1
|
Su H, Gu X, Zhang W, Lin F, Lu X, Zeng X, Wang C, Chen W, Liu W, Tan P, Zou L, Gu B, Chen Q. Identification of Salivary Biomarkers in Colorectal Cancer by Integrating Olink Proteomics and Metabolomics. J Proteome Res 2025; 24:2542-2552. [PMID: 40183281 PMCID: PMC12054530 DOI: 10.1021/acs.jproteome.5c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Identifying novel biomarkers is crucial for early detection of colorectal cancer (CRC). Saliva, as a noninvasive sample, holds promise for CRC detection. Here, we used Olink proteomics and untargeted metabolomics to analyze saliva samples from CRC patients and healthy controls with the aim of identifying candidate biomarkers in CRC saliva. Univariate and multivariate analyses revealed 16 differentially expressed proteins (DEPs) and 40 differentially accumulated metabolites (DAMs). Pathway enrichment showed DEPs were mainly involved in cancer transcriptional dysregulation, Toll-like receptor signaling, and chemokine signaling. Metabolomics analysis highlighted significant changes in amino acid metabolites, particularly in pathways such as arginine biosynthesis, histidine metabolism, and cysteine and methionine metabolism. Random forest analysis and ELISA validation identified four potential biomarkers: succinate, l-methionine, GZMB, and MMP12. A combined protein-metabolite diagnostic model was developed using logistic regression, achieving an area under the curve of 0.933 (95% CI: 0.871-0.996) for the discovery cohort and 0.969 (95% CI: 0.918-1.000) for the validation cohort, effectively distinguishing CRC patients from healthy individuals. In conclusion, our study identified and validated a panel of noninvasive saliva-based biomarkers that could improve CRC screening and provide new insights into clinical CRC diagnosis.
Collapse
Affiliation(s)
- Hairong Su
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
- State
Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Xiangyu Gu
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
- State
Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Weizheng Zhang
- Biological
Resource Center, Guangzhou 11th People’s
Hospital, Guangzhou 510530, China
| | - Fengye Lin
- Department
of Clinical Laboratory, Sichuan Taikang
Hospital, Chengdu 610213, China
| | - Xinyi Lu
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
- State
Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Xuan Zeng
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
- State
Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Chuyang Wang
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
- State
Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Weicheng Chen
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
- State
Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Wofeng Liu
- Biological
Resource Center, Guangzhou 11th People’s
Hospital, Guangzhou 510530, China
| | - Ping Tan
- Department
of Gastrointestinal Surgery, Guangdong Provincial
Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Liaonan Zou
- Department
of Gastrointestinal Surgery, Guangdong Provincial
Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Bing Gu
- Department
of Clinical Laboratory Medicine, Guangdong Provincial People’s
Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qubo Chen
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
- State
Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
2
|
Hai L, Bai XY, Luo X, Liu SW, Ma ZM, Ma LN, Ding XC. Prognostic modeling of hepatocellular carcinoma based on T-cell proliferation regulators: a bioinformatics approach. Front Immunol 2024; 15:1444091. [PMID: 39445019 PMCID: PMC11496079 DOI: 10.3389/fimmu.2024.1444091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background The prognostic value and immune significance of T-cell proliferation regulators (TCRs) in hepatocellular carcinoma (HCC) have not been previously reported. This study aimed to develop a new prognostic model based on TCRs in patients with HCC. Method This study used The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) and International Cancer Genome Consortium-Liver Cancer-Riken, Japan (ICGC-LIRI-JP) datasets along with TCRs. Differentially expressed TCRs (DE-TCRs) were identified by intersecting TCRs and differentially expressed genes between HCC and non-cancerous samples. Prognostic genes were determined using Cox regression analysis and were used to construct a risk model for HCC. Kaplan-Meier survival analysis was performed to assess the difference in survival between high-risk and low-risk groups. Receiver operating characteristic curve was used to assess the validity of risk model, as well as for testing in the ICGC-LIRI-JP dataset. Additionally, independent prognostic factors were identified using multivariate Cox regression analysis and proportional hazards assumption, and they were used to construct a nomogram model. TCGA-LIHC dataset was subjected to tumor microenvironment analysis, drug sensitivity analysis, gene set variation analysis, and immune correlation analysis. The prognostic genes were analyzed using consensus clustering analysis, mutation analysis, copy number variation analysis, gene set enrichment analysis, and molecular prediction analysis. Results Among the 18 DE-TCRs, six genes (DCLRE1B, RAN, HOMER1, ADA, CDK1, and IL1RN) could predict the prognosis of HCC. A risk model that can accurately predict HCC prognosis was established based on these genes. An efficient nomogram model was also developed using clinical traits and risk scores. Immune-related analyses revealed that 39 immune checkpoints exhibited differential expression between the high-risk and low-risk groups. The rate of immunotherapy response was low in patients belonging to the high-risk group. Patients with HCC were further divided into cluster 1 and cluster 2 based on prognostic genes. Mutation analysis revealed that HOMER1 and CDK1 harbored missense mutations. DCLRE1B exhibited an increased copy number, whereas RAN exhibited a decreased copy number. The prognostic genes were significantly enriched in tryptophan metabolism pathways. Conclusions This bioinformatics analysis identified six TCR genes associated with HCC prognosis that can serve as diagnostic markers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Long Hai
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiao-Yang Bai
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xia Luo
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuai-Wei Liu
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zi-Min Ma
- Weiluo Microbial Pathogens Monitoring Technology Co., Ltd. of Beijing, Beijing, China
| | - Li-Na Ma
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiang-Chun Ding
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Tropical Disease & Infectious Disease, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
3
|
Zabielska-Kaczorowska MA, Braczko A, Pelikant-Malecka I, Slominska EM, Smolenski RT. Hidden Pool of Cardiac Adenine Nucleotides That Controls Adenosine Production. Pharmaceuticals (Basel) 2023; 16:ph16040599. [PMID: 37111356 PMCID: PMC10142527 DOI: 10.3390/ph16040599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Myocardial ischemic adenosine production decreases in subsequent events that may blunt its protective functions. To test the relation between total or mitochondrial cardiac adenine nucleotide pool (TAN) on the energy status with adenosine production, Langendorff perfused rat hearts were subjected to three protocols: 1 min ischemia at 40 min, 10 min ischemia at 50 min, and 1 min ischemia at 85 min in Group I; additional infusion of adenosine (30 µM) for 15 min after 10 min ischemia in Group I-Ado, and 1 min ischemia at 40 and 85 min in the controls (Group No I). A 31P NMR and an HPLC were used for the analysis of nucleotide and catabolite concentrations in the heart and coronary effluent. Cardiac adenosine production in Group I measured after 1 min ischemia at 85 min decreased to less than 15% of that at 40 min in Group I, accompanied by a decrease in cardiac ATP and TAN to 65% of the initial results. Adenosine production at 85 min was restored to 45% of that at 40 min in Group I-Ado, accompanied by a rebound of ATP and TAN by 10% vs. Group I. Mitochondrial TAN and free AMP concentrations paralleled that of total cardiac TAN. Changes in energy equilibrium or mitochondrial function were minor. This study highlights that only a fraction of the cardiac adenine nucleotide pool is available for adenosine production, but further studies are necessary to clarify its nature.
