao P, Zhao LJ, Dvornyk V, Zhang YY, Rocha-Sanchez S, Liu PY, Li JL, Deng HW. Mapping quantitative trait loci for cross-sectional geometry at the femoral neck. J Bone Miner Res 2005; 20:1973-82. [PMID: 16234971 DOI: 10.1359/jbmr.050715] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 06/28/2005] [Accepted: 07/13/2005] [Indexed: 01/06/2023]
Abstract
UNLABELLED A genome-wide linkage scan was performed in a sample of 79 multiplex pedigrees to identify genomic regions linked to femoral neck cross-sectional geometry. Potential quantitative trait loci were detected at several genomic regions, such as 10q26, 20p12-q12, and chromosome X. INTRODUCTION Bone geometry is an important determinant of bone strength and osteoporotic fractures. Previous studies have shown that femoral neck cross-sectional geometric variables are under genetic controls. To identify genetic loci underlying variation in femoral neck cross-sectional geometry, we conducted a whole genome linkage scan for four femoral neck cross-sectional geometric variables in 79 multiplex white pedigrees. MATERIALS AND METHODS A total of 1816 subjects from 79 pedigrees were genotyped with 451 microsatellite markers across the human genome. We performed linkage analyses on the entire data, as well as on men and women separately. RESULTS Significant linkage evidence was identified at 10q26 for buckling ratio (LOD = 3.27) and Xp11 (LOD = 3.45) for cortical thickness. Chromosome region 20p12-q12 showed suggestive linkage with cross-sectional area (LOD = 2.33), cortical thickness (LOD = 2.09), and buckling ratio (LOD = 1.94). Sex-specific linkage analyses further supported the importance of 20p12-q12 for cortical thickness (LOD = 2.74 in females and LOD = 1.88 in males) and buckling ratio (LOD = 5.00 in females and LOD = 3.18 in males). CONCLUSIONS This study is the first genome-wide linkage scan searching for quantitative trait loci underlying femoral neck cross-sectional geometry in humans. The identification of the genes responsible for bone geometric variation will improve our knowledge of bone strength and aid in development of diagnostic approaches and interventions for osteoporotic fractures.
Collapse
Affiliation(s)
- Hui Shen
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska 68131, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang YJ, Dvornyk V, Jian WX, Xiao SM, Deng HW. Genetic and environmental correlations between bone phenotypes and anthropometric indices in Chinese. Osteoporos Int 2005; 16:1134-40. [PMID: 15711779 DOI: 10.1007/s00198-004-1825-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 11/29/2004] [Indexed: 10/25/2022]
Abstract
Height, weight, bone mineral density (BMD), and bone size are all influenced by genetic and environmental factors as well as interactions between them. Height and weight are often used in population studies to adjust the bone phenotypes. However, it is still unknown what proportion of genetic and environmental variability is shared between these anthropometric characteristics and the bone phenotypes. The genetic and environmental correlations between the bone phenotypes and anthropometric indices in Chinese subjects were studied by bivariate quantitative genetic analysis on a sample of 931 healthy subjects from 292 Chinese nuclear families aged from 19 to 79 years. BMD and bone size at the lumbar spine (L1-L4) and the hip of all subjects were measured by dual-energy X-ray absorptiometry. We found significant genetic correlations between weight and spine BMD, hip BMD, spine bone size and hip bone size, which were 0.50 (P<0.01), 0.45 (P<0.01), 0.36 (P=0.02), and 0.38 (P<0.01), respectively. Likewise, significant genetic correlations between height and spine BMD, spine bone size, and hip bone size were 0.30 (P=0.02), 0.54 (P<0.01), and 0.58 (P<0.01), respectively. The environmental correlations were found to be significant only between height and spine bone size (P<0.001) and weight and hip BMD (P=0.02). These results suggest the probability that the same genetic and environmental factors contribute to these different phenotypes. Moreover, when a candidate gene or genomic region is responsible for the variation of both bone phenotypes and anthropometric indices, its true genetic effect on the bone phenotypes may be lost after one has adjusted the phenotypic values with weight and height as random environmental factors. It may have implications for population studies of candidate genes that underlie the complex bone phenotypes and for the development of strategies for therapeutic application.
