1
|
Gil M, Caulino-Rocha A, Bento M, Rodrigues NC, Silva-Cruz A, Ribeiro JA, Cunha-Reis D. Postweaning Development Influences Endogenous VPAC 1 Modulation of LTP Induced by Theta-Burst Stimulation: A Link to Maturation of the Hippocampal GABAergic System. Biomolecules 2024; 14:379. [PMID: 38540797 PMCID: PMC10968312 DOI: 10.3390/biom14030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 11/11/2024] Open
Abstract
Long-term potentiation (LTP) induced by theta-burst stimulation (TBS) undergoes postweaning developmental changes partially linked to GABAergic circuit maturation. Endogenous vasoactive intestinal peptide (VIP) acting on its VPAC1 receptor strongly influences LTP induced by theta-burst stimulation (TBS), an effect dependent on GABAergic transmission. Although VPAC1 receptor levels are developmentally regulated during embryogenesis, their variation along postweaning development is unknown, as is the VPAC1 modulation of LTP or its relation to hippocampal GABAergic circuit maturation. As such, we investigated how VPAC1 modulation of LTP adjusts from weaning to adulthood along with GABAergic circuit maturation. As described, LTP induced by mild TBS (5 bursts, 4 pulses delivered at 100 Hz) was increasingly greater from weaning to adulthood. The influence of the VPAC1 receptor antagonist PG 97-269 (100 nM) on TBS-induced LTP was much larger in juvenile (3-week-old) than in young adult (6-7-week-old) or adult (12-week-old) rats. This effect was not associated with a developmental decrease in synaptic VPAC1 receptor levels. However, an increase in pre and post-synaptic GABAergic synaptic markers suggests an increase in the number of GABAergic synaptic contacts that is more prominent than the one observed in glutamatergic connections during this period. Conversely, endogenous VPAC2 receptor activation did not significantly influence TBS-induced LTP. VPAC2 receptor levels enhance pronouncedly during postweaning development, but not at synaptic sites. Given the involvement of VIP interneurons in several aspects of hippocampal-dependent learning, neurodevelopmental disorders, and epilepsy, this could provide important insights into the role of VIP modulation of hippocampal synaptic plasticity during normal and altered brain development potentially contributing to epileptogenesis.
Collapse
Affiliation(s)
- Marta Gil
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Ana Caulino-Rocha
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Marta Bento
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Nádia C. Rodrigues
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
| | - Armando Silva-Cruz
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
| | - Joaquim A. Ribeiro
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Diana Cunha-Reis
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
2
|
Korkmaz OT, Tunçel N. Advantages of Vasoactive Intestinal Peptide for the Future Treatment of Parkinson's Disease. Curr Pharm Des 2019; 24:4693-4701. [PMID: 30636594 DOI: 10.2174/1381612825666190111150953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 01/04/2023]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder in adults over the age of 65. The characteristic symptoms of Parkinson's disease, such as resting tremor, muscular rigidity, bradykinesia, postural instability and gait imbalance, are thought to be a result of the progressive degeneration of the dopaminergic neurons of the substantia nigra compacta, resulting in insufficient dopamine integrated signalling on GABAergic medium spiny neurons in the striatum. Despite tremendous research, the molecular mechanisms underlying the pathogenesis of neurodegeneration in Parkinson's disease have remained largely unknown. Although a variety of possible pathogenic mechanisms have been proposed over the years, including excessive release of oxygen free radicals, impairment of mitochondrial function, loss of trophic support, abnormal kinase activity, disruption of calcium homeostasis, dysfunction of protein degradation and neuroinflammation, the pathogenesis is still largely uncertain, and there is currently no effective cure for Parkinson's disease. To develop potential therapies for Parkinson's disease, inflammatory processes, mitochondrial dynamics, oxidative stress, production of reactive aldehydes, excitotoxicity and synucleinopathies are to be targeted. In this respect, vasoactive intestinal peptide has beneficial effects that provide an advantage for the treatment of Parkinson's disease. Vasoactive intestinal peptide is a major neuropeptide-neurotransmitter having antioxidant, anti-inflammatory, neurotropic, neuromodulator, and anti-apoptotic properties. In addition to its direct neuroprotective actions regulating the activity of astrocytes, microglia and brain mast cells, it also plays important roles for neuronal adaptation, maintenance and survival.
