1
|
Litberg TJ, Horowitz S. Roles of Nucleic Acids in Protein Folding, Aggregation, and Disease. ACS Chem Biol 2024; 19:809-823. [PMID: 38477936 PMCID: PMC11149768 DOI: 10.1021/acschembio.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The role of nucleic acids in protein folding and aggregation is an area of continued research, with relevance to understanding both basic biological processes and disease. In this review, we provide an overview of the trajectory of research on both nucleic acids as chaperones and their roles in several protein misfolding diseases. We highlight key questions that remain on the biophysical and biochemical specifics of how nucleic acids have large effects on multiple proteins' folding and aggregation behavior and how this pertains to multiple protein misfolding diseases.
Collapse
Affiliation(s)
- Theodore J. Litberg
- Department of Chemistry & Biochemistry and The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80208, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry and The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80208, USA
| |
Collapse
|
2
|
Riccardi C, D’Aria F, Fasano D, Digilio FA, Carillo MR, Amato J, De Rosa L, Paladino S, Melone MAB, Montesarchio D, Giancola C. Truncated Analogues of a G-Quadruplex-Forming Aptamer Targeting Mutant Huntingtin: Shorter Is Better! Int J Mol Sci 2022; 23:ijms232012412. [PMID: 36293267 PMCID: PMC9604342 DOI: 10.3390/ijms232012412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Two analogues of the MS3 aptamer, which was previously shown to have an exquisite capability to selectively bind and modulate the activity of mutant huntingtin (mHTT), have been here designed and evaluated in their physicochemical and biological properties. Featured by a distinctive propensity to form complex G-quadruplex structures, including large multimeric aggregates, the original 36-mer MS3 has been truncated to give a 33-mer (here named MS3-33) and a 17-mer (here named MS3-17). A combined use of different techniques (UV, CD, DSC, gel electrophoresis) allowed a detailed physicochemical characterization of these novel G-quadruplex-forming aptamers, tested in vitro on SH-SY5Y cells and in vivo on a Drosophila Huntington’s disease model, in which these shorter MS3-derived oligonucleotides proved to have improved bioactivity in comparison with the parent aptamer.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Dominga Fasano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, 80131 Naples, Italy
| | - Maria Rosaria Carillo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Laura De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Correspondence: (D.M.); (C.G.)
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (D.M.); (C.G.)
| |
Collapse
|
3
|
Riccardi C, D’Aria F, Digilio FA, Carillo MR, Amato J, Fasano D, De Rosa L, Paladino S, Melone MAB, Montesarchio D, Giancola C. Fighting the Huntington's Disease with a G-Quadruplex-Forming Aptamer Specifically Binding to Mutant Huntingtin Protein: Biophysical Characterization, In Vitro and In Vivo Studies. Int J Mol Sci 2022; 23:4804. [PMID: 35563194 PMCID: PMC9101412 DOI: 10.3390/ijms23094804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
A set of guanine-rich aptamers able to preferentially recognize full-length huntingtin with an expanded polyglutamine tract has been recently identified, showing high efficacy in modulating the functions of the mutated protein in a variety of cell experiments. We here report a detailed biophysical characterization of the best aptamer in the series, named MS3, proved to adopt a stable, parallel G-quadruplex structure and show high nuclease resistance in serum. Confocal microscopy experiments on HeLa and SH-SY5Y cells, as models of non-neuronal and neuronal cells, respectively, showed a rapid, dose-dependent uptake of fluorescein-labelled MS3, demonstrating its effective internalization, even in the absence of transfecting agents, with no general cytotoxicity. Then, using a well-established Drosophila melanogaster model for Huntington's disease, which expresses the mutated form of human huntingtin, a significant improvement in the motor neuronal function in flies fed with MS3 was observed, proving the in vivo efficacy of this aptamer.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy;
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, 80131 Napoli, Italy; (F.A.D.); (M.R.C.)