Collapse
Affiliation(s)
- Yan-Jun Yang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|
24
|
Shen H, Liu Y, Liu P, Recker RR, Deng HW. Nonreplication in genetic studies of complex diseases--lessons learned from studies of osteoporosis and tentative remedies. J Bone Miner Res 2005; 20:365-76. [PMID: 15746981 DOI: 10.1359/jbmr.041129] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 08/29/2004] [Accepted: 10/15/2004] [Indexed: 12/17/2022]
Abstract
Inconsistent results have accumulated in genetic studies of complex diseases/traits over the past decade. Using osteoporosis as an example, we address major potential factors for the nonreplication results and propose some potential remedies. Over the past decade, numerous linkage and association studies have been performed to search for genes predisposing to complex human diseases. However, relatively little success has been achieved, and inconsistent results have accumulated. We argue that those nonreplication results are not unexpected, given the complicated nature of complex diseases and a number of confounding factors. In this article, based on our experience in genetic studies of osteoporosis, we discuss major potential factors for the inconsistent results and propose some potential remedies. We believe that one of the main reasons for this lack of reproducibility is overinterpretation of nominally significant results from studies with insufficient statistical power. We indicate that the power of a study is not only influenced by the sample size, but also by genetic heterogeneity, the extent and degree of linkage disequilibrium (LD) between the markers tested and the causal variants, and the allele frequency differences between them. We also discuss the effects of other confounding factors, including population stratification, phenotype difference, genotype and phenotype quality control, multiple testing, and genuine biological differences. In addition, we note that with low statistical power, even a "replicated" finding is still likely to be a false positive. We believe that with rigorous control of study design and interpretation of different outcomes, inconsistency will be largely reduced, and the chances of successfully revealing genetic components of complex diseases will be greatly improved.
Collapse
Affiliation(s)
- Hui Shen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | |
Collapse
|
25
|
Lei SF, Deng FY, Xiao SM, Chen XD, Deng HW. Association and haplotype analyses of the COL1A2 and ER-alpha gene polymorphisms with bone size and height in Chinese. Bone 2005; 36:533-41. [PMID: 15777651 DOI: 10.1016/j.bone.2004.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 11/01/2004] [Accepted: 11/09/2004] [Indexed: 11/23/2022]
Abstract
Bone size (BS) is another risk factor of fracture independent of BMD in determining bone strength, and height is highly related with BS. To test the effect of the estrogen receptor-alpha (ER-alpha) and collagen type I alpha 2 (COL1A2) genes on the variation of BS and height, we genotyped the PvuII and XbaI polymorphisms in the intron 1 of the ER-alpha gene and the MspI and (GT)n markers in the intron 47 and intron 1 of the COL1A2 gene in 400 Chinese nuclear families with a total of 1256 individuals. The BS at the hip and spine was measured using a Hologic QDR 2000 dual-energy X-ray absorptiometry (DXA) scanner. Population stratification, total-family association, and within-family association were used to test the relationship of BS (at the spine and hip) and height with the four polymorphisms. We also performed these association analyses with the haplotypes of the MspI and (GT)n polymorphisms in the COL1A2 gene, and with the haplotypes of the PvuII and XbaI markers in the ER-alpha gene. Weak within-family association was found between the COL1A2-MspI (P = 0.05) and the femoral neck BS, between the ER-alpha-PX (P = 0.04) and the intertrochanter BS, and between the COL1A2-(GT)(17) (P = 0.02), COL1A2-m(GT)(17) (P = 0.009) and height. Subsequent permutation tests generally confirmed the suggestive within-family association. For the weak within-family association, the proportions of phenotypic variance accounted by the COL1A2-MspI, ER-alpha-PX, COL1A2-(GT)(17), COL1A2-m(GT)(17) markers were 1.50%, 1.51%, 2.15%, and 2.43% for the corresponding phenotypes. The association results indicate that the (GT)n and MspI markers of COL1A2 gene may have some influence on the variation of both BS and height, and the XbaI and PvuII markers of ER-alpha gene may have some effect on the variation of height in Chinese but not on the variation of BS.
