1
|
Nakamura H, Komiya H, Uematsu E, Nakae Y, Tanaka K, Kunii M, Tada M, Joki H, Koyano S, Matsumoto N, Doi H, Takeuchi H, Tanaka F. Adult-onset vocal cord paralysis in slow-channel congenital myasthenic syndrome. Neurol Clin Pract 2019; 9:e45-e47. [DOI: 10.1212/cpj.0000000000000599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/17/2018] [Indexed: 11/15/2022]
|
2
|
Oyola-Cintrón J, Caballero-Rivera D, Ballester L, Baéz-Pagán CA, Martínez HL, Vélez-Arroyo KP, Quesada O, Lasalde-Dominicci JA. Lateral diffusion, function, and expression of the slow channel congenital myasthenia syndrome αC418W nicotinic receptor mutation with changes in lipid raft components. J Biol Chem 2015; 290:26790-800. [PMID: 26354438 DOI: 10.1074/jbc.m115.678573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Indexed: 12/18/2022] Open
Abstract
Lipid rafts, specialized membrane microdomains in the plasma membrane rich in cholesterol and sphingolipids, are hot spots for a number of important cellular processes. The novel nicotinic acetylcholine receptor (nAChR) mutation αC418W, the first lipid-exposed mutation identified in a patient that causes slow channel congenital myasthenia syndrome was shown to be cholesterol-sensitive and to accumulate in microdomains rich in the membrane raft marker protein caveolin-1. The objective of this study is to gain insight into the mechanism by which lateral segregation into specialized raft membrane microdomains regulates the activable pool of nAChRs. We performed fluorescent recovery after photobleaching (FRAP), quantitative RT-PCR, and whole cell patch clamp recordings of GFP-encoding Mus musculus nAChRs transfected into HEK 293 cells to assess the role of cholesterol and caveolin-1 (CAV-1) in the diffusion, expression, and functionality of the nAChR (WT and αC418W). Our findings support the hypothesis that a cholesterol-sensitive nAChR might reside in specialized membrane microdomains that upon cholesterol depletion become disrupted and release the cholesterol-sensitive nAChRs to the pool of activable receptors. In addition, our results in HEK 293 cells show an interdependence between CAV-1 and αC418W that could confer end plates rich in αC418W nAChRs to a susceptibility to changes in cholesterol levels that could cause adverse drug reactions to cholesterol-lowering drugs such as statins. The current work suggests that the interplay between cholesterol and CAV-1 provides the molecular basis for modulating the function and dynamics of the cholesterol-sensitive αC418W nAChR.
Collapse
Affiliation(s)
| | | | | | | | - Hernán L Martínez
- the California State University Dominguez Hills, Carson, California 90747
| | | | - Orestes Quesada
- Physical Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, 00931 and
| | | |
Collapse
|
3
|
Cherian A, Baheti NN, Iype T. Electrophysiological study in neuromuscular junction disorders. Ann Indian Acad Neurol 2013; 16:34-41. [PMID: 23661960 PMCID: PMC3644779 DOI: 10.4103/0972-2327.107690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/13/2011] [Accepted: 07/01/2012] [Indexed: 11/20/2022] Open
Abstract
This review is on ultrastructure and subcellular physiology at normal and abnormal neuromuscular junctions. The clinical and electrophysiological findings in myasthenia gravis, Lambert-Eaton myasthenic syndrome (LEMS), congenital myasthenic syndromes, and botulinum intoxication are discussed. Single fiber electromyography (SFEMG) helps to explain the basis of testing neuromuscular junction function by repetitive nerve stimulation (RNS). SFEMG requires skill and patience and its availability is limited to a few centers. For RNS supramaximal stimulation is essential and so is display of the whole waveform of each muscle response at maximum amplitude. The amplitudes of the negative phase of the first and fourth responses are measured from baseline to negative peak, and the percent change of the fourth response compared with the first represents the decrement or increment. A decrement greater than 10% is accepted as abnormal and smooth progression of response amplitude train and reproducibility form the crux. In suspected LEMS the effect of fast rates of stimulation should be determined after RNS response to slow rates of stimulation. Caution is required to avoid misinterpretation of potentiation and pseudofacilitation.