| | - Maria Rosaria Carillo
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, 80131 Napoli, Italy; (F.A.D.); (M.R.C.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Napoli, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| | - Dominga Fasano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
- Center for Rare Diseases and Inter University Center for Research in Neurosciences, Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, 80131 Napoli, Italy;
| | - Laura De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
| | - Mariarosa Anna Beatrice Melone
- Center for Rare Diseases and Inter University Center for Research in Neurosciences, Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, 80131 Napoli, Italy;
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy;
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| |
Collapse
|
4
|
Mollasalehi N, Francois-Moutal L, Porciani D, Burke DH, Khanna M. Aptamers Targeting Hallmark Proteins of Neurodegeneration. Nucleic Acid Ther 2022; 32:235-250. [PMID: 35452303 DOI: 10.1089/nat.2021.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurodegeneration is a progressive deterioration of neural structures leading to cognitive or motor impairment of the affected patient. There is still no effective therapy for any of the most common neurodegenerative diseases (NDs) such as Alzheimer's or Parkinson's disease. Although NDs exhibit distinct clinical characteristics, many are characterized by the accumulation of misfolded proteins or peptide fragments in the brain and/or spinal cord. The presence of similar inclusion bodies in patients with diverse NDs provides a rationale for developing therapies directed at overlapping disease mechanisms. A novel targeting strategy involves the use of aptamers for therapeutic development. Aptamers are short nucleic acid ligands able to recognize molecular targets with high specificity and high affinity. Despite the fact that several academic groups have shown that aptamers have the potential to be used in therapeutic and diagnostic applications, their clinical translation is still limited. In this study, we describe aptamers that have been developed against proteins relevant to NDs, including prion protein and amyloid beta (Aβ), cell surface receptors and other cytoplasmic proteins. This review also describes advances in the application of these aptamers in imaging, protein detection, and protein quantification, and it provides insights about their accelerated clinical use for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Niloufar Mollasalehi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA.,Center for Innovation in Brain Science, Tucson, Arizona, USA
| | - Liberty Francois-Moutal
- Center for Innovation in Brain Science, Tucson, Arizona, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - David Porciani
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA.,MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Donald H Burke
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA.,MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - May Khanna
- Center for Innovation in Brain Science, Tucson, Arizona, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Caterino M, Squillaro T, Montesarchio D, Giordano A, Giancola C, Melone MAB. Huntingtin protein: A new option for fixing the Huntington's disease countdown clock. Neuropharmacology 2018. [PMID: 29526547 DOI: 10.1016/j.neuropharm.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Huntington's disease is a dreadful, incurable disorder. It springs from the autosomal dominant mutation in the first exon of the HTT gene, which encodes for the huntingtin protein (HTT) and results in progressive neurodegeneration. Thus far, all the attempted approaches to tackle the mutant HTT-induced toxicity causing this disease have failed. The mutant protein comes with the aberrantly expanded poly-glutamine tract. It is primarily to blame for the build-up of β-amyloid-like HTT aggregates, deleterious once broadened beyond the critical ∼35-37 repeats threshold. Recent experimental findings have provided valuable information on the molecular basis underlying this HTT-driven neurodegeneration. These findings indicate that the poly-glutamine siding regions and many post-translation modifications either abet or counter the poly-glutamine tract. This review provides an overall, up-to-date insight into HTT biophysics and structural biology, particularly discussing novel pharmacological options to specifically target the mutated protein and thus inhibit its functions and toxicity.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Tiziana Squillaro
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases, University of Campania "Luigi Vanvitelli", Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Daniela Montesarchio
- InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA; Department of Medicine, Surgery and Neuroscience University of Siena, Siena, Italy
| | - Concetta Giancola
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.
| | - Mariarosa A B Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases, University of Campania "Luigi Vanvitelli", Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Bouvier-Müller A, Ducongé F. Nucleic acid aptamers for neurodegenerative diseases. Biochimie 2017; 145:73-83. [PMID: 29104136 DOI: 10.1016/j.biochi.2017.10.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
The increased incidence of neurodegenerative diseases represents a huge challenge for societies. These diseases are characterized by neuronal death and include several different pathologies, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, Huntington's disease and transmissible spongiform encephalopathies. Most of these pathologies are often associated with the aggregation of misfolded proteins, such as amyloid-ß, tau, α-synuclein, huntingtin and prion proteins. However, the precise mechanisms that lead to neuronal dysfunction and death in these diseases remain poorly understood. Nucleic acid aptamers represent a new class of ligands that could be useful to better understand these diseases and develop better diagnosis and therapy. In this review, several of these aptamers are presented as well as their applications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Alix Bouvier-Müller
- CEA, Fundamental Research Division (DRF), Institute of Biology François Jacob (Jacob), Molecular Imaging Research Center, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; Neurodegenerative Diseases Laboratory, CNRS CEA UMR 9199, Fontenay-aux-Roses, France; Paris-Saclay University, Paris-Sud University, Fontenay-aux-Roses, France
| | - Frédéric Ducongé
- CEA, Fundamental Research Division (DRF), Institute of Biology François Jacob (Jacob), Molecular Imaging Research Center, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; Neurodegenerative Diseases Laboratory, CNRS CEA UMR 9199, Fontenay-aux-Roses, France; Paris-Saclay University, Paris-Sud University, Fontenay-aux-Roses, France.