Collapse
Affiliation(s)
- Shu-Feng Lei
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | | | | | | | | |
Collapse
|
26
|
Malkin I, Dahm S, Suk A, Kobyliansky E, Toliat M, Ruf N, Livshits G, Nürnberg P. Association of ANKH gene polymorphisms with radiographic hand bone size and geometry in a Chuvasha population. Bone 2005; 36:365-73. [PMID: 15780964 DOI: 10.1016/j.bone.2004.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 09/03/2004] [Accepted: 09/07/2004] [Indexed: 11/20/2022]
Abstract
We performed a family-based association study to test the hypothesis that genetic variation at the human orthologue of the mouse progressive ankylosis gene (ANKH) is involved in determining bone size (BS) and bone geometry (BG). The study population comprised 126 nuclear families with 574 adult Chuvashian individuals living in small villages in the Russian Federation. Quantitative bone traits were determined by analyzing plain hand radiographs. Familial correlations for all studied traits revealed a high degree of heritability in this ethnically homogeneous population. Three simple tandem repeat (STR) polymorphisms, one intragenic and two flanking markers, as well as six single nucleotide polymorphisms (SNPs) were tested. The SNPs were detected by re-sequencing experiments and covered ANKH exons with their flanking splice sites and the promoter region. We used three different transmission disequilibrium tests (TDTs) and obtained multiple significant association signals for all investigated bone traits. Alleles of several markers located at different positions of the ANKH locus, including the promoter, consistently revealed the association. The bone traits tested are closely related to bone fragility suggesting a role for ANKH in osteoporosis.
Collapse
Affiliation(s)
- Ida Malkin
- Department of Anatomy and Anthropology, Human Population Biology Research Unit, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lei SF, Liu YZ, Deng FY, Li YM, Li MX, Deng HW. Association and linkage analyses of interleukin-6 gene 634C/G polymorphism and bone phenotypes in Chinese. J Bone Miner Metab 2005; 23:323-8. [PMID: 15981030 DOI: 10.1007/s00774-004-0607-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 12/22/2004] [Indexed: 11/27/2022]
Abstract
In this study, we tested the interleukin-6 (IL-6) gene as an important candidate gene for its linkage and association with the variation of bone phenotypes (bone mineral density [BMD] and bone size) in young Chinese female subjects. We genotyped the IL-6 gene at the -634C/G restriction fragment length polymorphism (RFLP) site (ID, RS1800796) in 1263 individuals from 402 Chinese nuclear families, composed of both parents and at least one healthy daughter (mean age +/- SD, 31.4 +/- 5.8 years). Using the daughters' bone phenotypes, we tested total-family association, within-family association (via transmission disequilibrium test, [TDT]), and linkage, between the -634C/G marker and bone phenotypes at the spine and the hip. No significant association or linkage was found for bone size and BMD, although a trend was observed for linkage between the IL-6 gene -634C/G marker and L1-4 spinal BMD (adjusted for age, weight, and height). Our results, together with the findings from other studies, indicate that the IL-6 gene, although important for postmenopausal bone loss, may have a limited impact on peak bone mass variation in a Chinese population.
