1
|
Guo X, Xu Y, Cui Y, Zhang G, Shi Z, Song X. Fibroblast growth factor 3 contributes to neuropathic pain through Akt/mTOR signaling in mouse primary sensory neurons. Neurotherapeutics 2024; 21:e00383. [PMID: 38955643 PMCID: PMC11579880 DOI: 10.1016/j.neurot.2024.e00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/10/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Neuropathic pain (NP), a severe chronic pain condition, remains a substantial clinical challenge due to its complex pathophysiology and limited effective treatments. An association between the members of the Fibroblast Growth Factors (FGFs), particularly Fgf3, and the development of NP has become evident. In this study, utilizing a mouse model of NP, we observed a time-dependent increase in Fgf3 expression at both mRNA and protein levels within the dorsal root ganglia (DRG). Functional studies revealed that blocking Fgf3 expression mitigated nerve injury induced nociceptive hypersensitivity, suggesting its pivotal role in pain modulation. Moreover, our findings elucidate that Fgf3 contributes to pain hypersensitivity through the activation of the Akt/mTOR signaling in injured DRG neurons. These results not only shed light on the involvement of Fgf3 in nerve injury-induced NP but also highlight its potential as a promising therapeutic target for pain management. This study thereby advances our understanding of the molecular mechanisms underlying NP and opens new avenues for the development of effective treatment strategies.
Collapse
Affiliation(s)
- Xinying Guo
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yingyi Xu
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yanhua Cui
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Gaolong Zhang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Ziwen Shi
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xingrong Song
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China; Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Jiang W, Glaeser JD, Kaneda G, Sheyn J, Wechsler JT, Stephan S, Salehi K, Chan JL, Tawackoli W, Avalos P, Johnson C, Castaneda C, Kanim LEA, Tanasansomboon T, Burda JE, Shelest O, Yameen H, Perry TG, Kropf M, Cuellar JM, Seliktar D, Bae HW, Stone LS, Sheyn D. Intervertebral disc human nucleus pulposus cells associated with back pain trigger neurite outgrowth in vitro and pain behaviors in rats. Sci Transl Med 2023; 15:eadg7020. [PMID: 38055799 DOI: 10.1126/scitranslmed.adg7020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/06/2023] [Indexed: 12/08/2023]
Abstract
Low back pain (LBP) is often associated with the degeneration of human intervertebral discs (IVDs). However, the pain-inducing mechanism in degenerating discs remains to be elucidated. Here, we identified a subtype of locally residing human nucleus pulposus cells (NPCs), generated by certain conditions in degenerating discs, that was associated with the onset of discogenic back pain. Single-cell transcriptomic analysis of human tissues showed a strong correlation between a specific cell subtype and the pain condition associated with the human degenerated disc, suggesting that they are pain-triggering. The application of IVD degeneration-associated exogenous stimuli to healthy NPCs in vitro recreated a pain-associated phenotype. These stimulated NPCs activated functional human iPSC-derived sensory neuron responses in an in vitro organ-chip model. Injection of stimulated NPCs into the healthy rat IVD induced local inflammatory responses and increased cold sensitivity and mechanical hypersensitivity. Our findings reveal a previously uncharacterized pain-inducing mechanism mediated by NPCs in degenerating IVDs. These findings could aid in the development of NPC-targeted therapeutic strategies for the clinically unmet need to attenuate discogenic LBP.