Collapse
Affiliation(s)
- Ajith Cherian
- Department of Neurology, Government Medical College, Trivandrum, Kerala, India
| | | | | |
Collapse
|
4
|
Abstract
Paediatric electromyography (EMG) is an invaluable diagnostic test for the investigation of neuromuscular disease, but its use is inconsistent between and within different countries. One perception is that the procedure is painful; however, in comparison with common investigations performed routinely in children, EMG is better tolerated. While some developments, such as those within clinical genetics, would appear to mark its demise, paradoxically the more genetic abnormalities that are discovered in conditions such as hereditary neuropathy, the more precise a delineation of the phenotype is required. EMG has particular strengths in the diagnosis of neuropathies, motor neuronopathy and neuromuscular transmission disorders such as myasthenia. Also, it can supplement the investigation of myopathies. Areas of development include the diagnosis of myasthenia, delineation of bulbar palsy as a cause of dysphagia, more accurate and earlier prediction of prognosis in neonatal brachial palsy and investigation of channelopathies. It is a valuable diagnostic tool in developed countries and those with limited resources.
Collapse
Affiliation(s)
- Matthew Pitt
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Trust, London, UK.
| |
Collapse
|
5
|
daCosta CJB, Medaglia SA, Lavigne N, Wang S, Carswell CL, Baenziger JE. Anionic lipids allosterically modulate multiple nicotinic acetylcholine receptor conformational equilibria. J Biol Chem 2009; 284:33841-9. [PMID: 19815550 DOI: 10.1074/jbc.m109.048280] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anionic lipids influence the ability of the nicotinic acetylcholine receptor to gate open in response to neurotransmitter binding, but the underlying mechanisms are poorly understood. We show here that anionic lipids with relatively small headgroups, and thus the greatest ability to influence lipid packing/bilayer physical properties, are the most effective at stabilizing an agonist-activatable receptor. The differing abilities of anionic lipids to stabilize an activatable receptor stem from differing abilities to preferentially favor resting over both uncoupled and desensitized conformations. Anionic lipids thus modulate multiple acetylcholine receptor conformational equilibria. Our data suggest that both lipids and membrane physical properties act as classic allosteric modulators influencing function by interacting with and thus preferentially stabilizing different native acetylcholine receptor conformational states.
Collapse
Affiliation(s)
- Corrie J B daCosta
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Spitzmaul G, Corradi J, Bouzat C. Mechanistic contributions of residues in the M1 transmembrane domain of the nicotinic receptor to channel gating. Mol Membr Biol 2009; 21:39-50. [PMID: 14668137 DOI: 10.1080/09687680310001607341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The nicotinic receptor (AChR) is a pentamer of homologous subunits with an alpha(2)betaepsilondelta composition in adult muscle. Each subunit contains four transmembrane domains (M1-M4). Position 15' of the M1 domain is phenylalanine in alpha subunits while it is isoleucine in non-alpha subunits. Given this peculiar conservation pattern, we studied its contribution to muscle AChR activation by combining mutagenesis with single-channel kinetic analysis. AChRs containing the mutant alpha subunit (alphaF15'I) as well as those containing the reverse mutations in the non-alpha subunits (betaI15'F, deltaI15'F, and epsilonI15'F) show prolonged lifetimes of the diliganded open channel resulting from a slower closing rate with respect to wild-type AChRs. The kinetic changes are not equivalent among subunits, the beta subunit, being the one that produces the most significant stabilization of the open state. Kinetic analysis of betaI15'F of AChR channels activated by the low-efficacious agonist choline revealed a 10-fold decrease in the closing rate, a 2.5-fold increase in the opening rate, a 28-fold increase in the gating equilibrium constant in the diliganded receptor, and a significant increase opening in the absence of agonist. Mutations at betaI15' showed that the structural bases of its contribution to gating is complex. Rate-equilibrium linear free-energy relationships suggest an approximately 70% closed-state-like environment for the beta15' position at the transition state of gating. The overall results identify position 15' as a subunit-selective determinant of channel gating and add new experimental evidence that gives support to the involvement of the M1 domain in the operation of the channel gating apparatus.