Collapse
Affiliation(s)
- Orhan Tansel Korkmaz
- Eskisehir Osmangazi University, Medical Faculty, Department of Physiology and Neurophysiology Eskisehir 26480, Turkey
| | - Neşe Tunçel
- Eskisehir Osmangazi University, Medical Faculty, Department of Physiology and Neurophysiology Eskisehir 26480, Turkey
| |
Collapse
|
3
|
Maduna T, Lelievre V. Neuropeptides shaping the central nervous system development: Spatiotemporal actions of VIP and PACAP through complementary signaling pathways. J Neurosci Res 2016; 94:1472-1487. [PMID: 27717098 DOI: 10.1002/jnr.23915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 01/18/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are neuropeptides with wide, complementary, and overlapping distributions in the central and peripheral nervous systems, where they exert important regulatory roles in many physiological processes. VIP and PACAP display a large range of biological cellular targets and functions in the adult nervous system including regulation of neurotransmission and neuroendocrine secretion and neuroprotective and neuroimmune responses. As the main focus of the present review, VIP and PACAP also have been long implicated in nervous system development and maturation through their interaction with the seven transmembrane domain G protein-coupled receptors, PAC1, VPAC1, and VPAC2, initiating multiple signaling pathways. Compared with PAC1, which solely binds PACAP with very high affinity, VPACs exhibit high affinities for both VIP and PACAP but differ from each other because of their pharmacological profile for both natural accessory peptides and synthetic or chimeric molecules, with agonistic and antagonistic properties. Complementary to initial pharmacological studies, transgenic animals lacking these neuropeptides or their receptors have been used to further characterize the neuroanatomical, electrophysiological, and behavioral roles of PACAP and VIP in the developing central nervous system. In this review, we recapitulate the critical steps and processes guiding/driving neurodevelopment in vertebrates and superimposing the potential contribution of PACAP and VIP receptors on the given timeline. We also describe how alterations in VIP/PACAP signaling may contribute to both (neuro)developmental and adult pathologies and suggest that tuning of VIP/PACAP signaling in a spatiotemporal manner may represent a novel avenue for preventive therapies of neurological and psychiatric disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tando Maduna
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Vincent Lelievre
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
4
|
Hernández-González S, Ballestín R, López-Hidalgo R, Gilabert-Juan J, Blasco-Ibáñez JM, Crespo C, Nácher J, Varea E. Altered distribution of hippocampal interneurons in the murine Down Syndrome model Ts65Dn. Neurochem Res 2014; 40:151-64. [PMID: 25399236 DOI: 10.1007/s11064-014-1479-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022]
Abstract
Down Syndrome, with an incidence of one in 800 live births, is the most common genetic alteration producing intellectual disability. We have used the Ts65Dn model, that mimics some of the alterations observed in Down Syndrome. This genetic alteration induces an imbalance between excitation and inhibition that has been suggested as responsible for the cognitive impairment present in this syndrome. The hippocampus has a crucial role in memory processing and is an important area to analyze this imbalance. In this report we have analysed, in the hippocampus of Ts65Dn mice, the expression of synaptic markers: synaptophysin, vesicular glutamate transporter-1 and isoform 67 of the glutamic acid decarboxylase; and of different subtypes of inhibitory neurons (Calbindin D-28k, parvalbumin, calretinin, NPY, CCK, VIP and somatostatin). We have observed alterations in the inhibitory neuropil in the hippocampus of Ts65Dn mice. There was an excess of inhibitory puncta and a reduction of the excitatory ones. In agreement with this observation, we have observed an increase in the number of inhibitory neurons in CA1 and CA3, mainly interneurons expressing calbindin, calretinin, NPY and VIP, whereas parvalbumin cell numbers were not affected. These alterations in the number of interneurons, but especially the alterations in the proportion of the different types, may influence the normal function of inhibitory circuits and underlie the cognitive deficits observed in DS.