Collapse
Affiliation(s)
- Wensen Jiang
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Juliane D Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Julia Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jacob T Wechsler
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen Stephan
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Julie L Chan
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher Johnson
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chloe Castaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Linda E A Kanim
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Teerachat Tanasansomboon
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center of Excellence in Biomechanics and Innovative Spine Surgery, Department of Orthopedics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joshua E Burda
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Oksana Shelest
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Haneen Yameen
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Tiffany G Perry
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael Kropf
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jason M Cuellar
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dror Seliktar
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Hyun W Bae
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Laura S Stone
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
3
|
Parthasarathy G, Gadila SKG. Neuropathogenicity of non-viable Borrelia burgdorferi ex vivo. Sci Rep 2022; 12:688. [PMID: 35027599 PMCID: PMC8758786 DOI: 10.1038/s41598-021-03837-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Even after appropriate treatment, a proportion of Lyme disease patients suffer from a constellation of symptoms, collectively called Post-Treatment Lyme Disease Syndrome (PTLDS). Brain PET scan of patients with PTLDS have demonstrated likely glial activation indicating persistent neuroinflammatory processes. It is possible that unresolved bacterial remnants can continue to cause neuroinflammation. In previous studies, we have shown that non-viable Borrelia burgdorferi can induce neuroinflammation and apoptosis in an oligodendrocyte cell line. In this follow-up study, we analyze the effect of sonicated remnants of B. burgdorferi on primary rhesus frontal cortex (FC) and dorsal root ganglion (DRG) explants. Five FC and three DRG tissue fragments from rhesus macaques were exposed to sonicated B. burgdorferi and analyzed for 26 inflammatory mediators. Live bacteria and medium alone served as positive and negative control, respectively. Tissues were also analyzed for cell types mediating inflammation and overall apoptotic changes. Non-viable B. burgdorferi induced significant levels of several inflammatory mediators in both FC and DRG, similar to live bacteria. However, the levels induced by non-viable B. burgdorferi was often (several fold) higher than those induced by live ones, especially for IL-6, CXCL8 and CCL2. This effect was also more profound in the FC than in the DRG. Although the levels often differed, both live and dead fragments induced the same mediators, with significant overlap between FC and DRG. In the FC, immunohistochemical staining for several inflammatory mediators showed the presence of multiple mediators in astrocytes, followed by microglia and oligodendrocytes, in response to bacterial remnants. Staining was also seen in endothelial cells. In the DRG, chemokine/cytokine staining was predominantly seen in S100 positive (glial) cells. B. burgdorferi remnants also induced significant levels of apoptosis in both the FC and DRG. Apoptosis was confined to S100 + cells in the DRG while distinct neuronal apoptosis was also detected in most FC tissues in response to sonicated bacteria. Non-viable B. burgdorferi can continue to be neuropathogenic to both CNS and PNS tissues with effects likely more profound in the former. Persistence of remnant-induced neuroinflammatory processes can lead to long term health consequences.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Immunology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA. .,Tulane National Primate Research Center, 18703, Three rivers Road, Room 109, Covington, LA, 70433, USA.
| | - Shiva Kumar Goud Gadila
- Division of Immunology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| |
Collapse
|
4
|
Forouzanfar F, Sadeghnia HR. Fibroblast Growth Factors as Tools in the Management of Neuropathic Pain Disorders. Curr Drug Targets 2021; 21:1034-1043. [PMID: 32324511 DOI: 10.2174/1389450121666200423084205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Neuropathic pain is caused by a damage to or dysfunction of the somatosensory nervous system. The main mechanisms underlying neuropathic pain include ectopic activity in nociceptive nerves, peripheral and central sensitization, impaired inhibitory modulation, and microglial activation. Fibroblast growth factors (FGFs) make up a large family of growth factors that mediate neural development, metabolism, and function through three main key signaling pathways, including RAS/MAP kinase pathway, PI3 kinase/Akt pathway, and PLCγ. An association between the members of the FGF system and the improvement of neuropathic pain has become evident, recently. These signaling molecules may be expected to provide new drug targets for the treatment of neuropathic pain. To the best of our knowledge, it is the first study that reviews the relationship between some members of the FGF system and neuropathic pain.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Wangzhou A, Paige C, Neerukonda SV, Naik DK, Kume M, David ET, Dussor G, Ray PR, Price TJ. A ligand-receptor interactome platform for discovery of pain mechanisms and therapeutic targets. Sci Signal 2021; 14:14/674/eabe1648. [PMID: 33727337 DOI: 10.1126/scisignal.abe1648] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the peripheral nervous system, ligand-receptor interactions between cells and neurons shape sensory experience, including pain. We set out to identify the potential interactions between sensory neurons and peripheral cell types implicated in disease-associated pain. Using mouse and human RNA sequencing datasets and computational analysis, we created interactome maps between dorsal root ganglion (DRG) sensory neurons and an array of normal cell types, as well as colitis-associated glial cells, rheumatoid arthritis-associated synovial macrophages, and pancreatic tumor tissue. These maps revealed a common correlation between the abundance of heparin-binding EGF-like growth factor (HBEGF) in peripheral cells with that of its receptor EGFR (a member of the ErbB family of receptors) in DRG neurons. Subsequently, we confirmed that increased abundance of HBEGF enhanced nociception in mice, likely acting on DRG neurons through ErbB family receptors. Collectively, these interactomes highlight ligand-receptor interactions that may lead to treatments for disease-associated pain and, furthermore, reflect the complexity of cell-to-neuron signaling in chronic pain states.