Collapse
Affiliation(s)
- Shu-Feng Lei
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081 P. R. China
| | | | | | | | | | | |
Collapse
|
28
|
Lei SF, Wang YB, Liu MY, Mo XY, Deng HW. The VDR, COL1A1, PTH, and PTHR1 gene polymorphisms are not associated with bone size and height in Chinese nuclear families. J Bone Miner Metab 2005; 23:501-5. [PMID: 16261459 DOI: 10.1007/s00774-005-0635-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
We tested the relationship of the ApaI, Eco31I, BstBI, and (AAAG)n polymorphisms in the vitamin D receptor (VDR), collagen type I alpha-1 (COL1A1), parathyroid hormone (PTH), and parathyroid hormone (PTH)/PTH-related peptide receptor (PTHR1) genes with variations in bone size (BS) and height. Population stratification, total-family association, and within-family association were used to test these relationships in 400 Chinese nuclear families with a total of 1256 individuals. The BS at hip and spine was measured using a Hologic QDR 2000 dual-energy X-ray absorptiometry (DXA) scanner. The minor allele frequencies were 29.2%, 36.0%, and 14.0% for the VDR-ApaI, COL1A1-Eco31I, and PTH-BstBI markers, respectively. (AAAG)5 and (AAAG)6 of the PTHR1 gene are two major alleles in the Chinese people. Significant population stratification was found between the spine BS and PTHR1-(AAAG)5 (P = 0.048) and PTHR1-(AAAG)6 (P = 0.023), as well as between PTHR1-(AAAG)5 and height (P = 0.048), but we did not detect any significant within-family association or total-family association between the VDR, COL1A1, PTH, and PTHR1 gene polymorphisms and the variations in BS and height in our sample. Our results do not support that the VDR, COL1A1, PTH, and PTHR1 genes have an important influence on the variation in BS and height in our Chinese population.
Collapse
Affiliation(s)
- Shu-Feng Lei
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | | | | | | | | |
Collapse
|
29
|
Zhang YY, Liu PY, Lu Y, Davies KM, Dvornyk V, Recker RR, Deng HW. Race and sex differences and contribution of height: A study on bone size in healthy Caucasians and Chinese. Am J Hum Biol 2005; 17:568-75. [PMID: 16136538 DOI: 10.1002/ajhb.20427] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis is characterized by a loss of bone strength, of which bone size (BS) is an important determinant. However, studies on the factors determining BS are relatively few. The present study evaluated the independent effects of height, age, weight, sex, and race on areal BS at the hip and spine, measured by dual-energy X-ray absorptiometry, while focusing on the differential contributions of height to BS across sex, race, and skeletal site. The subjects were aged 40 years or older, including 763 Chinese (384 males and 379 females) from Shanghai, People's Republic of China, and 424 Caucasians (188 males and 236 females) from Omaha, Nebraska. Basically, Caucasians had significantly larger BS than Chinese. After adjusting for height, age, and weight, the Chinese had similar spine BS, but significantly larger intertrochanter BS in both sexes and larger total hip BS in females compared with Caucasians. Males had significantly larger BS than females before and after adjustment in both ethnic groups. The effects of age, weight, and race varied, depending on skeletal site. As expected, height had major effects on BS variation in both sexes and races. Height tended to account for larger BS variation at the spine than at the hip (except for Chinese females), and larger BS variation in Caucasians than in Chinese of the same sex (except for the trochanter in females). We conclude that height is a major predictor for BS, and its contributions vary across sex, race, and skeletal site.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska 68131, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Xu FH, Liu YJ, Deng H, Huang QY, Zhao LJ, Shen H, Liu YZ, Dvornyk V, Conway T, Li JL, Davies KM, Recker RR, Deng HW. A follow-up linkage study for bone size variation in an extended sample. Bone 2004; 35:777-84. [PMID: 15336616 DOI: 10.1016/j.bone.2004.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 04/23/2004] [Accepted: 05/10/2004] [Indexed: 11/18/2022]
Abstract
Bone size, which has strong genetic determination, is an important determinant of bone strength and a risk factor of osteoporotic fractures. We previously reported an approximately 10-cm genome-wide linkage scan in 630 subjects from 53 US Caucasian pedigrees. The strongest evidence of linkage was obtained on chromosome 17q22 near the marker D17S787, with a two-point LOD score of 3.98 and a multipoint maximum LOD score (MLS) of 3.01. Additionally, suggestive linkages (1.54 < MLS < 2.83) were found at the other four chromosomal regions. In the present study, with an attempt to further examine our previous findings, we perform a follow-up linkage analysis in an expanded sample of 79 pedigrees with 1816 subjects. The total sample contains >80,000 informative relative pairs for linkage analyses, including 3846 sib pairs. Fifteen markers covering the above five promising regions are genotyped, narrowing the average genomic distance from approximately 10 to 5 cm. In the total 79 pedigrees, support of linkage was achieved for the wrist bone size at 17q22 with a two-point LOD score of 2.27 (P = 0.0006) and MLS of 1.78 (P = 0.002). The genomic region 17q22 includes COL1A1, a strong candidate gene that is significantly associated with osteoporotic fracture risk. Our data suggest that this region is promising for further exploratory studies.