Collapse
Affiliation(s)
- Guillermo Spitzmaul
- Instituto de Investigaciones Bioquímicas, UNS-CONICET, Bahía Blanca, Argentina
| | | | | |
Collapse
|
7
|
Báez-Pagán CA, Martínez-Ortiz Y, Otero-Cruz JD, Salgado-Villanueva IK, Velázquez G, Ortiz-Acevedo A, Quesada O, Silva WI, Lasalde-Dominicci JA. Potential role of caveolin-1-positive domains in the regulation of the acetylcholine receptor's activatable pool: implications in the pathogenesis of a novel congenital myasthenic syndrome. Channels (Austin) 2008; 2:180-90. [PMID: 18836288 DOI: 10.4161/chan.2.3.6155] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cholesterol modulates the plasmalemma's biophysical properties and influences the function and trafficking of membrane proteins. A fundamental phenomenon that remains obscure is how the plasmalemma's lipid composition regulates the activatable pool of membrane receptors. An outstanding model to study this phenomenon is the nicotinic acetylcholine receptor (nAChR), since the nAChR activatable pool has been estimated to be but a small fraction of the receptors present in the plasmalemma. Studies on the effect of cholesterol depletion in the function of the Torpedo californica nAChR, using the lipid-exposed nAChR mutation (alpha C418W) that produces a congenital myasthenic syndrome (CMS), demonstrated that cholesterol depletion causes a remarkable increase in the alpha C418W nAChR's macroscopic current whereas not in the wild-type (WT). A variety of approaches were used to define the mechanism responsible for the cholesterol depletion mediated-increase in the alpha C418W nAChR's macroscopic current. The present study suggests that a substantial fraction of the alpha C418W nAChRs is located in caveolin-1-positive domains, "trapped" in a non-activatable state, and that membrane cholesterol depletion results in the relocation of these receptors to the activatable pool. Co-fractionation and co-immunoprecipitation of the alpha C418W nAChR and the membrane raft protein caveolin-1 (cav1) support the notion that interactions at lipid-exposed domains regulate the partition of the receptor into membrane raft microdomains. These results have potential implications as a novel mechanism to fine-tune cholinergic transmission in the nervous system and in the pathogenesis associated to the alpha C418W nAChR.
Collapse
Affiliation(s)
- Carlos A Báez-Pagán
- Department of Chemistry, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Otero-Cruz JD, Báez-Pagán CA, Caraballo-González IM, Lasalde-Dominicci JA. Tryptophan-scanning mutagenesis in the alphaM3 transmembrane domain of the muscle-type acetylcholine receptor. A spring model revealed. J Biol Chem 2007; 282:9162-71. [PMID: 17242410 DOI: 10.1074/jbc.m607492200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Membrane proteins constitute a large fraction of all proteins, yet very little is known about their structure and conformational transitions. A fundamental question that remains obscure is how protein domains that are in direct contact with the membrane lipids move during the conformational change of the membrane protein. Important structural and functional information of several lipid-exposed transmembrane domains of the acetylcholine receptor (AChR) and other ion channel membrane proteins have been provided by the tryptophan-scanning mutagenesis. Here, we use the tryptophan-scanning mutagenesis to monitor the conformational change of the alphaM3 domain of the muscle-type AChR. The perturbation produced by the systematic tryptophan substitution along the alphaM3 domain were characterized through two-electrode voltage clamp and 125I-labeled alpha-bungarotoxin binding. The periodicity profiles of the changes in AChR expression (closed state) and ACh EC50 (open-channel state) disclose two different helical structures; a thinner-elongated helix for the closed state and a thicker-shrunken helix for the open-channel state. The existence of two different helical structures suggest that the conformational transition of the alphaM3 domain between both states resembles a spring motion and reveals that the lipid-AChR interface plays a key role in the propagation of the conformational wave evoked by agonist binding. In addition, the present study also provides evidence about functional and structural differences between the alphaM3 domains of the Torpedo and muscle-type receptors AChR.