Collapse
Affiliation(s)
- Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Candler Paige
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Sanjay V Neerukonda
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Dhananjay K Naik
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Moeno Kume
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Eric T David
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Pradipta R Ray
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| |
Collapse
|
6
|
Gabapentin regulates expression of FGF2 and FGFR1 in dorsal root ganglia via microRNA-15a in the arthritis rat model. J Orthop Sci 2017; 22:1112-1119. [PMID: 28877850 DOI: 10.1016/j.jos.2017.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 02/09/2023]
Abstract
BACKGROUND Arthritis is an inflammatory disease with a prevalence rate of approximately 10% in China, which commonly manifests as pain. The aim of the current study was to investigate the function of gabapentin in the dorsal root ganglion in an arthritis rat model, and assess the effect of gabapentin on the expression of fibroblast growth factor 2 (FGF2) and FGF receptor 1 (FGFR1). METHODS A total of 30 healthy male Sprague-Dawley rats were randomly divided into the following three groups: Untreated group, control group and gabapentin group. Rats in the control and the gabapentin groups were injected with Freund's complete adjuvant to induce arthritis. A total of 7 days subsequent to model establishment, the gabapentin group was administered intraperitoneally gabapentin for 8 days. The alterations in thickness of paw pad and paw withdrawal mechanical threshold (PWMT) were detected, which indicated that the rats in the control and gabapentin groups presented with the symptoms of arthritis. RESULTS In the control group, the PWMT value was significantly reduced (P < 0.05), whereas the PWMT value was significantly increased in the gabapentin group. Immunohistochemistry demonstrated that the expression levels of FGF2 and FGFR1 were increased in the control group compared with the untreated group, while the expression levels of FGF2 and FGFR1 were reduced in the gabapentin group. Moreover, the FGF2 antagonist PD173074 partially improved the plantar thickness and PWMT of the arthritic rats. Bioinformatics analysis predicted microRNA-15a binding sites in the 3'untranslated regions (UTR) of FGF2 and FGFR1. Furthermore, the expression of microRNA-15a was reduced in the control group compared with untreated rats, whereas microRNA-15a in the gabapentin group was upregulated compared with the control. Additionally, the luciferase reporter assay confirmed that microRNA-15a could inhibit the protein expression through pairing with the 3'UTR of FGF2 and FGFR1 mRNAs. CONCLUSION Gabapentin may relieve arthritis pain and reduce the expression of FGF2 and FGFR1 in dorsal root ganglia. Furthermore, microRNA-15a may be involved in the regulatory process.