Collapse
Affiliation(s)
- Magdalena A Zabielska-Kaczorowska
- Department of Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Iwona Pelikant-Malecka
- Division of Medical Laboratory Diagnostics, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Heart Science Centre, Imperial College at Harefield Hospital, Harefield UB9 6JH, UK
| |
Collapse
|
4
|
Zhulai GA, Shibaev MI. Relationship between the Gene Expression of Adenosine Kinase Isoforms and the Expression of CD39 and CD73 Ectonucleotidases in Colorectal Cancer. Acta Naturae 2023; 15:42-49. [PMID: 37538807 PMCID: PMC10395772 DOI: 10.32607/actanaturae.11871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/03/2023] [Indexed: 08/05/2023] Open
Abstract
Tumor cells have the capacity to create an adenosine-rich immunosuppressive environment, which can interfere with antitumor immunotherapy. Approaches are currently being developed with a view to suppressing the production of adenosine or its signals. Such approaches include the use of antibodies to inhibit CD39, CD73, and adenosine-receptor antagonists. However, the abundance of enzymatic pathways that control the ATP-adenosine balance, as well as the still poorly understood intracellular adenosine regulation, makes the hoped-for success unlikely. In the present study, the enzyme adenosine kinase (ADK) needed to convert adenosine to adenosine monophosphate, thereby regulating its levels, was investigated. To do so, peripheral blood samples from patients with colorectal cancer (CRC) (n = 31) were collected with blood samples from healthy donors (n = 17) used as controls. ADK gene expression levels and those of its long (ADK-L) and short (ADK-S) isoforms were measured. The relationship between the levels of ADK gene expression and that of CD39, CD73, and A2aR genes was analyzed. It turned out that in the group of CRC patients (stages III-IV), the level of ADK-L mRNA was lower (p < 0.0011) when compared to that of the control. For the first time, an average correlation was found between the level of expression of CD39 and ADK-S (r = -0.468 at p = 0.043) and between CD73 and ADK-L (r = 0.518 at p = 0.0232) in CRC patients. Flow cytometry was used to assess the content of CD39/CD73-expressing CD8+, CD4+ and Treg lymphocytes, as well as their relationship with the level of ADK gene expression in CRC patients. But no significant correlations were found.
Collapse
Affiliation(s)
- G A Zhulai
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, 185910 Russian Federation
| | - M I Shibaev
- Endoscopic Department, Baranov Republican Hospital, Petrozavodsk, 185910 Russian Federation
| |
Collapse
|
5
|
Hamoud AR, Bach K, Kakrecha O, Henkel N, Wu X, McCullumsmith RE, O’Donovan SM. Adenosine, Schizophrenia and Cancer: Does the Purinergic System Offer a Pathway to Treatment? Int J Mol Sci 2022; 23:ijms231911835. [PMID: 36233136 PMCID: PMC9570456 DOI: 10.3390/ijms231911835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
For over a century, a complex relationship between schizophrenia diagnosis and development of many cancers has been observed. Findings from epidemiological studies are mixed, with reports of increased, reduced, or no difference in cancer incidence in schizophrenia patients. However, as risk factors for cancer, including elevated smoking rates and substance abuse, are commonly associated with this patient population, it is surprising that cancer incidence is not higher. Various factors may account for the proposed reduction in cancer incidence rates including pathophysiological changes associated with disease. Perturbations of the adenosine system are hypothesized to contribute to the neurobiology of schizophrenia. Conversely, hyperfunction of the adenosine system is found in the tumor microenvironment in cancer and targeting the adenosine system therapeutically is a promising area of research in this disease. We outline the current biochemical and pharmacological evidence for hypofunction of the adenosine system in schizophrenia, and the role of increased adenosine metabolism in the tumor microenvironment. In the context of the relatively limited literature on this patient population, we discuss whether hypofunction of this system in schizophrenia, may counteract the immunosuppressive role of adenosine in the tumor microenvironment. We also highlight the importance of studies examining the adenosine system in this subset of patients for the potential insight they may offer into these complex disorders.