Collapse
Affiliation(s)
- José David Otero-Cruz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan P. R. 00931, Puerto Rico
| | | | | | | |
Collapse
|
9
|
Arias HR, Bhumireddy P, Bouzat C. Molecular mechanisms and binding site locations for noncompetitive antagonists of nicotinic acetylcholine receptors. Int J Biochem Cell Biol 2006; 38:1254-76. [PMID: 16520081 DOI: 10.1016/j.biocel.2006.01.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 01/03/2006] [Accepted: 01/12/2006] [Indexed: 01/16/2023]
Abstract
Nicotinic acetylcholine receptors are pentameric proteins that belong to the Cys-loop receptor superfamily. Their essential mechanism of functioning is to couple neurotransmitter binding, which occurs at the extracellular domain, to the opening of the membrane-spanning cation channel. The function of these receptors can be modulated by structurally different compounds called noncompetitive antagonists. Noncompetitive antagonists may act at least by two different mechanisms: a steric and/or an allosteric mechanism. The simplest idea representing a steric mechanism is that the antagonist molecule physically blocks the ion channel. On the other hand, there exist distinct allosteric mechanisms. For example, noncompetitive antagonists may bind to the receptor and stabilize a nonconducting conformational state (e.g., resting or desensitized state), and/or increase the receptor desensitization rate. Barbiturates, dissociative anesthetics, antidepressants, and neurosteroids have been shown to inhibit nicotinic receptors by allosteric mechanisms and/or by open- and closed-channel blockade. Receptor modulation has proved to be highly complex for most noncompetitive antagonists. Noncompetitive antagonists may act by more than one mechanism and at distinct sites in the same receptor subtype. The binding site location for one particular molecule depends on the conformational state of the receptor. The mechanisms of action and binding affinities of noncompetitive antagonists differ among nicotinic receptor subtypes. Knowledge of the structure of the nicotinic acetylcholine receptor, the location of its noncompetitive antagonist binding sites, and the mechanisms of inhibition will aid the design of new and more efficacious drugs for treatment of neurological diseases.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766-1854, USA.
| | | | | |
Collapse
|
10
|
Rayes D, De Rosa MJ, Bartos M, Bouzat C. Molecular Basis of the Differential Sensitivity of Nematode and Mammalian Muscle to the Anthelmintic Agent Levamisole. J Biol Chem 2004; 279:36372-81. [PMID: 15201284 DOI: 10.1074/jbc.m403096200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Levamisole is an anthelmintic agent that exerts its therapeutic effect by acting as a full agonist of the nicotinic receptor (AChR) of nematode muscle. Its action at the mammalian muscle AChR has not been elucidated to date despite its wide use as an anthelmintic in humans and cattle. By single channel and macroscopic current recordings, we investigated the interaction of levamisole with the mammalian muscle AChR. Levamisole activates mammalian AChRs. However, single channel openings are briefer than those activated by acetylcholine (ACh) and do not appear in clusters at high concentrations. The peak current induced by levamisole is about 3% that activated by ACh. Thus, the anthelmintic acts as a weak agonist of the mammalian AChR. Levamisole also produces open channel blockade of the AChR. The apparent affinity for block (190 microm at -70 mV) is similar to that of the nematode AChR, suggesting that differences in channel activation kinetics govern the different sensitivity of nematode and mammalian muscle to anthelmintics. To identify the structural basis of this different sensitivity, we performed mutagenesis targeting residues in the alpha subunit that differ between vertebrates and nematodes. The replacement of the conserved alphaGly-153 with the homologous glutamic acid of nematode AChR significantly increases the efficacy of levamisole to activate channels. Channel activity takes place in clusters having two different kinetic modes. The kinetics of the high open probability mode are almost identical when the agonist is ACh or levamisole. It is concluded that alphaGly-153 is involved in the low efficacy of levamisole to activate mammalian muscle AChRs.
Collapse
Affiliation(s)
- Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, Camino La Carrindanga, Km 7B-8000FWB Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
11
|
Burke G, Cossins J, Maxwell S, Robb S, Nicolle M, Vincent A, Newsom-Davis J, Palace J, Beeson D. Distinct phenotypes of congenital acetylcholine receptor deficiency. Neuromuscul Disord 2004; 14:356-64. [PMID: 15145336 DOI: 10.1016/j.nmd.2004.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 03/23/2004] [Accepted: 03/23/2004] [Indexed: 10/26/2022]
Abstract
We contrast the phenotypes associated with hereditary acetylcholine receptor deficiency arising from mutations in either the acetylcholine receptor epsilon subunit or the endplate acetylcholine receptor clustering protein rapsyn. Mutational screening was performed by amplification of promoter and coding regions by PCR and direct DNA sequencing. We identified mutations in 37 acetylcholine receptor deficiency patients; 18 had acetylcholine receptor-epsilon mutations, 19 had rapsyn mutations. Mutated acetylcholine receptor-epsilon associated with bulbar symptoms, ptosis and ophthalmoplegia at birth, and generalized weakness. Mutated rapsyn caused either an early onset (rapsyn-EO) or late onset (rapsyn-LO) phenotype. Rapsyn-EO associated with arthrogryposis and life-threatening exacerbations during early childhood. Rapsyn-LO presented with limb weakness in adolescence or adulthood resembling seronegative myasthenia gravis. Awareness of distinct phenotypic features of acetylcholine receptor deficiency resulting from acetylcholine receptor-epsilon or rapsyn mutations should facilitate targeted genetic diagnosis, avoid inappropriate immunological therapy and, in some infants, prompt the rapid introduction of treatment that could be life saving.