Collapse
|
7
|
Elevation of Microglial Basic Fibroblast Growth Factor Contributes to Development of Neuropathic Pain after Spinal Nerve Ligation in Rats. Spine (Phila Pa 1976) 2016; 41:E108-15. [PMID: 26583471 DOI: 10.1097/brs.0000000000001131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistological analysis of spinal cord and pain behavior analysis in a rat neuropathic pain model were conducted to examine the function of microglial basic fibroblast growth factor (bFGF) in the development of neuropathic pain. OBJECTIVE To investigate the role of bFGF in spinal microglia during the development of allodynia following spinal nerve ligation in rats. SUMMARY OF BACKGROUND DATA Evidence suggests that the production of bFGF by spinal cord glial cells is increased in response to peripheral nerve injury. Although an association between bFGF and astrocytes has been widely reported, the relationship between bFGF and microglia, particularly with respect to the development of neuropathic pain, remains poorly understood. METHODS Spinal nerve ligation rats were used. After surgery, bFGF expression in the spinal cord was investigated using RT-PCR and immunohistochemistry. Neutralizing antibodies to bFGF were injected intrathecally into rats after spinal nerve ligaton. Spinal cords were used for RT-PCR analysis and pain behavior was analyzed using the von Frey test. RESULTS bFGF mRNA expression was significantly increased in the spinal cord 6 hours after spinal nerve ligation compared with untreated rats. Immunohistochemical analysis revealed that bFGF co-localized with ionized calcium-binding adaptor molecule 1, a microglial marker, and myeloperoxidase. Neutralizing antibodies to bFGF attenuated mechanical allodynia and myeloperoxidase mRNA expression. CONCLUSION bFGF increased in spinal microglia during the development allodynia after spinal nerve ligation. Thus, controlling bFGF release from microglia during the acute stage of peripheral nerve injury may suppress the progression of allodynia. LEVEL OF EVIDENCE N/A.
Collapse
|
8
|
Murakami K, Tanaka T, Bando Y, Yoshida S. Nerve injury induces the expression of syndecan-1 heparan sulfate proteoglycan in primary sensory neurons. Neuroscience 2015; 300:338-50. [PMID: 26002314 DOI: 10.1016/j.neuroscience.2015.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/26/2015] [Accepted: 05/13/2015] [Indexed: 12/18/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) have important functions in development of the central nervous system; however, their functions in nerve injury are not yet fully understood. We previously reported the expression of syndecan-1, a type of HSPG, in cranial motor neurons after nerve injury, suggesting the importance of syndecan-1 in the pathology of motor nerve injury. In this study, we examined the expression of syndecan-1, a type of HSPG, in primary sensory neurons after nerve injury in mice. Sciatic nerve axotomy strongly induced the expression of syndecan-1 in a subpopulation of injured dorsal root ganglion (DRG) neurons, which were small in size and had CGRP- or isolectin B4-positive fibers. Syndecan-1 was also distributed in the dorsal horn of the spinal cord ipsilateral to the axotomy, and located on the membrane of axons in lamina II of the dorsal horn. Not only sciatic nerve axotomy, infraorbital nerve axotomy also induced the expression of syndecan-1 in trigeminal ganglion neurons. Moreover, syndecan-1 knockdown in cultured DRG neurons induced a shorter neurite extension. These results suggest that syndecan-1 expression in injured primary sensory neurons may have functional roles in nerve regeneration and synaptic plasticity, resulting in the development of neuropathic pain.
Collapse
Affiliation(s)
- K Murakami
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Japan.
| | - T Tanaka
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Japan
| | - Y Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Japan
| | - S Yoshida
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Japan
| |
Collapse
|
9
|
Liu H, Wu QF, Li JY, Liu XJ, Li KC, Zhong YQ, Wu D, Wang Q, Lu YJ, Bao L, Zhang X. Fibroblast growth factor 7 is a nociceptive modulator secreted via large dense-core vesicles. J Mol Cell Biol 2015; 7:466-75. [PMID: 25782913 DOI: 10.1093/jmcb/mjv019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/02/2015] [Indexed: 11/13/2022] Open
Abstract
Fibroblast growth factor (FGF) 7, a member of FGF family, is initially found to be secreted from mesenchymal cells to repair epithelial tissues. However, its functions in the nervous system are largely unknown. The present study showed that FGF7 was a neuromodulator localized in the large dense-core vesicles (LDCVs) in nociceptive neurons. FGF7 was mainly expressed in small-diameter neurons of the dorsal root ganglion and could be transported to the dorsal spinal cord. Interestingly, FGF7 was mostly stored in LDCVs that did not contain neuropeptide substance P. Electrophysiological recordings in the spinal cord slice showed that buffer-applied FGF7 increased the amplitude of excitatory post-synaptic current evoked by stimulating the sensory afferent fibers. Behavior tests showed that intrathecally applied FGF7 potentiated the formalin-induced acute nociceptive response. Moreover, both acute and inflammatory nociceptive responses were significantly reduced in Fgf7-deficient mice. These results suggest that FGF7 exerts an excitatory modulation of nociceptive afferent transmission.