Collapse
Affiliation(s)
- Abdul-Rizaq Hamoud
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Karen Bach
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Ojal Kakrecha
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Nicholas Henkel
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|
6
|
Luo HY, Shen HY, Perkins RS, Wang YX. Adenosine Kinase on Deoxyribonucleic Acid Methylation: Adenosine Receptor-Independent Pathway in Cancer Therapy. Front Pharmacol 2022; 13:908882. [PMID: 35721189 PMCID: PMC9200284 DOI: 10.3389/fphar.2022.908882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Methylation is an important mechanism contributing to cancer pathology. Methylation of tumor suppressor genes and oncogenes has been closely associated with tumor occurrence and development. New insights regarding the potential role of the adenosine receptor-independent pathway in the epigenetic modulation of DNA methylation offer the possibility of new interventional strategies for cancer therapy. Targeting DNA methylation of cancer-related genes is a promising therapeutic strategy; drugs like 5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine) effectively reverse DNA methylation and cancer cell growth. However, current anti-methylation (or methylation modifiers) are associated with severe side effects; thus, there is an urgent need for safer and more specific inhibitors of DNA methylation (or DNA methylation modifiers). The adenosine signaling pathway is reported to be involved in cancer pathology and participates in the development of tumors by altering DNA methylation. Most recently, an adenosine metabolic clearance enzyme, adenosine kinase (ADK), has been shown to influence methylation on tumor suppressor genes and tumor development and progression. This review article focuses on recent updates on ADK and its two isoforms, and its actions in adenosine receptor-independent pathways, including methylation modification and epigenetic changes in cancer pathology.
Collapse
Affiliation(s)
- Hao-Yun Luo
- Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Hai-Ying Shen
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States.,Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
| | - R Serene Perkins
- Legacy Tumor Bank, Legacy Research Institute, Portland, OR, United States.,Mid-Columbia Medical Center, The Dalles, OR, United States
| | - Ya-Xu Wang
- Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Adenosine-Metabolizing Enzymes, Adenosine Kinase and Adenosine Deaminase, in Cancer. Biomolecules 2022; 12:biom12030418. [PMID: 35327609 PMCID: PMC8946555 DOI: 10.3390/biom12030418] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 12/17/2022] Open
Abstract
The immunosuppressive effect of adenosine in the microenvironment of a tumor is well established. Presently, researchers are developing approaches in immune therapy that target inhibition of adenosine or its signaling such as CD39 or CD73 inhibiting antibodies or adenosine A2A receptor antagonists. However, numerous enzymatic pathways that control ATP-adenosine balance, as well as understudied intracellular adenosine regulation, can prevent successful immunotherapy. This review contains the latest data on two adenosine-lowering enzymes: adenosine kinase (ADK) and adenosine deaminase (ADA). ADK deletes adenosine by its phosphorylation into 5′-adenosine monophosphate. Recent studies have revealed an association between a long nuclear ADK isoform and an increase in global DNA methylation, which explains epigenetic receptor-independent role of adenosine. ADA regulates the level of adenosine by converting it to inosine. The changes in the activity of ADA are detected in patients with various cancer types. The article focuses on the biological significance of these enzymes and their roles in the development of cancer. Perspectives of future studies on these enzymes in therapy for cancer are discussed.
Collapse
|
8
|
Selvi I, Argun G, Sonmez C, Bozkurt OF, Basar H. Raised Adenosine and Adenosine Deaminase in Bladder Cancer Require Less Postoperative Analgesia Compared with Benign Prostatic Hyperplasia After Transurethral Resection. Indian J Surg 2021. [DOI: 10.1007/s12262-020-02272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
9
|
Adenosine and adenosine receptors in colorectal cancer. Int Immunopharmacol 2020; 87:106853. [PMID: 32755765 DOI: 10.1016/j.intimp.2020.106853] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/24/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022]
Abstract
CD39 (nucleoside triphosphate diphosphohydrolase) and Ecto-5-nucleotidase (CD73) have been recognized as important factors mediating various pathological and physiological responses in the tumor microenvironment. Elevated expression of CD73 and CD39 is correlated with the over-production of adenosine in the tumor region. This increase is associated with an immunosuppressive state in the tumor site that enhances various tumor hallmarks such as metastasis, angiogenesis, and cell proliferation. Adenosine promotes these behaviors through interaction with four adenosine receptors, including A3R, A2BR, A2AR, and A1R. Signaling of these receptors reduces the function of immune effector cells and enhances the expansion and function of tumor-associated immune cells. Several studies have been shown the important role of adenosine/CD73/CD39/ARs axis in the immunopathogenesis of colorectal cancer. These findings imply that components of this axis can be considered as a worthy target for colorectal cancer immunotherapy. In this review, we summarized the role of CD73/CD39/adenosine/ARs in the immunopathogenesis of colorectal cancer.