| |
Collapse
|
7
|
Su KH, Dai C. Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders. Cell Mol Life Sci 2016; 73:4231-4248. [PMID: 27289378 PMCID: PMC5599143 DOI: 10.1007/s00018-016-2291-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Abstract
Proteome homeostasis, or proteostasis, is essential to maintain cellular fitness and its disturbance is associated with a broad range of human health conditions and diseases. Cells are constantly challenged by various extrinsic and intrinsic insults, which perturb cellular proteostasis and provoke proteotoxic stress. To counter proteomic perturbations and preserve proteostasis, cells mobilize the proteotoxic stress response (PSR), an evolutionarily conserved transcriptional program mediated by heat shock factor 1 (HSF1). The HSF1-mediated PSR guards the proteome against misfolding and aggregation. In addition to proteotoxic stress, emerging studies reveal that this proteostatic mechanism also responds to cellular energy state. This regulation is mediated by the key cellular metabolic sensor AMP-activated protein kinase (AMPK). In this review, we present an overview of the maintenance of proteostasis by HSF1, the metabolic regulation of the PSR, particularly focusing on AMPK, and their implications in the two major age-related diseases-diabetes mellitus and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kuo-Hui Su
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Chengkai Dai
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
8
|
Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014; 114:6661-714. [PMID: 24901537 PMCID: PMC4095937 DOI: 10.1021/cr400695p] [Citation(s) in RCA: 371] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Francois-Xavier Theillet
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andres Binolfi
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Tamara Frembgen-Kesner
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Karan Hingorani
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Mohona Sarkar
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Ciara Kyne
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Conggang Li
- Key Laboratory
of Magnetic Resonance in Biological Systems, State Key Laboratory
of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center
for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Peter B. Crowley
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Lila Gierasch
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Gary J. Pielak
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Adrian H. Elcock
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Anne Gershenson
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Philipp Selenko
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
9
|
The Aggregation of Huntingtin and α-Synuclein. JOURNAL OF BIOPHYSICS 2012; 2012:606172. [PMID: 22899913 PMCID: PMC3412099 DOI: 10.1155/2012/606172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 12/23/2022]
Abstract
Huntington's and Parkinson's diseases are neurodegenerative disorders associated with unusual protein interactions. Although the origin and evolution of these diseases are completely different, characteristic deposits of protein aggregates (huntingtin and α-synuclein resp.), are a common feature in both diseases. After these observations, many studies are performed with both proteins. Some of them try to understand the nature and driving forces of the aggregation process; others try to find a correlation between the genetic and failure in protein function. Finally with the combination of both approaches, it was proposed that possible strategies deal with pathologic aggregation. Unfortunately, if protein aggregation is a cause or a consequence of the neurodegeneration observed in these pathologies, it is still debatable. This paper describes the process of aggregation of two proteins: huntingtin and α synuclein. The characteristics of the aggregation reaction of these proteins have been followed with novel methods both in vivo and in vitro; these studies include both the combination with other proteins and the presence of various chemical compounds. The ultimate goal of this study was to summarize recent findings on protein aggregation and its possible role as a therapeutic target in neurodegenerative diseases and their role in biomaterial science.