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing-Feng Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Yin Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing-Jun Liu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai-Cheng Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Qing Zhong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dan Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiong Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yin-Jing Lu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lan Bao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xu Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
10
|
Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013; 154 Suppl 1:S10-S28. [PMID: 23792284 PMCID: PMC3858488 DOI: 10.1016/j.pain.2013.06.022] [Citation(s) in RCA: 850] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 05/23/2013] [Accepted: 06/12/2013] [Indexed: 12/22/2022]
Abstract
Activation of glial cells and neuro-glial interactions are emerging as key mechanisms underlying chronic pain. Accumulating evidence has implicated 3 types of glial cells in the development and maintenance of chronic pain: microglia and astrocytes of the central nervous system (CNS), and satellite glial cells of the dorsal root and trigeminal ganglia. Painful syndromes are associated with different glial activation states: (1) glial reaction (ie, upregulation of glial markers such as IBA1 and glial fibrillary acidic protein (GFAP) and/or morphological changes, including hypertrophy, proliferation, and modifications of glial networks); (2) phosphorylation of mitogen-activated protein kinase signaling pathways; (3) upregulation of adenosine triphosphate and chemokine receptors and hemichannels and downregulation of glutamate transporters; and (4) synthesis and release of glial mediators (eg, cytokines, chemokines, growth factors, and proteases) to the extracellular space. Although widely detected in chronic pain resulting from nerve trauma, inflammation, cancer, and chemotherapy in rodents, and more recently, human immunodeficiency virus-associated neuropathy in human beings, glial reaction (activation state 1) is not thought to mediate pain sensitivity directly. Instead, activation states 2 to 4 have been demonstrated to enhance pain sensitivity via a number of synergistic neuro-glial interactions. Glial mediators have been shown to powerfully modulate excitatory and inhibitory synaptic transmission at presynaptic, postsynaptic, and extrasynaptic sites. Glial activation also occurs in acute pain conditions, and acute opioid treatment activates peripheral glia to mask opioid analgesia. Thus, chronic pain could be a result of "gliopathy," that is, dysregulation of glial functions in the central and peripheral nervous system. In this review, we provide an update on recent advances and discuss remaining questions.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Department of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Temugin Berta
- Department of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
11
|
Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Decosterd I. Possible role of spinal astrocytes in maintaining chronic pain sensitization: review of current evidence with focus on bFGF/JNK pathway. ACTA ACUST UNITED AC 2012; 2:259-69. [PMID: 17710215 PMCID: PMC1949390 DOI: 10.1017/s1740925x07000403] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although pain is regarded traditionally as neuronally mediated, recent progress shows an important role of spinal glial cells in persistent pain sensitization. Mounting evidence has implicated spinal microglia in the development of chronic pain (e.g. neuropathic pain after peripheral nerve injury). Less is known about the role of astrocytes in pain regulation. However, astrocytes have very close contact with synapses and maintain homeostasis in the extracellular environment. In this review, we provide evidence to support a role of spinal astrocytes in maintaining chronic pain. In particular, c-Jun N-terminal kinase (JNK) is activated persistently in spinal astrocytes in a neuropathic pain condition produced by spinal nerve ligation. This activation is required for the maintenance of neuropathic pain because spinal infusion of JNK inhibitors can reverse mechanical allodynia, a major symptom of neuropathic pain. Further study reveals that JNK is activated strongly in astrocytes by basic fibroblast growth factor (bFGF), an astroglial activator. Intrathecal infusion of bFGF also produces persistent mechanical allodynia. After peripheral nerve injury, bFGF might be produced by primary sensory neurons and spinal astrocytes because nerve injury produces robust bFGF upregulation in both cell types. Therefore, the bFGF/JNK pathway is an important signalling pathway in spinal astrocytes for chronic pain sensitization. Investigation of signaling mechanisms in spinal astrocytes will identify new molecular targets for the management of chronic pain.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA.