Collapse
MESH Headings
- 4-Aminopyridine/analogs & derivatives
- 4-Aminopyridine/therapeutic use
- Adolescent
- Adult
- Aged
- Amifampridine
- Cell Line
- Child
- Child, Preschool
- Cholinesterase Inhibitors/therapeutic use
- DNA Mutational Analysis/methods
- Drug Therapy, Combination
- Electric Stimulation
- Electromyography/methods
- Electrophysiology/methods
- Embryo, Mammalian
- Ephedrine/therapeutic use
- Evoked Potentials, Motor/drug effects
- Evoked Potentials, Motor/radiation effects
- Female
- Fluorescent Antibody Technique/methods
- Humans
- Kidney
- Male
- Middle Aged
- Muscle Proteins/genetics
- Muscles
- Mutation/genetics
- Myasthenic Syndromes, Congenital/classification
- Myasthenic Syndromes, Congenital/drug therapy
- Myasthenic Syndromes, Congenital/genetics
- Myasthenic Syndromes, Congenital/physiopathology
- Phenotype
- Potassium Channel Blockers/therapeutic use
- Protein Subunits/deficiency
- Protein Subunits/genetics
- Pyridostigmine Bromide/therapeutic use
- RNA, Messenger/biosynthesis
- Receptors, Cholinergic/deficiency
- Receptors, Cholinergic/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sequence Analysis, DNA/methods
- Severity of Illness Index
- Sympathomimetics/therapeutic use
- Transfection/methods
Collapse
Affiliation(s)
- G Burke
- Department of Clinical Neurology, Radcliffe Infirmary, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lindstrom JM. Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology. Ann N Y Acad Sci 2003; 998:41-52. [PMID: 14592862 DOI: 10.1196/annals.1254.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There are fetal and adult subtypes of muscle nicotinic receptors (AChRs), whose structures and functional roles are reasonably well known. Mutations of their subunits cause congenital myasthenic syndromes. An autoimmune response to them causes myasthenia gravis (MG). The main immunogenic region (MIR) on muscle AChRs accounts for many aspects of the pathological mechanisms by which the autoimmune response impairs neuromuscular transmission. There are many other AChR subtypes, each defined by a different combination of subunits, some of which are transiently expressed in muscle during development, others of which are expressed in keratinocytes, vascular and bronchial epithelia, and other nonneuronal cells, as well as in a wide variety of neurons. Their varied structures and functional roles are much less well known. Mutations in subunits of some of these AChRs have thus far been associated with rare forms of epilepsy and dysautonomia, but other genetic diseases associated with them probably remain to be discovered. Autoimmune responses to some of these subunits are associated with rare dysautonomias and a skin disease. The pathological mechanisms by which these autoimmune responses impair function are much less well known than in the case of MG. AChRs may provide useful drug targets in several neurological diseases. By far, the biggest direct medical impact of AChRs is addiction to tobacco, which is mediated by nicotine acting on a variety of neuronal AChRs.