Collapse
|
10
|
Macedo B, Millen TA, Braga CACA, Gomes MPB, Ferreira PS, Kraineva J, Winter R, Silva JL, Cordeiro Y. Nonspecific Prion Protein–Nucleic Acid Interactions Lead to Different Aggregates and Cytotoxic Species. Biochemistry 2012; 51:5402-13. [DOI: 10.1021/bi300440e] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno Macedo
- Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, RJ 21941-590,
Rio de Janeiro, Brazil
| | - Thiago A. Millen
- Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | - Carolina A. C. A. Braga
- Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | - Mariana P. B. Gomes
- Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, RJ 21941-590,
Rio de Janeiro, Brazil
| | - Priscila S. Ferreira
- Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | - Julia Kraineva
- Faculty of Chemistry,
Physical
Chemistry I, Dortmund University, Dortmund,
Germany
| | - Roland Winter
- Faculty of Chemistry,
Physical
Chemistry I, Dortmund University, Dortmund,
Germany
| | - Jerson L. Silva
- Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | - Yraima Cordeiro
- Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, RJ 21941-590,
Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Assessing mutant huntingtin fragment and polyglutamine aggregation by atomic force microscopy. Methods 2010; 53:275-84. [PMID: 21187152 DOI: 10.1016/j.ymeth.2010.12.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/18/2010] [Accepted: 12/18/2010] [Indexed: 01/01/2023] Open
Abstract
Huntington disease (HD), a neurodegenerative disorder, is caused by an expansion of more than 35-40 polyglutamine (polyQ) repeats located near the N-terminus of the huntingtin (htt) protein. The expansion of the polyQ domain results in the ordered assembly of htt fragments into fibrillar aggregates that are the main constituents of inclusion bodies, which are a hallmark of the disease. This paper describes protocols for studying the aggregation of mutant htt fragments and synthetic polyQ peptides with atomic force microscopy (AFM). Ex situ AFM is used to characterize aggregate formation in protein incubation as a function of time. Methods to quickly and unambiguously distinguish specific aggregate species from complex, heterogeneous aggregation reactions based on simple morphological features are presented. Finally, the application of time lapse atomic force microscopy in solution is presented for studying synthetic model polyQ peptides, which allows for tracking the formation and fate of individual aggregates on surfaces over time. This ability allows for dynamic studies of the aggregation process and direct observation of the interplay between different types of aggregates.
Collapse
|
12
|
Hands SL, Wyttenbach A. Neurotoxic protein oligomerisation associated with polyglutamine diseases. Acta Neuropathol 2010; 120:419-37. [PMID: 20514488 DOI: 10.1007/s00401-010-0703-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/20/2010] [Accepted: 05/23/2010] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) diseases are associated with a CAG/polyQ expansion mutation in unrelated proteins. Upon elongation of the glutamine tract, disease proteins aggregate within cells, mainly in the central nervous system (CNS) and this aggregation process is associated with neurotoxicity. However, it remains unclear to what extent and how this aggregation causes neuronal dysfunction in the CNS. Aiming at preventing neuronal dysfunction, it will be crucial to determine the links between aggregation and cellular dysfunction, understand the folding pathway of polyQ proteins and discover the relative neurotoxicity of polyQ protein species formed along the aggregation pathway. Here, we review what is known about conformations of polyQ peptides and proteins in their monomeric state from experimental and modelling data, how conformational changes of polyQ proteins relate to their oligomerisation and morphology of aggregates and which cellular function are impaired by oligomers, in vitro and in vivo. We also summarise the key modulatory cellular mechanisms and co-factors, which could affect the folding pathway and kinetics of polyQ aggregation. Although many studies have investigated the relationship between polyQ aggregation and toxicity, these have mainly focussed on investigating changes in the formation of the classical hallmark of polyQ diseases, i.e. microscopically visible inclusion bodies. However, recent studies in which oligomeric species have been considered start to shed light on the identity of neurotoxic oligomeric species. Initial evidence suggests that conformational changes induced by polyQ expansions and their surrounding sequence lead to the formation of particular oligomeric intermediates that may differentially affect neurotoxicity.