| | | | | | | | | |
Collapse
|
12
|
Tsuda M, Kohro Y, Yano T, Tsujikawa T, Kitano J, Tozaki-Saitoh H, Koyanagi S, Ohdo S, Ji RR, Salter MW, Inoue K. JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. ACTA ACUST UNITED AC 2011; 134:1127-39. [PMID: 21371995 DOI: 10.1093/brain/awr025] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuropathic pain, a debilitating pain condition, is a common consequence of damage to the nervous system. Optimal treatment of neuropathic pain is a major clinical challenge because the underlying mechanisms remain unclear and currently available treatments are frequently ineffective. Emerging lines of evidence indicate that peripheral nerve injury converts resting spinal cord glia into reactive cells that are required for the development and maintenance of neuropathic pain. However, the mechanisms underlying reactive astrogliosis after nerve injury are largely unknown. In the present study, we investigated cell proliferation, a critical process in reactive astrogliosis, and determined the temporally restricted proliferation of dorsal horn astrocytes in rats with spinal nerve injury, a well-known model of neuropathic pain. We found that nerve injury-induced astrocyte proliferation requires the Janus kinase-signal transducers and activators of transcription 3 signalling pathway. Nerve injury induced a marked signal transducers and activators of transcription 3 nuclear translocation, a primary index of signal transducers and activators of transcription 3 activation, in dorsal horn astrocytes. Intrathecally administering inhibitors of Janus kinase-signal transducers and activators of transcription 3 signalling to rats with nerve injury reduced the number of proliferating dorsal horn astrocytes and produced a recovery from established tactile allodynia, a cardinal symptom of neuropathic pain that is characterized by pain hypersensitivity evoked by innocuous stimuli. Moreover, recovery from tactile allodynia was also produced by direct suppression of dividing astrocytes by intrathecal administration of the cell cycle inhibitor flavopiridol to nerve-injured rats. Together, these results imply that the Janus kinase-signal transducers and activators of transcription 3 signalling pathway are critical transducers of astrocyte proliferation and maintenance of tactile allodynia and may be a therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gao YJ, Zhang L, Ji RR. Spinal injection of TNF-α-activated astrocytes produces persistent pain symptom mechanical allodynia by releasing monocyte chemoattractant protein-1. Glia 2011; 58:1871-80. [PMID: 20737477 DOI: 10.1002/glia.21056] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Accumulating evidence suggests that spinal astrocytes play an important role in the genesis of persistent pain, by increasing the activity of spinal cord nociceptive neurons, i.e., central sensitization. However, direct evidence of whether activation of astrocytes is sufficient to induce chronic pain symptoms is lacking. We investigated whether and how spinal injection of activated astrocytes could produce mechanical allodynia, a cardinal feature of chronic pain, in naïve mice. Spinal (intrathecal) injection of astrocytes, which were prepared from cerebral cortexes of neonatal mice and briefly stimulated by tumor necrosis factor-alpha (TNF-α), induced a substantial decrease in paw withdrawal thresholds, indicating the development of mechanical allodynia. This allodynia was prevented when the astrocyte cultures were pretreated with a peptide inhibitor of c-Jun N-terminal kinase (JNK), D-JNKI-1. Of note a short exposure of astrocytes to TNF-α for 15 min dramatically increased the expression and release of the chemokine monocyte chemoattractant protein-1 (MCP-1), even 3 h after TNF-α withdrawal, in a JNK-dependent manner. In parallel, intrathecal administration of TNF-α induced MCP-1 expression in spinal cord astrocytes. In particular, mechanical allodynia induced by TNF-α-activated astrocytes was reversed by a MCP-1 neutralizing antibody. Finally, pretreatment of astrocytes with MCP-1 siRNA attenuated astrocytes-induced mechanical allodynia. Taken together, our results suggest that activated astrocytes are sufficient to produce persistent pain symptom in naïve mice by releasing MCP-1.