Collapse
Affiliation(s)
- Samuel Hernández-González
- Neurobiology Unit, Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de València, Dr. Moliner, 50, 46100, Burjassot, Spain
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Cunha-Reis D, Aidil-Carvalho MDF, Ribeiro JA. Endogenous inhibition of hippocampal LTD and depotentiation by vasoactive intestinal peptide VPAC1 receptors. Hippocampus 2014; 24:1353-63. [PMID: 24935659 DOI: 10.1002/hipo.22316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2014] [Indexed: 11/08/2022]
Abstract
Vasoactive intestinal peptide (VIP), an important modulator of hippocampal synaptic transmission, influences exploration and hippocampal-dependent learning in rodents. Homosynaptic long-term depression (LTD) and depotentiation are two plasticity phenomena implicated in learning of behavior flexibility and spatial novelty detection. In this study, we investigated the influence of endogenous VIP on LTD and depotentiation induced by low-frequency stimulation (1 Hz, 900 pulses) of the hippocampal CA1 area in vitro in juvenile and young adult rats, respectively. LTD and depotentiation were enhanced by the VIP receptor antagonist Ac-Tyr(1) , D-Phe(2) GRF (1-29), and the selective VPAC1 receptor antagonist, PG 97-269, but not the selective VPAC2 receptor antagonist, PG 99-465. This action was mimicked by an anti-VIP antibody, suggesting that VIP, and not pituitary adenylate cyclase-activating polypeptide (PACAP), is the endogenous mediator of these effects. Selective inhibition of PAC1 receptors with PACAP (6-38) enhanced depotentiation, but not LTD. VPAC1 receptor blockade also revealed LTD in young adult rats, an effect abolished by the GABAA antagonist bicuculline, evidencing an involvement of GABAergic transmission. We conclude that inhibition of LTD and depotentiation by endogenous VIP occurs through VPAC1 receptor-mediated mechanisms and suggest that disinhibition of pyramidal cell dendrites is the most likely physiological mechanism underlying this effect. As such, VPAC1 receptor ligands may be considered promising pharmacological targets for treatment of cognitive dysfunction in diseases involving altered GABAergic circuits and pathological saturation of LTP/LTD like Down's syndrome and temporal lobe epilepsy.
Collapse
Affiliation(s)
- Diana Cunha-Reis
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | | | | |
Collapse
|
6
|
Incerti M, Horowitz K, Roberson R, Abebe D, Toso L, Caballero M, Spong CY. Prenatal treatment prevents learning deficit in Down syndrome model. PLoS One 2012; 7:e50724. [PMID: 23209818 PMCID: PMC3510191 DOI: 10.1371/journal.pone.0050724] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 10/23/2012] [Indexed: 12/04/2022] Open
Abstract
Down syndrome is the most common genetic cause of mental retardation. Active fragments of neurotrophic factors release by astrocyte under the stimulation of vasoactive intestinal peptide, NAPVSIPQ (NAP) and SALLRSIPA (SAL) respectively, have shown therapeutic potential for developmental delay and learning deficits. Previous work demonstrated that NAP+SAL prevent developmental delay and glial deficit in Ts65Dn that is a well-characterized mouse model for Down syndrome. The objective of this study is to evaluate if prenatal treatment with these peptides prevents the learning deficit in the Ts65Dn mice. Pregnant Ts65Dn female and control pregnant females were randomly treated (intraperitoneal injection) on pregnancy days 8 through 12 with saline (placebo) or peptides (NAP 20 µg +SAL 20 µg) daily. Learning was assessed in the offspring (8–10 months) using the Morris Watermaze, which measures the latency to find the hidden platform (decrease in latency denotes learning). The investigators were blinded to the prenatal treatment and genotype. Pups were genotyped as trisomic (Down syndrome) or euploid (control) after completion of all tests. Statistical analysis: two-way ANOVA followed by Neuman-Keuls test for multiple comparisons, P<0.05 was used to denote statistical significance. Trisomic mice who prenatally received placebo (Down syndrome -placebo; n = 11) did not demonstrate learning over the five day period. DS mice that were prenatally exposed to peptides (Down syndrome-peptides; n = 10) learned significantly better than Down syndrome -placebo (p<0.01), and similar to control-placebo (n = 33) and control-peptide (n = 30). In conclusion prenatal treatment with the neuroprotective peptides (NAP+SAL) prevented learning deficits in a Down syndrome model. These findings highlight a possibility for the prevention of sequelae in Down syndrome and suggest a potential pregnancy intervention that may improve outcome.