Collapse
|
10
|
Moreno-Sánchez R, Marín-Hernández Á, Gallardo-Pérez JC, Pacheco-Velázquez SC, Robledo-Cadena DX, Padilla-Flores JA, Saavedra E, Rodríguez-Enríquez S. Physiological Role of Glutamate Dehydrogenase in Cancer Cells. Front Oncol 2020; 10:429. [PMID: 32328457 PMCID: PMC7160333 DOI: 10.3389/fonc.2020.00429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/10/2020] [Indexed: 12/29/2022] Open
Abstract
NH 4 + increased growth rates and final densities of several human metastatic cancer cells. To assess whether glutamate dehydrogenase (GDH) in cancer cells may catalyze the reverse reaction of NH 4 + fixation, its covalent regulation and kinetic parameters were determined under near-physiological conditions. Increased total protein and phosphorylation were attained in NH 4 + -supplemented metastatic cells, but total cell GDH activity was unchanged. Higher V max values for the GDH reverse reaction vs. forward reaction in both isolated hepatoma (HepM) and liver mitochondria [rat liver mitochondria (RLM)] favored an NH 4 + -fixing role. GDH sigmoidal kinetics with NH 4 + , ADP, and leucine fitted to Hill equation showed n H values of 2 to 3. However, the K 0.5 values for NH 4 + were over 20 mM, questioning the physiological relevance of the GDH reverse reaction, because intracellular NH 4 + in tumors is 1 to 5 mM. In contrast, data fitting to the Monod-Wyman-Changeux (MWC) model revealed lower K m values for NH 4 + , of 6 to 12 mM. In silico analysis made with MWC equation, and using physiological concentrations of substrates and modulators, predicted GDH N-fixing activity in cancer cells. Therefore, together with its thermodynamic feasibility, GDH may reach rates for its reverse, NH 4 + -fixing reaction that are compatible with an anabolic role for supporting growth of cancer cells.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México, Mexico
| | | | - Juan C Gallardo-Pérez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México, Mexico
| | | | | | | | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México, Mexico
| | | |
Collapse
|
11
|
Shamloo B, Kumar N, Owen RH, Reemmer J, Ost J, Perkins RS, Shen HY. Dysregulation of adenosine kinase isoforms in breast cancer. Oncotarget 2019; 10:7238-7250. [PMID: 31921385 PMCID: PMC6944449 DOI: 10.18632/oncotarget.27364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022] Open
Abstract
Dysregulated adenosine signaling pathway has been evidenced in the pathogenesis of breast cancer. However, the role of adenosine kinase (ADK) in tumorigenesis remains unclear while it crucially regulates the removal and availability of adenosine. ADK has two isoforms that localize to discrete subcellular spaces: i.e., nuclear, long-isoform (ADK-L) and cytosolic, short-isoform (ADK-S). We hypothesized that these two ADK isoforms would be differentially expressed in breast cancer and may contribute to divergent cellular actions in cancer. In this study, we examined the expression profiles of ADK isoforms in breast cancer tissues from 46 patient and followed up with an in vitro investigation by knocking down the expression of ADK-L or ADK-S using CRISPR gene editing to evaluate the role of ADK isoform in cancer progression and metastasis of cultured triple-negative breast cancer cell line MDA-MB-231. We demonstrated that (i) ADK-L expression level was significantly increased in breast cancer tissues versus paired normal tissues adjacent to tumor, whereas the ADK-S expression levels were not significantly different between cancerous and normal tissues; (ii) CRISPR/Cas9-mediated downregulation of ADK isoforms, led to suppressed cellular proliferation, division, and migration of cultured breast cancer cells; (iii) ADK-L knockdown significantly upregulated gene expression of matrix metalloproteinase (ADAM23, 9.93-fold; MMP9, 24.58-fold) and downregulated expression of cyclin D2 (CCND2, -30.76-fold), adhesive glycoprotein THBS1 (-8.28-fold), and cystatin E/M (CST6, -16.32-fold). Our findings suggest a potential role of ADK-L in mitogenesis, tumorigenesis, and tumor-associated tissue remodeling and invasion; and the manipulation of ADK-L holds promise as a therapeutic strategy for aggressive breast cancer.
Collapse
Affiliation(s)
- Bahar Shamloo
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Nandita Kumar
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Randall H Owen
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Jesica Reemmer
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - John Ost
- Legacy Tumor Bank, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - R Serene Perkins
- Legacy Tumor Bank, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA.,Mid-Columbia Medical Center, The Dalles, OR 97058, USA
| | - Hai-Ying Shen
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| |
Collapse
|
12
|
Bagheri S, Saboury AA, Haertlé T. Adenosine deaminase inhibition. Int J Biol Macromol 2019; 141:1246-1257. [PMID: 31520704 DOI: 10.1016/j.ijbiomac.2019.09.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
Abstract
Adenosine deaminase is a critical enzyme in purine metabolism that regulates intra and extracellular adenosine concentrations by converting it to inosine. Adenosine is an important purine that regulates numerous physiological functions by interacting with its receptors. Adenosine and consequently adenosine deaminase can have pro or anti-inflammatory effects on tissues depending on how much time has passed from the start of the injury. In addition, an increase in adenosine deaminase activity has been reported for various diseases and the significant effect of deaminase inhibition on the clinical course of different diseases has been reported. However, the use of inhibitors is limited to only a few medical indications. Data on the increase of adenosine deaminase activity in different diseases and the impact of its inhibition in various cases have been collected and are discussed in this review. Overall, the evidence shows that many studies have been done to introduce inhibitors, however, in vivo studies have been much less than in vitro, and often have not been expanded for clinical use.