Collapse
Affiliation(s)
- Yong-Jing Gao
- Sensory Plasticity Laboratory, Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Pain Research Center, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
14
|
Gao YJ, Ji RR. Targeting astrocyte signaling for chronic pain. Neurotherapeutics 2010; 7:482-93. [PMID: 20880510 PMCID: PMC2950097 DOI: 10.1016/j.nurt.2010.05.016] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/20/2022] Open
Abstract
Clinical management of chronic pain after nerve injury (neuropathic pain) and tumor invasion (cancer pain) is a real challenge due to our limited understanding of the cellular mechanisms that initiate and maintain chronic pain. It has been increasingly recognized that glial cells, such as microglia and astrocytes in the CNS play an important role in the development and maintenance of chronic pain. Notably, astrocytes make very close contacts with synapses and astrocyte reaction after nerve injury, arthritis, and tumor growth is more persistent than microglial reaction, and displays a better correlation with chronic pain behaviors. Accumulating evidence indicates that activated astrocytes can release pro-inflammatory cytokines (e.g., interleukin [IL]-1β) and chemokines (e.g., monocyte chemoattractant protein-1 [MCP-1]/also called CCL2) in the spinal cord to enhance and prolong persistent pain states. IL-1β can powerfully modulate synaptic transmission in the spinal cord by enhancing excitatory synaptic transmission and suppressing inhibitory synaptic transmission. IL-1β activation (cleavage) in the spinal cord after nerve injury requires the matrix metalloprotease-2. In particular, nerve injury and inflammation activate the c-Jun N-terminal kinase in spinal astrocytes, leading to a substantial increase in the expression and release of MCP-1. The MCP-1 increases pain sensitivity via direct activation of NMDA receptors in dorsal horn neurons. Pharmacological inhibition of the IL-1β, c-Jun N-terminal kinase, MCP-1, or matrix metalloprotease-2 signaling via spinal administration has been shown to attenuate inflammatory, neuropathic, or cancer pain. Therefore, interventions in specific signaling pathways in astrocytes may offer new approaches for the management of chronic pain.
Collapse
Affiliation(s)
- Yong-Jing Gao
- grid.62560.370000000403788294Department of Anesthesiology, Sensory Plasticity Laboratory, Pain Research Center, Brigham and Women’s Hospital and Harvard Medical School, 02115 Boston, Massachusetts
| | - Ru-Rong Ji
- grid.62560.370000000403788294Department of Anesthesiology, Sensory Plasticity Laboratory, Pain Research Center, Brigham and Women’s Hospital and Harvard Medical School, 02115 Boston, Massachusetts
| |
Collapse
|
15
|
JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 2009; 29:4096-108. [PMID: 19339605 DOI: 10.1523/jneurosci.3623-08.2009] [Citation(s) in RCA: 474] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, tumor necrosis factor alpha (TNF-alpha) transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-alpha/JNK pathway. MCP-1 upregulation by TNF-alpha was dose dependently inhibited by the JNK inhibitors SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) and D-JNKI-1. Spinal injection of TNF-alpha produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Furthermore, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch-clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous EPSCs but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes after JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management.