Collapse
Affiliation(s)
- Maddalena Incerti
- Unit on Perinatal and Developmental Neurobiology, National Institute of Child and Human Development, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | |
Collapse
|
7
|
Ruparelia A, Pearn ML, Mobley WC. Cognitive and pharmacological insights from the Ts65Dn mouse model of Down syndrome. Curr Opin Neurobiol 2012; 22:880-6. [PMID: 22658745 PMCID: PMC3434300 DOI: 10.1016/j.conb.2012.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/03/2012] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) is a multi-faceted condition resulting in the most common genetic form of intellectual disability. Mouse models of DS, especially the Ts65Dn model, have been pivotal in furthering our understanding of the genetic, molecular and neurobiological mechanisms that underlie learning and memory impairments in DS. Cognitive and pharmacological insights from the Ts65Dn mouse model have led to remarkable translational progress in the development of therapeutic targets and in the emergence of DS clinical trials. Unravelling the pathogenic role of trisomic genes on human chromosome 21 and the genotype-phenotype relationship still remains a pertinent goal for tackling cognitive deficits in DS.
Collapse
Affiliation(s)
- Aarti Ruparelia
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Matthew L Pearn
- Department of Anaesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- VA San Diego Healthcare System, 3350 La Jolla Village Drive 9125, San Diego, CA 92161-9125, USA
| | - William C Mobley
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Molecular and cellular alterations in Down syndrome: toward the identification of targets for therapeutics. Neural Plast 2012; 2012:171639. [PMID: 22848846 PMCID: PMC3403492 DOI: 10.1155/2012/171639] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/25/2022] Open
Abstract
Down syndrome is a complex disease that has challenged molecular and cellular research for more than 50 years. Understanding the molecular bases of morphological, cellular, and functional alterations resulting from the presence of an additional complete chromosome 21 would aid in targeting specific genes and pathways for rescuing some phenotypes. Recently, progress has been made by characterization of brain alterations in mouse models of Down syndrome. This review will highlight the main molecular and cellular findings recently described for these models, particularly with respect to their relationship to Down syndrome phenotypes.
Collapse
|
9
|
Hernández S, Gilabert-Juan J, Blasco-Ibáñez JM, Crespo C, Nácher J, Varea E. Altered expression of neuropeptides in the primary somatosensory cortex of the Down syndrome model Ts65Dn. Neuropeptides 2012; 46:29-37. [PMID: 22078870 DOI: 10.1016/j.npep.2011.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 11/20/2022]
Abstract
Down syndrome is the most common genetic disorder associated with mental retardation. Subjects and mice models for Down syndrome (such as Ts65Dn) show defects in the formation of neuronal networks in both the hippocampus and the cerebral cortex. The principal neurons display alterations in the morphology, density and distribution of dendritic spines in the cortex as well as in the hippocampus. Several evidences point to the possibility that the atrophy observed in principal neurons could be mediated by changes in their inhibitory inputs and, in fact, an imbalance between excitation and inhibition has been observed in Ts65Dn mice in these regions, which are crucial for learning and information processing. These animals have an increased density of interneurons in the primary somatosensory cortex, especially of those expressing calretinin and calbindin D-28k. Here, we have analysed the expression and distribution of several neuropeptides in the primary somatosensory cortex of Ts65Dn mice in order to investigate whether these subpopulations of interneurons are affected. We have observed an increase in the total density of somatostatin expressing interneurons and of those expressing VIP in layer IV in Ts65Dn mice. The typology of the somatostatin and VIP interneurons was unaltered as attested by the pattern of co-expression with other markers. Somatostatin immunoreactive neurons co-express mainly D-28k calbindin and VIP expressing interneurons maintain its pattern of co-expression with calcium binding proteins. These alterations, in case they were also present in subjects with Down syndrome, could be related to their impairment in cognitive profile and could be involved in the neurological defects observed in this disorder.