Collapse
Affiliation(s)
- S Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - A A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - T Haertlé
- Institut National de la Recherche Agronomique, Nantes, France
| |
Collapse
|
13
|
Cladribine in the remission induction of adult acute myeloid leukemia: where do we stand? Ann Hematol 2018; 98:561-579. [DOI: 10.1007/s00277-018-3562-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/16/2018] [Indexed: 01/22/2023]
|
14
|
Tokarenko A, Lišková B, Smoleń S, Táborská N, Tichý M, Gurská S, Perlíková P, Frydrych I, Tloušt'ová E, Znojek P, Mertlíková-Kaiserová H, Poštová Slavětínská L, Pohl R, Klepetářová B, Khalid NUA, Wenren Y, Laposa RR, Džubák P, Hajdúch M, Hocek M. Synthesis and Cytotoxic and Antiviral Profiling of Pyrrolo- and Furo-Fused 7-Deazapurine Ribonucleosides. J Med Chem 2018; 61:9347-9359. [PMID: 30281308 DOI: 10.1021/acs.jmedchem.8b01258] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Three series of isomeric pyrrolo- and furo-fused 7-deazapurine ribonucleosides were synthesized and screened for cytostatic and antiviral activity. The synthesis was based on heterocyclizations of hetaryl-azidopyrimidines to form the tricyclic heterocyclic bases, followed by glycosylation and final derivatizations through cross-coupling reactions or nucleophilic substitutions. The pyrrolo[2',3':4,5]pyrrolo[2,3- d]pyrimidine and furo[2',3':4,5]pyrrolo[2,3- d]pyrimidine ribonucleosides were found to be potent cytostatics, whereas the isomeric pyrrolo[3',2',4,5]pyrrolo[2,3- d]pyrimidine nucleosides were inactive. The most active were the methyl, methoxy, and methylsulfanyl derivatives exerting submicromolar cytostatic effects and good selectivity toward cancer cells. We have shown that the nucleosides are activated by intracellular phosphorylation and the nucleotides get incorporated to both RNA and DNA, where they cause DNA damage. They represent a new type of promising candidates for preclinical development toward antitumor agents.
Collapse
Affiliation(s)
- Anna Tokarenko
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic.,Department of Organic Chemistry, Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| | - Barbora Lišková
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Sabina Smoleń
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Natálie Táborská
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Michal Tichý
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Soňa Gurská
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Ivo Frydrych
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Eva Tloušt'ová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Pawel Znojek
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Noor-Ul-Ain Khalid
- Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle, Room 4213 , Toronto , Ontario M5S 1A8 , Canada
| | - Yiqian Wenren
- Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle, Room 4213 , Toronto , Ontario M5S 1A8 , Canada
| | - Rebecca R Laposa
- Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle, Room 4213 , Toronto , Ontario M5S 1A8 , Canada
| | - Petr Džubák
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Marián Hajdúch
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic.,Department of Organic Chemistry, Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| |
Collapse
|
15
|
Kutryb-Zajac B, Koszalka P, Mierzejewska P, Bulinska A, Zabielska MA, Brodzik K, Skrzypkowska A, Zelazek L, Pelikant-Malecka I, Slominska EM, Smolenski RT. Adenosine deaminase inhibition suppresses progression of 4T1 murine breast cancer by adenosine receptor-dependent mechanisms. J Cell Mol Med 2018; 22:5939-5954. [PMID: 30291675 PMCID: PMC6237598 DOI: 10.1111/jcmm.13864] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
The activity of a cell-surface ecto-adenosine deaminase (eADA) is markedly increased in the endothelial activation and vascular inflammation leading to decreased adenosine concentration and alterations in adenosine signalling. Depending on the specific pathway activated, extracellular purines mediate host cell response or regulate growth and cytotoxicity on tumour cells. The aim of this study was to test the effects of adenosine deaminase inhibition by 2'deoxycoformycin (dCF) on the breast cancer development. dCF treatment decreased a tumour growth and a final tumour mass in female BALB/c mice injected orthotopically with 4T1 cancer cells. dCF also counteracted cancer-induced endothelial dysfunction in orthotopic and intravenous 4T1 mouse breast cancer models. In turn, this low dCF dose had a minor effect on immune stimulation exerted by 4T1 cell implantation. In vitro studies revealed that dCF suppressed migration and invasion of 4T1 cells via A2a and A3 adenosine receptor activation as well as 4T1 cell adhesion and transmigration through the endothelial cell layer via A2a receptor stimulation. Similar effects of dCF were observed in human breast cancer cells. Moreover, dCF improved a barrier function of endothelial cells decreasing its permeability. This study highlights beneficial effects of adenosine deaminase inhibition on breast cancer development. The inhibition of adenosine deaminase activity by dCF reduced tumour size that was closely related to the decreased aggressiveness of tumour cells by adenosine receptor-dependent mechanisms and endothelial protection.
Collapse
Affiliation(s)
| | - Patrycja Koszalka
- Department of Medical Biotechnology, Laboratory of Cell Biology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | | | - Alicja Bulinska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena A Zabielska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.,Department of Physiology, Medical University of Gdansk, Gdansk, Poland
| | - Karolina Brodzik
- Department of Medical Biotechnology, Laboratory of Cell Biology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | - Aleksandra Skrzypkowska
- Department of Medical Biotechnology, Laboratory of Cell Biology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Zelazek
- Department of Medical Biotechnology, Laboratory of Cell Biology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | | | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
16
|
Łupicka-Słowik A, Psurski M, Grzywa R, Bobrek K, Smok P, Walczak M, Gaweł A, Stefaniak T, Oleksyszyn J, Sieńczyk M. Development of Adenosine Deaminase-Specific IgY Antibodies: Diagnostic and Inhibitory Application. Appl Biochem Biotechnol 2017; 184:1358-1374. [PMID: 29043661 PMCID: PMC5889419 DOI: 10.1007/s12010-017-2626-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022]
Abstract
Adenosine deaminase (ADA) is currently used as a diagnostic marker for tuberculous pleuritis. Although ADA has been suggested as a potential marker for several types of cancer, the importance of each of ADA isoforms as well as their levels and enzymatic activities in tumors need to be further investigated. Herein we developed avian immunoglobulin Y highly specific to human ADA via hens immunization with calf adenosine deaminase. The obtained antibodies were used for the development of a sensitive double-egg yolk immunoglobulin (IgY) sandwich ELISA assay with an ADA detection limit of 0.5 ng/ml and a linearity range of up to 10 ng/ml. Specific, affinity-purified IgYs were able to recognize human recombinant ADA and ADA present in human cancer cell lines. In addition, antigen-specific IgY antibodies were able to inhibit catalytic activity of calf ADA with an IC50 value of 47.48 nM. We showed that generated IgY antibodies may be useful for ADA detection, thus acting as a diagnostic agent in immunoenzymatic assays.