Collapse
|
16
|
Abstract
Mitogen-activated protein kinases (MAPKs) are important for intracellular signal transduction and play critical roles in regulating neural plasticity and inflammatory responses. The MAPK family consists of three major members: extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK), which represent three separate signaling pathways. Accumulating evidence shows that all three MAPK pathways contribute to pain sensitization after tissue and nerve injury via distinct molecular and cellular mechanisms. Activation (phosphorylation) of MAPKs under different persistent pain conditions results in the induction and maintenance of pain hypersensitivity via non-transcriptional and transcriptional regulation. In particular, ERK activation in spinal cord dorsal horn neurons by nociceptive activity, via multiple neurotransmitter receptors, and using different second messenger pathways plays a critical role in central sensitization by regulating the activity of glutamate receptors and potassium channels and inducing gene transcription. ERK activation in amygdala neurons is also required for inflammatory pain sensitization. After nerve injury, ERK, p38, and JNK are differentially activated in spinal glial cells (microglia vs astrocytes), leading to the synthesis of proinflammatory/pronociceptive mediators, thereby enhancing and prolonging pain. Inhibition of all three MAPK pathways has been shown to attenuate inflammatory and neuropathic pain in different animal models. Development of specific inhibitors for MAPK pathways to target neurons and glial cells may lead to new therapies for pain management. Although it is well documented that MAPK pathways can increase pain sensitivity via peripheral mechanisms, this review will focus on central mechanisms of MAPKs, especially ERK.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, MRB 604, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
17
|
Jo D, Chapman CR, Light AR. Glial Mechanisms of Neuropathic Pain and Emerging Interventions. Korean J Pain 2009. [DOI: 10.3344/kjp.2009.22.1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Daehyun Jo
- Pain Research Center, Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84109 USA
| | - C. Richard Chapman
- Pain Research Center, Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84109 USA
| | - Alan R. Light
- Pain Research Center, Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84109 USA
| |
Collapse
|
18
|
Gao YJ, Ji RR. Activation of JNK pathway in persistent pain. Neurosci Lett 2008; 437:180-3. [PMID: 18455869 DOI: 10.1016/j.neulet.2008.03.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/26/2008] [Accepted: 03/08/2008] [Indexed: 12/17/2022]
Abstract
The c-Jun N-terminal kinase (JNK) is a stress-activated member of MAP kinase family. JNK activation has been strongly implicated in inflammatory responses, neurodegeneration, and apoptosis. Recent evidence shows that JNK pathway is also transiently activated in primary sensory neurons after tissue or nerve injury, which is required for the development of hyperalgesia and allodynia. In particular, JNK is persistently activated in astrocytes of the spinal cord after nerve injury, and this activation can maintain central sensitization and mechanical allodynia. In this mini-review, we will provide evidence for the involvement of JNK pathway in regulating persistent pain sensitization. We will also discuss possible upstream signaling mechanisms that cause JNK activation and downstream signaling mechanisms by which JNK modulates pain sensitivity. Thus, targeting JNK pathway might be a useful strategy to treat both neurodegeneration and chronic pain.
Collapse
Affiliation(s)
- Yong-Jing Gao
- Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
Yamanaka H, Obata K, Kobayashi K, Dai Y, Fukuoka T, Noguchi K. Activation of fibroblast growth factor receptor by axotomy, through downstream p38 in dorsal root ganglion, contributes to neuropathic pain. Neuroscience 2007; 150:202-11. [PMID: 17905520 DOI: 10.1016/j.neuroscience.2007.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Revised: 08/02/2007] [Accepted: 08/24/2007] [Indexed: 11/21/2022]
Abstract
The possible involvement of fibroblast growth factor receptor (FGFR) activation in the dorsal root ganglion (DRG) was examined following peripheral nerve injury in the rat. Ligation of the sciatic nerve down-regulated FGFR2, -3 and -4 mRNA; however, the expression of FGFR1 mRNA showed no change. Activation of FGFR was examined by immunohistochemistry using an antibody of the phosphorylated form of FGFR1-4. Ligation of the sciatic nerve produced phosphorylation of FGFR in the L4 and 5 DRG ipsilateral to the injury, starting at 3 days after the lesion and persisting for more than 30 days. Substantial activation of FGFR was observed, mainly in unmyelinated small DRG neurons that co-expressed phosphorylated p38 mitogen-activated protein kinase (MAPK). Continuous intrathecal infusion of the FGFR1 inhibitor, 3-[3-(2-carboxyethyl)-4-methylpyrrol-2-methylidenyl]-2-indolinone, reduced p38 MAPK phosphorylation in the DRG and pain-related behaviors in the partial sciatic nerve model rat without affecting on the activation of spinal glia cells (microglia and astrocyte). In the injured small DRG neurons, activation of FGFR1 may contribute to the generation of neuropathic pain by activating p38 MAPK.
Collapse
Affiliation(s)
- H Yamanaka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | |
Collapse
|