Collapse
Affiliation(s)
- Fu-Hua Xu
- Osteoporosis Research Center, Creighton University, Omaha, NE 68131, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Huang QY, Xu FH, Shen H, Deng HY, Conway T, Liu YJ, Liu YZ, Li JL, Li MX, Davies KM, Recker RR, Deng HW. Genome scan for QTLs underlying bone size variation at 10 refined skeletal sites: genetic heterogeneity and the significance of phenotype refinement. Physiol Genomics 2004; 17:326-31. [PMID: 15039485 DOI: 10.1152/physiolgenomics.00161.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify quantitative trait loci (QTLs) underlying variation in bone size, we conducted a whole-genome linkage scan in 53 pedigrees with 630 subjects using 380 microsatellite markers. Lumbar area 1, 2, 3, and 4 at the spine, femoral neck, trochanter, intertrochanter areas at the hip, ultradistal, mid-distal, and one-third distal areas at the wrist were measured by dual-energy X-ray absorptiometry (DXA), and adjusted for age, height, weight, and sex. Two-point and multipoint linkage analyses were performed for skeletal bone size at each site and their composite measurements using the SOLAR package. Two chromosomal regions (1q22 and 10q21) were identified with significant evidence of linkage (LOD > 4.32) to one-third distal area, and three were identified with suggestive evidence of linkage (LOD > 2.93) to bone size in one skeletal site. Our results indicated that the low power of QTLs mapping for composite phenotypic measurements may result from genetic heterogeneity of complex traits.
Collapse
Affiliation(s)
- Qing-Yang Huang
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska 68131, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jian WX, Long JR, Deng HW. High heritability of bone size at the hip and spine in Chinese. J Hum Genet 2004; 49:87-91. [PMID: 14727155 DOI: 10.1007/s10038-003-0113-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 11/13/2003] [Indexed: 10/26/2022]
Abstract
Bone size, an independent determinant of bone strength, is an important risk factor for osteoporotic fracture. In the present study, we investigated the magnitude of the genetic determination of bone size at the spine and hip and their genetic covariation (if any) in a population of Chinese residing in Shanghai City of P.R. China. The subjects were 50 healthy full-sib pairs of females, 188 mother-daughter pairs, and 128 husband-wife pairs selected from 401 nuclear families. Bone size (centimeters squared) was measured at the spine and hip by dual-energy X-ray absorptiometry (DEXA). The narrow-sense heritabilities h2 (SE) of bone size at the spine and hip were 0.63 (0.14) and 0.45 (0.14) respectively when estimated by full-sib pairs, and 0.60 (0.07) and 0.69 (0.07) respectively when estimated by mother-daughter pairs. Marginally significant genetic correlation was observed between the spine and hip bone size. The significantly and moderately high h2 values for bone size demonstrated in this study warrant a subsequent genetic study to search for the genes or genomic regions underlying the phenotype in Chinese.
Collapse
Affiliation(s)
- Wei-Xia Jian
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, 410081, Changsha Hunan, P.R. China
| | - Ji-Rong Long
- Osteoporosis Research Center and Department of Biomedical Sciences, Suite 6787, Creighton University, 601 N. 30th St., Omaha, NE 68131, USA
| | - Hong-Wen Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, 410081, Changsha Hunan, P.R. China.