Collapse
Affiliation(s)
- Agnieszka Łupicka-Słowik
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Mateusz Psurski
- Laboratory of Experimental Anticancer Therapy, Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Renata Grzywa
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kamila Bobrek
- Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Bird and Exotic Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366, Wrocław, Poland
| | - Patrycja Smok
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Maciej Walczak
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Andrzej Gaweł
- Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Bird and Exotic Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366, Wrocław, Poland
| | - Tadeusz Stefaniak
- Faculty of Veterinary Medicine, Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Józef Oleksyszyn
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Marcin Sieńczyk
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
17
|
Oliveira ÉAD, Lima DSD, Cardozo LE, Souza GFD, de Souza N, Alves-Fernandes DK, Faião-Flores F, Quincoces JAP, Barros SBDM, Nakaya HI, Monteiro G, Maria-Engler SS. Toxicogenomic and bioinformatics platforms to identify key molecular mechanisms of a curcumin-analogue DM-1 toxicity in melanoma cells. Pharmacol Res 2017; 125:178-187. [PMID: 28882690 DOI: 10.1016/j.phrs.2017.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/31/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022]
Abstract
Melanoma is a highly invasive and metastatic cancer with high mortality rates and chemoresistance. Around 50% of melanomas are driven by activating mutations in BRAF that has led to the development of potent anti-BRAF inhibitors. However resistance to anti-BRAF therapy usually develops within a few months and consequently there is a need to identify alternative therapies that will bypass BRAF inhibitor resistance. The curcumin analogue DM-1 (sodium 4-[5-(4-hydroxy-3-methoxy-phenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate) has substantial anti-tumor activity in melanoma, but its mechanism of action remains unclear. Here we use a synthetic lethal genetic screen in Saccharomyces cerevisiae to identify 211 genes implicated in sensitivity to DM-1 toxicity. From these 211 genes, 74 had close human orthologues implicated in oxidative phosphorylation, insulin signaling and iron and RNA metabolism. Further analysis identified 7 target genes (ADK, ATP6V0B, PEMT, TOP1, ZFP36, ZFP36L1, ZFP36L2) with differential expression during melanoma progression implicated in regulation of tumor progression, cell differentiation, and epithelial-mesenchymal transition. Of these TOP1 and ADK were regulated by DM-1 in treatment-naïve and vemurafenib-resistant melanoma cells respectively. These data reveal that the anticancer effect of curcumin analogues is likely to be mediated via multiple targets and identify several genes that represent candidates for combinatorial targeting in melanoma.
Collapse
Affiliation(s)
- Érica Aparecida de Oliveira
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Diogenes Saulo de Lima
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Lucas Esteves Cardozo
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | | | - Nayane de Souza
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Debora Kristina Alves-Fernandes
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Fernanda Faião-Flores
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | | | - Silvia Berlanga de Moraes Barros
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Helder I Nakaya
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Gisele Monteiro
- Biochemical Pharmaceutical Technology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Silvya Stuchi Maria-Engler
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil.
| |
Collapse
|
18
|
Development of a capillary electrophoresis method for analyzing adenosine deaminase and purine nucleoside phosphorylase and its application in inhibitor screening. Anal Biochem 2016; 506:31-44. [DOI: 10.1016/j.ab.2016.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 11/20/2022]
|
19
|
Yang L, Wang J, Li J, Zhang H, Guo S, Yan M, Zhu Z, Lan B, Ding Y, Xu M, Li W, Gu X, Qi C, Zhu H, Shao Z, Liu B, Tao SC. Identification of Serum Biomarkers for Gastric Cancer Diagnosis Using a Human Proteome Microarray. Mol Cell Proteomics 2015; 15:614-23. [PMID: 26598640 DOI: 10.1074/mcp.m115.051250] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/27/2022] Open
Abstract
We aimed to globally discover serum biomarkers for diagnosis of gastric cancer (GC). GC serum autoantibodies were discovered and validated using serum samples from independent patient cohorts encompassing 1,401 participants divided into three groups, i.e. healthy, GC patients, and GC-related disease group. To discover biomarkers for GC, the human proteome microarray was first applied to screen specific autoantibodies in a total of 87 serum samples from GC patients and healthy controls. Potential biomarkers were identified via a statistical analysis protocol. Targeted protein microarrays with only the potential biomarkers were constructed and used to validate the candidate biomarkers using 914 samples. To provide further validation, the abundance of autoantibodies specific to the biomarker candidates was analyzed using enzyme-linked immunosorbent assays. Receiver operating characteristic curves were generated to evaluate the diagnostic accuracy of the serum biomarkers. Finally, the efficacy of prognosis efficacy of the final four biomarkers was evaluated by analyzing the clinical records. The final panel of biomarkers consisting of COPS2, CTSF, NT5E, and TERF1 provides high diagnostic power, with 95% sensitivity and 92% specificity to differentiate GC patients from healthy individuals. Prognosis analysis showed that the panel could also serve as independent predictors of the overall GC patient survival. The panel of four serum biomarkers (COPS2, CTSF, NT5E, and TERF1) could serve as a noninvasive diagnostic index for GC, and the combination of them could potentially be used as a predictor of the overall GC survival rate.