Collapse
Affiliation(s)
- Sarah L Hands
- Southampton Neuroscience Group, School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK
| | | |
Collapse
|
13
|
Yerkes S, Vesenka J, Kmiec EB. A stable G-quartet binds to a huntingtin protein fragment containing expanded polyglutamine tracks. J Neurosci Res 2010; 88:335-45. [DOI: 10.1002/jnr.22210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Illuzzi J, Yerkes S, Parekh-Olmedo H, Kmiec EB. DNA breakage and induction of DNA damage response proteins precede the appearance of visible mutant huntingtin aggregates. J Neurosci Res 2009; 87:733-47. [PMID: 18831068 DOI: 10.1002/jnr.21881] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that follows an autosomal-dominant inheritance pattern. The pathogenesis of the disease depends on the degree of expansion of triplet (CAG) repeats located in the first exon on the gene. An expanded polyglutamine tract within the protein huntingtin (Htt) enables a gain-of-function phenotype that is often exhibited by a dysfunctional oligomerization process and the formation of protein aggregates. How this process leads to neurodegeneration remains undefined. We report that expression of a Htt-fragment containing an expanded glutamine tract induces DNA damage and activates the DNA damage response pathway. Both single-strand and double-strand breaks are observed as the mutant protein accumulates in the cell; these breaks precede the appearance of detectable protein aggregates containing mutant Htt. We also observe activation of H2AX, ATM, and p53 in cells expressing mutant Htt, a predictable response in cells containing chromosomal breakage. Expression of wild-type Htt does not affect the integrity of DNA, nor does it activate the same pathway. Furthermore, DNA damage and activated H2AX are present in HD transgenic mice before the formation of mutant Htt aggregates and HD pathogenesis. Taken together, our data suggest that the expression of mutant Htt causes an accumulation of DNA breaks that activates the DNA damage response pathway, a process that can disable cell function. Because these events can lead to apoptosis, it is possible that the DNA damage response pathway activated by single- and double-strand breaks that we found contributes to neurodegeneration.
Collapse
Affiliation(s)
- Jennifer Illuzzi
- Department of Biological Sciences, University of Delaware, Delaware Biotechnology Institute, Newark, Delaware 19711, USA
| | | | | | | |
Collapse
|
15
|
Skogen M, Roth J, Yerkes S, Parekh-Olmedo H, Kmiec E. Short G-rich oligonucleotides as a potential therapeutic for Huntington's Disease. BMC Neurosci 2006; 7:65. [PMID: 17014717 PMCID: PMC1609172 DOI: 10.1186/1471-2202-7-65] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 10/02/2006] [Indexed: 11/28/2022] Open
Abstract
Background Huntington's Disease (HD) is an inherited autosomal dominant genetic disorder in which neuronal tissue degenerates. The pathogenesis of the disease appears to center on the development of protein aggregates that arise initially from the misfolding of the mutant HD protein. Mutant huntingtin (Htt) is produced by HD genes that contain an increased number of glutamine codons within the first exon and this expansion leads to the production of a protein that misfolds. Recent studies suggest that mutant Htt can nucleate protein aggregation and interfere with a multitude of normal cellular functions. Results As such, efforts to find a therapy for HD have focused on agents that disrupt or block the mutant Htt aggregation pathway. Here, we report that short guanosine monotonic oligonucleotides capable of adopting a G-quartet structure, are effective inhibitors of aggregation. By utilizing a biochemical/immunoblotting assay as an initial screen, we identified a 20-mer, all G-oligonucleotide (HDG) as an active molecule. Subsequent testing in a cell-based assay revealed that HDG was an effective inhibitor of aggregation of a fusion protein, comprised of a mutant Htt fragment and green fluorescent protein (eGFP). Taken together, our results suggest that a monotonic G-oligonucleotide, capable of adopting a G-quartet conformation is an effective inhibitor of aggregation. This oligonucleotide can also enable cell survival in PC12 cells overexpressing a mutant Htt fragment fusion gene. Conclusion Single-stranded DNA oligonucleotides capable of forming stable G-quartets can inhibit aggregation of the mutant Htt fragment protein. This activity maybe an important part of the pathogenecity of Huntington's Disease. Our results reveal a new class of agents that could be developed as a therapeutic approach for Huntington's Disease.
Collapse
Affiliation(s)
- Michael Skogen
- Department of Biological Sciences, University of Delaware, Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Jennifer Roth
- Department of Biological Sciences, University of Delaware, Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Sarah Yerkes
- Department of Biological Sciences, University of Delaware, Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Hetal Parekh-Olmedo
- Department of Biological Sciences, University of Delaware, Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Eric Kmiec
- Department of Biological Sciences, University of Delaware, Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|