- Osteoporosis Research Center and Department of Biomedical Sciences, Suite 6787, Creighton University, 601 N. 30th St., Omaha, NE 68131, USA.
| |
Collapse
|
33
|
Long JR, Liu PY, Lu Y, Xiong DH, Zhao LJ, Zhang YY, Elze L, Recker RR, Deng HW. Association between COL1A1 gene polymorphisms and bone size in Caucasians. Eur J Hum Genet 2004; 12:383-8. [PMID: 14722584 DOI: 10.1038/sj.ejhg.5201152] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Bone size is an important determinant of bone strength and a risk factor of osteoporotic fracture. Several studies indicate that bone size has a high heritability. Thus, a better understanding of genetic factors regulating bone size might have important clinical implications. In the present study, we examined the relationship between the collagen type I alpha 1 (COL1A1) gene and bone size at the spine, hip and wrist in a sample of 1873 subjects of Caucasian origin from 405 nuclear families. Three single-nucleotide polymorphisms (SNPs) in the COL1A1 gene were analyzed. The minor allele frequencies were 15.4, 18.8, and 1.9% for SNP1, SNP2, and SNP3, respectively. Haplotypes were reconstructed based on the family information as well as marker genotypes using the program Genehunter. We did not find evidence of population stratification, within-family association, or linkage for either single SNPs or haplotypes at any skeletal site. Suggestive evidence of total association was observed for the wrist size at SNP2 (P=0.011). After adjusting age, sex, height, and weight, subjects with the T allele of SNP2 had, on average, 3.05% smaller wrist size than noncarriers. When the subjects were divided into families with only female offspring and families with male offspring only, similar total associations were found at the wrist size for SNP2 with P-values of 0.011 and 0.010, respectively. In conclusion, the COL1A1 gene may have some effects on bone size variation at the wrist, but not at the spine or hip in our Caucasian nuclear families.
Collapse
Affiliation(s)
- Ji-Rong Long
- Osteoporosis Research Center, Creighton University, Omaha, NE 68131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Deng FY, Liu MY, Li MX, Lei SF, Qin YJ, Zhou Q, Liu YJ, Deng HW. Tests of linkage and association of the COL1A2 gene with bone phenotypes' variation in Chinese nuclear families. Bone 2003; 33:614-9. [PMID: 14555266 DOI: 10.1016/s8756-3282(03)00234-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we simultaneously test linkage and/or association of the collagen type I alpha 2 (COL1A2) gene with bone mineral density (BMD) and bone area. A total of 1280 subjects from 407 Chinese nuclear families (including both parents and their daughters) were genotyped for an intragenic marker MspI in the COL1A2 gene. BMD and bone area at the lumbar spine and hip were measured by dual-energy X-ray absorptiometry. Applying the QTDT (quantitative transmission disequilibrium test) program, we performed tests for population stratification, within-family association (via transmission disequilibrium test), total association, linkage, and linkage while modeling association. Significant or marginal within-family associations were found with BMD at the lumbar spine (P = 0.013), trochanter (P = 0.004), and total hip (P = 0.053) and with bone area at the intertrochanteric region (P = 0.024) and total hip (P = 0.048). The positive associations were confirmed in permutations except for bone area at total hip (P > 0.10). A small proportion (<1%) of the population variance of bone phenotypes can be explained by the MspI polymorphism; however, it may be underestimated given the significant population stratification detected in our sample. Due to the limited number of sib pairs in this sample, we did not find evidence of linkage. In summary, the MspI polymorphism is likely to be in linkage disequilibrium with a nearby functional mutation affecting BMD and bone area.