Collapse
Affiliation(s)
- Lina Yang
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Jingfang Wang
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianfang Li
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hainan Zhang
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shujuan Guo
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Min Yan
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenggang Zhu
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Lan
- Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Youcheng Ding
- Shanghai East Hospital Affiliated to Tongji University, Shanghai, 200120, China
| | - Ming Xu
- Tongren Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200050, China
| | - Wei Li
- Shanghai Putuo Center Hospital, Shanghai, China
| | - Xiaonian Gu
- Shanghai Pudong Gongli Hospital, Shanghai, China 200135
| | - Chong Qi
- Shanghai Fifth People's Hospital affiliated to Fudan University, Shanghai, 200240 China
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Zhifeng Shao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingya Liu
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China;
| | - Sheng-Ce Tao
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China;
| |
Collapse
|
20
|
Soares AS, Costa VM, Diniz C, Fresco P. The combination of Cl-IB-MECA with paclitaxel: a new anti-metastatic therapeutic strategy for melanoma. Cancer Chemother Pharmacol 2014; 74:847-60. [PMID: 25119183 DOI: 10.1007/s00280-014-2557-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/26/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE Metastatic melanoma is considered one of the most aggressive malignant tumours, representing the deadliest form of skin cancer. Melanoma progression is associated with the abrogation of normal controls that limit cell proliferation, migration, and invasion, eventually leading to metastasis. Based on the variety of cellular mechanisms involved in metastatic progression, we aimed to evaluate the effect of inosine (50 μM) and of the combination of Cl-IB-MECA (10 μM) with paclitaxel (10 ng/mL) on several stages of melanoma progression. METHODS Proliferation, migration, adhesion, invasion, and colony formation assays were performed on human C32 and A375 metastatic melanoma cells. Levels of ERK1/2 were also determined using an ELISA kit. Moreover, mouse aortic rings were treated with vascular endothelial growth factor in order to assess the microvessel sprouting (an indicator of angiogenesis) in the presence of the referred compounds. RESULTS We demonstrate that inosine induced, through A3 adenosine receptor activation, proliferation, migration, adhesion, and invasion on C32 and A375 melanoma cells, although with dissimilar importance on the two melanoma cell lines. Inosine also increased colony formation on A375 cells. Levels of ERK1/2 were increased after inosine exposure and that increase was dependent on A3 adenosine receptor activation in both cell lines. Moreover, microvessel sprouting stimulated by inosine was decreased by the combination of Cl-IB-MECA with paclitaxel. CONCLUSIONS Cl-IB-MECA combined with paclitaxel was able to impair almost all of the referred metastatic related mechanisms induced by inosine, making this approach a valuable tool for combinatory therapy against metastatic melanoma.
Collapse
Affiliation(s)
- Ana S Soares
- REQUIMTE/Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
21
|
Abstract
Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5'-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically.
Collapse
Affiliation(s)
- Detlev Boison
- Legacy Research Institute, 1225 NE 16th Ave, Portland, OR 97202, USA.
| |
Collapse
|
22
|
Battisti V, Maders LDK, Bagatini MD, Battisti IE, Bellé LP, Santos KF, Maldonado PA, Thomé GR, Schetinger MRC, Morsch VM. Ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) activities in prostate cancer patients: influence of Gleason score, treatment and bone metastasis. Biomed Pharmacother 2012; 67:203-8. [PMID: 23433854 DOI: 10.1016/j.biopha.2012.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/07/2012] [Indexed: 12/20/2022] Open
Abstract
The relation between adenine nucleotides and cancer has already been described in literature. Considering that the enzymes ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) act together to control nucleotide levels, we aimed to investigate the role of these enzymes in prostate cancer (PCa). E-NPP and ADA activities were determined in serum and platelets of PCa patients and controls. We also verified the influence of the Gleason score, bone metastasis and treatment in the enzyme activities. Platelets and serum E-NPP activity increased, whereas ADA activity in serum decreased in PCa patients. In addition, Gleason score, metastasis and treatment influenced E-NPP and ADA activities. We may propose that E-NPP and ADA are involved in the development of PCa. Moreover, E-NPP and ADA activities are modified in PCa patients with distinct Gleason score, with bone metastasis, as well as in patients under treatment.
Collapse
Affiliation(s)
- Vanessa Battisti
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, 97105-900 Santa Maria, RS, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Adenosine deaminase activity in patients with ovarian neoplasms. Arch Gynecol Obstet 2012; 286:155-9. [DOI: 10.1007/s00404-012-2279-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
|
24
|
Lee IH, Park JB, Cheong M, Choi YS, Park D, Sin JI. Antitumor therapeutic and antimetastatic activity of electroporation-delivered human papillomavirus 16 E7 DNA vaccines: a possible mechanism for enhanced tumor control. DNA Cell Biol 2011; 30:975-85. [PMID: 21649506 DOI: 10.1089/dna.2011.1266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA vaccines are known to be lacking in immunogenicity in humans. Presently, electroporation (EP) is thought to overcome this limitation. Here, we investigate whether human papillomavirus 16 E7 DNA vaccines delivered by EP might elicit potent antitumor activity in animal cervical cancer models, with a focus on the underlying mechanism(s). Intramuscular (IM)-EP delivery of E7 DNA vaccines induced more potent antitumor therapeutic and antimetastatic activity compared with IM delivery. Moreover, the tumor-controlled animals by IM-EP possessed long-term memory responses to parental tumor cells. This improved antitumor effect was concomitant with augmented Ag-specific CTL activities. IM-EP also induced IgG and Th-cell responses higher than IM delivery. Finally, IM-EP resulted in more antigen production in and more attraction of immune cells into the site of DNA injection, suggesting that these biological and immunological changes made by IM-EP might be responsible for enhanced CTL activities and antitumor resistance. Thus, this study shows that IM-EP can induce more potent antitumor activity by augmenting CTL responses possibly through more antigen production in and more attraction of immune cells into the muscle sites. This study also suggests that IM-EP of E7 DNA vaccines might be a potential approach toward treating patients with cervical cancer.