Collapse
Affiliation(s)
- Jon M Lindstrom
- Medical School of the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6074, USA.
| |
Collapse
|
13
|
Leite JF, Blanton MP, Shahgholi M, Dougherty DA, Lester HA. Conformation-dependent hydrophobic photolabeling of the nicotinic receptor: electrophysiology-coordinated photochemistry and mass spectrometry. Proc Natl Acad Sci U S A 2003; 100:13054-9. [PMID: 14569028 PMCID: PMC240743 DOI: 10.1073/pnas.2133028100] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Accepted: 08/22/2003] [Indexed: 11/18/2022] Open
Abstract
We characterized the differential accessibility of the nicotinic acetylcholine receptor alpha1 subunit in the open, closed, and desensitized states by using electrophysiology-coordinated photolabeling by several lipophilic probes followed by mass spectrometric analysis. Voltage-clamped oocytes expressing receptors were preincubated with one of the lipophilic probes and were continually exposed to acetylcholine; UV irradiation was applied during 500-ms pulses to + 40 or to -140 mV (which produced closed or approximately 50% open receptors, respectively). In the open state, there was specific probe incorporation within the N-terminal domain at residues that align with the beta8-beta9 loop of the acetylcholine-binding protein. In the closed state, probe incorporation was identified at several sites of the N-terminal domain within the conserved cysteine loop (residues 128-142), the cytoplasmic loop (M3-M4), and M4. The labeling pattern in the M4 region is consistent with previous results, further defining the lipid-exposed face of this transmembrane alpha-helix. These results show regions within the N-terminal domain that are involved in gating-dependent conformational shifts, confirm that the cysteine loop resides at or near the protein-membrane interface, and show that segments of the M3-M4 loop are near to the lipid bilayer.
Collapse
Affiliation(s)
- John F Leite
- Divisions of Biology and Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | |
Collapse
|
14
|
Sine SM, Wang HL, Ohno K, Shen XM, Lee WY, Engel AG. Mechanistic Diversity Underlying Fast Channel Congenital Myasthenic Syndromes. Ann N Y Acad Sci 2003; 998:128-37. [PMID: 14592870 DOI: 10.1196/annals.1254.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A host of missense mutations in muscle nicotinic receptor subunits have been identified as the cause of congenital myasthenic syndromes (CMS). Two classes of CMS phenotypes have been identified: slow channel myasthenic syndromes (SCCMSs) and fast channel myasthenic syndromes (FCCMSs). Although both have similar phenotypic consequences, they are physiologic opposites. Expression of the FCCMS phenotype requires the missense mutation to be accompanied by a second mutation, either a null or a missense mutation, in the second allele encoding the same receptor subunit. This seemingly rare scenario has arisen with surprisingly high incidence over the past few years, and analyses of the syndromes have revealed a diverse array of mechanisms underlying the pathology. This review focuses on new mechanisms underlying the FCCMS.
Collapse
Affiliation(s)
- Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biophysics, Mayo Medical School, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Tsujino A, Maertens C, Ohno K, Shen XM, Fukuda T, Harper CM, Cannon SC, Engel AG. Myasthenic syndrome caused by mutation of the SCN4A sodium channel. Proc Natl Acad Sci U S A 2003; 100:7377-82. [PMID: 12766226 PMCID: PMC165883 DOI: 10.1073/pnas.1230273100] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Accepted: 04/23/2003] [Indexed: 11/18/2022] Open
Abstract
In a myasthenic syndrome associated with fatigable generalized weakness and recurrent attacks of respiratory and bulbar paralysis since birth, nerve stimulation at physiologic rates rapidly decremented the compound muscle action potential. Intercostal muscle studies revealed no abnormality of the resting membrane potential, evoked quantal release, synaptic potentials, acetylcholine receptor channel kinetics, or endplate ultrastructure, but endplate potentials depolarizing the resting potential to -40 mV failed to excite action potentials. Pursuing this clue, we sequenced SCN4A encoding the skeletal muscle sodium channel (Nav1.4) and detected two heteroallelic mutations involving conserved residues not present in 400 normal alleles: S246L in the S4/S5 cytoplasmic linker in domain I, and V1442E in the S3/S4 extracellular linker in domain IV. The genetically engineered V1442E-Na channel expressed in HEK cells shows marked enhancement of fast inactivation close to the resting potential, and enhanced use-dependent inactivation on high-frequency stimulation; S246L is likely a benign polymorphism. The V1442E mutation in SCN4A defines a novel disease mechanism and a novel phenotype with myasthenic features.
Collapse
Affiliation(s)
- Akira Tsujino
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Leite JF, Rodrigues-Pinguet N, Lester HA. Insights into channel function via channel dysfunction. J Clin Invest 2003; 111:436-7. [PMID: 12588879 PMCID: PMC151932 DOI: 10.1172/jci17882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- John F Leite
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|