Collapse
Affiliation(s)
- Samuel Hernández
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de València, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Bartesaghi R, Guidi S, Ciani E. Is it possible to improve neurodevelopmental abnormalities in Down syndrome? Rev Neurosci 2011; 22:419-55. [DOI: 10.1515/rns.2011.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Toso L, Cameroni I, Roberson R, Abebe D, Bissell S, Spong CY. Prevention of developmental delays in a Down syndrome mouse model. Obstet Gynecol 2008; 112:1242-1251. [PMID: 19037032 PMCID: PMC2687469 DOI: 10.1097/aog.0b013e31818c91dc] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To estimate whether prenatal treatment with neuroprotective peptides prevents the developmental delay and the glial deficit in the Ts65Dn mouse model for Down syndrome and to explore the peptides' effects on achievement of normal development. METHODS Pregnant Ts65Dn females were randomly assigned to NAPVSIPQ+SALLRSIPA or control and were treated by investigators blinded to treatment and genotype on gestational days 8-12. Offspring were tested from postnatal day 5 to 21 for motor and sensory milestones with standardized tests by operators blinded to the pup's treatment and genotype. The pup's genotype was determined after completion of all tests. Activity-dependent neurotrophic factor, glial fibrillary acidic protein, and vasoactive intestinal peptide expression were determined using real-time polymerase chain reaction. RESULTS Trisomic mice achieved milestones with a significant delay in four of five motor and sensory milestones. Trisomic mice that were prenatally exposed to NAPVSIPQ+SALLRSIPA achieved developmental milestones at the same time as the controls in three of four motor and one of four sensory milestones (P<.01). Euploid pups prenatally treated with NAPVSIPQ+SALLRSIPA achieved developmental milestones significantly earlier than the euploid pups prenatally treated with placebo. Activity-dependent neurotrophic factor expression was significantly downregulated in the Ts65Dn brains compared with the controls, prenatal treatment with NAPVSIPQ+ SALLRSIPA prevented the activity-dependent neurotrophic factor decrease in the Ts65Dn brains, and the expression was not different from the controls. The glial marker glial fibrillary acidic protein demonstrated the known glial deficit in the Ts65Dn mice, and treatment with NAPVSIPQ+ SALLRSIPA prevented its downregulation. Lastly, vasoactive intestinal peptide levels were increased in the trisomic brains, whereas treatment with NAPVSIPQ+SALLRSIPA did not prevent its upregulation. CONCLUSION Prenatal treatment with NAPVSIPQ and SALLRSIPA prevented developmental delay and the glial deficit in Down syndrome. These findings highlight a possibility for the prevention of developmental sequelae in Down syndrome and suggest a potential intervention during pregnancy that may improve the outcome.