Collapse
Affiliation(s)
- F Y Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Livshits G, Pantsulaia I, Pantsulaia I, Trofimov S, Kobyliansky E. Genetic variation of circulating leptin is involved in genetic variation of hand bone size and geometry. Osteoporos Int 2003; 14:476-83. [PMID: 12739104 DOI: 10.1007/s00198-003-1383-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 12/12/2002] [Indexed: 12/12/2022]
Abstract
Leptin is secreted primarily by the adipocytes and plays an important role in the regulation of food intake and energy expenditure. In addition to its adipostatic function, it has been demonstrated that leptin directly enhances stromal cell differentiation to osteoblasts, and since such precursor cells are potential targets for leptin, the latter could possibly mediate the relationship between obesity and bone mass and size. To address this question, we studied phenotypic and genetic correlations between the circulating levels of leptin and hand bone size (BS) and geometry (BG) of the radiographic hand in a healthy and ethnically homogeneous sample of pedigrees. We also attempted to evaluate to what extent potential leptin/BS/BG correlations are modified by an individual's obesity traits, specifically his/her BMI. Our research has shown that leptin, BMI and the corresponding bone measures are clearly inherited traits (0.46+/-0.11, 0.35+/-0.16, 0.62+/-0.12 and 0.51+/-0.09, respectively). The bivariate variance component analysis revealed very strong and significant genetic and environmental correlations between circulating leptin and BMI ( r(G)=0.86+/-0.09, r(E)=0.75+/-0.05, P<0.001). Furthermore, genetic correlations between leptin and hand bone characteristics proved inverse and statistically significant ( r(G)=-0.35+/-0.01 and -0.45+/-0.10 for BS and BG, respectively), while corresponding environmental correlations were low ( r(E)=-0.14+/-0.15 and -0.07+/-0.14) and they could be constrained to zero without significant deterioration of the model fit to the data ( P>0.10). However, despite the extremely strong relationship between leptin and BMI, we failed to detect phenotypic or genetic correlations between BMI and our two hand bone measures. Thus our study provided evidence that plasma leptin levels may be statistically significant predictor of hand bone size and geometry, and may play a physiological role in maintaining bone mass as well as in regulation of hand bone proportions.
Collapse
Affiliation(s)
- Gregory Livshits
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | |
Collapse
|
36
|
Deng HW, Shen H, Xu FH, Deng H, Conway T, Liu YJ, Liu YZ, Li JL, Huang QY, Davies KM, Recker RR. Several genomic regions potentially containing QTLs for bone size variation were identified in a whole-genome linkage scan. Am J Med Genet A 2003; 119A:121-31. [PMID: 12749049 DOI: 10.1002/ajmg.a.20100] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone size is an important determinant of osteoporotic fractures. For a sample of 53 pedigrees that contains more than 10,000 relative pairs informative for linkage analyses, we performed a whole-genome linkage scan using 380 microsatellite markers to identify genomic regions that may contain QTLs of bone size (two dimensional measurement by dual energy X-ray absorptiometry). We conducted two- and multi-point linkage analyses. Several potentially important genomic regions were identified. For example, the genomic region 17q23 may contain a QTL for wrist (ultra distal) bone size variation; a LOD score of 3.98 is achieved at D17S787 in two-point analyses and a maximum LOD score (MLS) of 3.01 is achieved in multi-point analyses in 17q23. 19p13 may contain a QTL for hip bone size variation; a LOD score of 1.99 is achieved at D19S226 in two-point analyses and a MLS of 2.83 is achieved in 19p13 in multi-point analyses. The genomic region identified on chromosome 17 for wrist bone size seems to be consistent with that identified for femur head width variation in an earlier whole-genome scan study. The genomic regions identified in this study and an earlier investigation on one-dimensional bone size measurement by radiography are compared. The two studies may form a basis for further exploration with larger samples and/or denser markers for confirmation and fine mapping studies to eventually identify major functional genes and the associated etiology for osteoporosis.
Collapse
Affiliation(s)
- Hong-Wen Deng
- Osteoporosis Research Center and Department of Biomedical Research, Creighton University, Omaha, Nebraska 68131, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Masinde GL, Wergedal J, Davidson H, Mohan S, Li R, Li X, Baylink DJ. Quantitative trait loci for periosteal circumference (PC): identification of single loci and epistatic effects in F2 MRL/SJL mice. Bone 2003; 32:554-60. [PMID: 12753872 DOI: 10.1016/s8756-3282(03)00063-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To test the hypothesis that periosteal circumference (PC), which is associated with bone size through cross-sectional moment of inertia (CMI), has heritable components, we performed a linkage analysis using 633 MRL/SJL F(2) mice that have 14% difference in mean PC. PC was determined in femurs by use of peripheral quantitative computerized tomography (pQCT). The genome-wide scan identified nine QTL for PC adjusted by body weight on chromosomes 1 (2 QTL), 2 (2 QTL), 8, 11, 15, 17, and X, which accounted for 38.6% of phenotype variance. QTL on chromosomes 1 (D1Mit33), 8 (D8Mit125), 15 (D15Mit 62), 17 (D17Mit176), and X (DXMit208) were unique for PC adjusted by body weight and femur length, while the remaining PC QTL were shared with body weight but not femur length. Four epistatic interactions were identified which accounted for 37.6% of phenotype variance. There was also evidence of pleiotropic effects on chromosome 11 among four size phenotypes (PC, body length, body weight, bone mineral density, and muscle size), which may represent a common genetic mechanism that may regulate bone size and body size.