Collapse
Affiliation(s)
- Laura Toso
- Unit on Perinatal and Developmental Neurobiology, National Institute of Child and Human Development, National Institute of Health, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, George Washington University, Washington DC, USA
| | - Irene Cameroni
- Unit on Perinatal and Developmental Neurobiology, National Institute of Child and Human Development, National Institute of Health, Bethesda, MD, USA
- Department of Obstetrics and Gynaecology, University of Milano-Bicocca, Ospedale S. Gerardo, Monza, Italy
| | - Robin Roberson
- Unit on Perinatal and Developmental Neurobiology, National Institute of Child and Human Development, National Institute of Health, Bethesda, MD, USA
| | - Daniel Abebe
- Unit on Perinatal and Developmental Neurobiology, National Institute of Child and Human Development, National Institute of Health, Bethesda, MD, USA
| | - Stephanie Bissell
- Unit on Perinatal and Developmental Neurobiology, National Institute of Child and Human Development, National Institute of Health, Bethesda, MD, USA
| | - Catherine Y. Spong
- Unit on Perinatal and Developmental Neurobiology, National Institute of Child and Human Development, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Lim MA, Stack CM, Cuasay K, Stone MM, McFarlane HG, Waschek JA, Hill JM. Regardless of genotype, offspring of VIP-deficient female mice exhibit developmental delays and deficits in social behavior. Int J Dev Neurosci 2008; 26:423-34. [PMID: 18423945 PMCID: PMC2494581 DOI: 10.1016/j.ijdevneu.2008.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 03/07/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022] Open
Abstract
Pharmacological studies indicate that vasoactive intestinal peptide (VIP) may be necessary for normal embryonic development in the mouse. For example, VIP antagonist treatment before embryonic day 11 resulted in developmental delays, growth restriction, modified adult brain chemistry and reduced social behavior. Here, developmental milestones, growth, and social behaviors of neonates of VIP-deficient mothers (VIP +/-) mated to VIP +/- males were compared with the offspring of wild type mothers (VIP +/+) mated to VIP +/+ and +/- males, to assess the contributions of both maternal and offspring VIP genotype. Regardless of their own genotype, all offsprings of VIP-deficient mothers exhibited developmental delays. No delays were seen in the offspring of wild type mothers, regardless of their own genotype. Body weights were significantly reduced in offspring of VIP-deficient mothers, with VIP null (-/-) the most affected. Regardless of genotype, all offspring of VIP-deficient mothers expressed reduced maternal affiliation compared with wild type offspring of wild type mothers; +/- offspring of wild type mothers did not differ in maternal affiliation from their wild type littermates. Play behavior was significantly reduced in all offsprings of VIP-deficient mothers. Maternal behavior did not differ between wild type and VIP-deficient mothers, and cross-fostering of litters did not change offspring development, indicating that offspring deficits were induced prenatally. This study illustrated that the VIP status of a pregnant mouse had a greater influence on the growth, development and behavior of her offspring than the VIP genotype of the offspring themselves. Deficiencies were apparent in +/+, +/- and -/- offspring born to VIP-deficient mothers; no deficiencies were apparent in +/- offspring born to normal mothers. These results underscore the significant contribution of the uterine environment to normal development and indicate a potential usefulness of the VIP knockout mouse in furthering the understanding of neurodevelopmental disorders with social behavior deficits such as autism.
Collapse
Affiliation(s)
- Maria A. Lim
- Laboratory of Behavioral Neuroscience, NIMH, NIH, Bethesda, MD, USA
| | - Conor M. Stack
- Laboratory of Behavioral Neuroscience, NIMH, NIH, Bethesda, MD, USA
| | - Katrina Cuasay
- Laboratory of Behavioral Neuroscience, NIMH, NIH, Bethesda, MD, USA
| | | | - Hewlet G. McFarlane
- Laboratory of Behavioral Neuroscience, NIMH, NIH, Bethesda, MD, USA
- Department of Psychology, Kenyon College, Gambier, OH, USA
| | - James A. Waschek
- Department of Psychiatry and Biobehavioral Science, University of California, Los Angeles, CA, USA
| | - Joanna M. Hill
- Laboratory of Behavioral Neuroscience, NIMH, NIH, Bethesda, MD, USA
| |
Collapse
|
13
|
Hill JM, Hauser JM, Sheppard LM, Abebe D, Spivak-Pohis I, Kushnir M, Deitch I, Gozes I. Blockage of VIP during mouse embryogenesis modifies adult behavior and results in permanent changes in brain chemistry. J Mol Neurosci 2008; 31:183-200. [PMID: 17726225 DOI: 10.1385/jmn:31:03:185] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Vasoactive intestinal peptide (VIP) regulates growth and development during the early postimplantation period of mouse embryogenesis. Blockage of VIP with a VIP antagonist during this period results in growth restriction, microcephaly, and developmental delays. Similar treatment of neonatal rodents also causes developmental delays and impaired diurnal rhythms, and the adult brains of these animals exhibit neuronal dystrophy and increased VIP binding. These data suggest that blockage of VIP during the development of the nervous system can result in permanent changes to the brain. In the current study, pregnant mice were treated with a VIP antagonist during embryonic days 8 through 10. The adult male offspring were examined in tests of novelty, paired activity, and social recognition. Brain tissue was examined for several measures of chemistry and gene expression of VIP and related compounds. Glial cells from the cortex of treated newborn mice were plated with neurons and examined for VIP binding and their ability to enhance neuronal survival. Treated adult male mice exhibited increased anxiety-like behavior and deficits in social behavior. Brain tissue exhibited regionally specific changes in VIP chemistry and a trend toward increased gene expression of VIP and related compounds that reached statistical significance in the VIP receptor, VPAC-1, in the female cortex. When compared to control astrocytes, astrocytes from treated cerebral cortex produced further increases in neuronal survival with excess synaptic connections and reduced VIP binding. In conclusion, impaired VIP activity during mouse embryogenesis resulted in permanent changes to both adult brain chemistry/cell biology and behavior with aspects of autism-like social deficits.
Collapse
Affiliation(s)
- Joanna M Hill
- Laboratory of Developmental Neuroscience, NICHD, NIH, Bethesda, MD 21029, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hill JM, Cuasay K, Abebe DT. Vasoactive intestinal peptide antagonist treatment during mouse embryogenesis impairs social behavior and cognitive function of adult male offspring. Exp Neurol 2007; 206:101-13. [PMID: 17521630 DOI: 10.1016/j.expneurol.2007.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/23/2007] [Accepted: 04/09/2007] [Indexed: 01/01/2023]
Abstract
Vasoactive intestinal peptide (VIP) is a regulator of rodent embryogenesis during the period of neural tube closure. VIP enhanced growth in whole cultured mouse embryos; treatment with a VIP antagonist during embryogenesis inhibited growth and development. VIP antagonist treatment during embryogenesis also had permanent effects on adult brain chemistry and impaired social recognition behavior in adult male mice. The neurological deficits of autism appear to be initiated during neural tube closure and social behavior deficits are among the key characteristics of this disorder that is more common in males and is frequently accompanied by mental retardation. The current study examined the blockage of VIP during embryogenesis as a model for the behavioral deficits of autism. Treatment of pregnant mice with a VIP antagonist during embryonic days 8 through 10 had no apparent effect on the general health or sensory or motor capabilities of adult offspring. However, male offspring exhibited reduced sociability in the social approach task and deficits in cognitive function, as assessed through cued and contextual fear conditioning. Female offspring did not show these deficiencies. These results suggest that this paradigm has usefulness as a mouse model for aspects of autism as it selectively impairs male offspring who exhibit the reduced social behavior and cognitive dysfunction seen in autism. Furthermore, the study indicates that the foundations of some aspects of social behavior are laid down early in mouse embryogenesis, are regulated in a sex specific manner and that interference with embryonic regulators such as VIP can have permanent effects on adult social behavior.
Collapse
Affiliation(s)
- Joanna M Hill
- Laboratory of Behavioral Neuroscience, NIMH, NIH, Bethesda, MD 21029, USA.
| | | | | |
Collapse
|