Collapse
Affiliation(s)
- G L Masinde
- Molecular Genetics Division, Musculoskeletal Disease Center, J.L. Pettis VA Medical Center and Loma Linda University, Loma Linda, CA 92357, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Despite the obvious epidemiological significance of bone size (BS) and geometry (BG) traits as risk factors for osteoporotic fracture, very little is still known concerning the extent of their genetic determination. In the present paper we report the results of quantitative genetic analysis of a number of BG and BS indices, as well as of BMD measurements, obtained on a large pedigree-based sample (296 nuclear families, 1208 individuals) of plain hand radiographs. The families studied were all ethnically Caucasians (Chuvasha) living in small villages along the Volga River (Russia). The sample consisted of 636 men and 572 women, aged 18-91 years. To assess hand bone size we used the outcome of principal component analysis conducted on 48 measurements of metacarpal bones and proximal phalanges (PC-BS). Two BG indices, average metacarpal cortical index and breaking bending resistance index (BBRI), also measured on metacarpal and proximal phalanges were used. Again the outcome of the principal component PC-BBRI was examined in the genetic analysis. PC-BS measurements strongly correlated with body length (r = 0.75, P < 0.001) and weight (r = 0.39, P < 0.001), suggesting that they indeed reflected hand skeleton size. Familial correlations for all studied traits, adjusted for covariates (sex, age, etc.), were all highly significant statistically. For example, parent/offspring correlations ranged between 0.248 (P < 0.001) for phalangeal BMD and 0.385 (P < 0.001) for PC-BBRI. Maximum likelihood estimates of the variance component analysis confirmed these results, indicating that approximately 58 to 66% of the residual variance of the studied traits was attributable to genetic effects. Bivariate analysis clearly revealed that while genetic variation of the phalangeal BMD was independent of the genetic effects influencing hand BS and BG, the latter two were strongly interrelated. A substantial proportion of PC-BS and PC-BBRI variation was due to shared genetic (r(G) = 0.468 +/- 0.063) and environmental (r(E) = 0.704 +/- 0.052) factors.
Collapse
Affiliation(s)
- G Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.
| | | | | |
Collapse
|
39
|
Liu PY, Qin YJ, Recker RR, Deng HW. Evidence for a major gene underlying bone size variation in the Chinese. Am J Hum Biol 2003; 16:68-77. [PMID: 14689517 DOI: 10.1002/ajhb.10240] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is a major public health problem defined as a loss of bone strength, of which bone size is an important determinant. In the present study, familial correlation and segregation analyses for the spine and hip bone sizes were performed for the first time in a Chinese sample composed of 393 nuclear families with a total of 1,193 individuals. The results indicate a major gene of codominant inheritance for spine bone size; however, there is no evidence of a major gene influencing hip bone size. Significant familial residual effects are found for both traits, suggesting their polygenic inheritance. Heritability estimates (+/-SE) for spine and hip bone size were 0.62 (0.13) and 0.59 (0.12), respectively. Sex and age differences in genotype-specific average bone size were observed. Compared with our previous study on bone mineral density (BMD) in the same population, this study suggests that genetic determination of bone size may be different from that of BMD, and thus studying bone size as one surrogate phenotype for osteoporotic fractures may be necessary.
Collapse
Affiliation(s)
- Peng-Yuan Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | | | | | | |
Collapse
|