Collapse
Affiliation(s)
- In Hee Lee
- Department of Internal Medicine, Catholic University of Daegu, Daegu, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Jin D, Fan J, Wang L, Thompson LF, Liu A, Daniel BJ, Shin T, Curiel TJ, Zhang B. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res 2010; 70:2245-55. [PMID: 20179192 DOI: 10.1158/0008-5472.can-09-3109] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD73, originally defined as a lymphocyte differentiation antigen, is thought to function as a cosignaling molecule on T lymphocytes and an adhesion molecule that is required for lymphocyte binding to endothelium. We show here that CD73 is widely expressed on many tumor cell lines and is upregulated in cancerous tissues. Because the ecto-5'-nucleotidase activity of CD73 catalyzes AMP breakdown to immunosuppressive adenosine, we hypothesized that CD73-generated adenosine prevents tumor destruction by inhibiting antitumor immunity. We confirmed this hypothesis by showing that combining tumor CD73 knockdown and tumor-specific T-cell transfer cured all tumor-bearing mice. In striking contrast, there was no therapeutic benefit of adoptive T-cell immunotherapy in mice bearing tumors without CD73 knockdown. Moreover, blockade of the A2A adenosine receptor with a selective antagonist also augmented the efficacy of adoptive T-cell therapy. These findings identify a potential mechanism for CD73-mediated tumor immune evasion and point to a novel cancer immunotherapy strategy by targeting the enzymatic activity of tumor CD73.
Collapse
Affiliation(s)
- Dachuan Jin
- Cancer Therapy and Research Center, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Aghaei M, Karami-Tehrani F, Salami S, Atri M. Diagnostic value of adenosine deaminase activity in benign and malignant breast tumors. Arch Med Res 2010; 41:14-8. [PMID: 20430249 DOI: 10.1016/j.arcmed.2009.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 10/22/2009] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS The present study was carried out to evaluate the activity of adenosine deaminase (ADA) and its isoenzymes ADA1 and ADA2 activities as a diagnostic tool in patients with benign and malignant breast disease. METHODS Total ADA, ADA1, and ADA2 activities of serum and tumor were analyzed using 58 subjects including 20 patients with benign breast disease (BBD), 34 patients with primary breast cancer, and 20 patients as normal control subjects. RESULTS The mean values for total ADA and ADA2 activities in the serum and tumor of BBD were significantly higher than those of healthy controls (p <0.01). Furthermore, the mean values for total ADA and ADA2 activities of patients with breast cancer were significantly higher than those of the benign group (p <0.005) and healthy subjects (p <0.0001). CONCLUSIONS Based on the present results, it is concluded that the assessment of total ADA and ADA2 activities may be used as a reliable test for differential diagnosis of benign and malignant breast disease.
Collapse
Affiliation(s)
- Mahmoud Aghaei
- Department of Clinical Biochemistry, Tarbiat Modarres University, Tehran, Iran
| | | | | | | |
Collapse
|
27
|
Alterations in adenylate kinase activity in human PBMCs after in vitro exposure to electromagnetic field: comparison between extremely low frequency electromagnetic field (ELF) and therapeutic application of a musically modulated electromagnetic field (TAMMEF). J Biomed Biotechnol 2009; 2009:717941. [PMID: 19763276 PMCID: PMC2744884 DOI: 10.1155/2009/717941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/20/2009] [Accepted: 07/07/2009] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effects of electromagnetic fields on enzymes involved in purine
metabolism in human peripheral blood mononuclear cells in vitro. Cells were obtained from 20
volunteers. We tested both low-energy, extremely low frequency (ELF; 100-Hz) electromagnetic
fields and the Therapeutic Application of Musically Modulated Electromagnetic Fields
(TAMMEFs); the latter is characterized by variable frequencies, intensities, and wave shapes.
Adenylate kinase activity was increased after ELF field exposure but decreased slightly after
TAMMEF exposure. Neither of the two electromagnetic field affected the activities of the purine
metabolism enzymes ecto-5′-nucleotidase, adenosine deaminase, and adenosine kinase. We concluded that ELF fields may influence cellular electrical charge stability; stimulation of adenylate kinase activity could restore the cell to a state of equilibrium. In contrast, TAMMEF fields may be useful for maintaining and regulating the cellular electrical charge.
Collapse
|
28
|
Giglioni S, Leoncini R, Aceto E, Chessa A, Civitelli S, Bernini A, Tanzini G, Carraro F, Pucci A, Vannoni D. Adenosine kinase gene expression in human colorectal cancer. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:750-4. [PMID: 18600536 DOI: 10.1080/15257770802145629] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate gene expression of adenosine kinase, a key enzyme in adenosine metabolism, in human intestinal biopsy specimens of 10 colorectal cancer patients. Quantitative mRNA expression levels were normalized against the reference gene beta-actin. The results showed that adenosine kinase gene expression was significantly higher in cancer than in normal-appearing tissue, in line with our previous measurements of adenosine kinase enzyme activities in colorectal tumor samples.
Collapse
Affiliation(s)
- S Giglioni
- Dipartimento di Medicina Interna, Sc. Endocrino-Metaboliche e Biochimica, Università di Siena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Khalpey Z, Yuen AHY, Lavitrano M, McGregor CGA, Kalsi KK, Yacoub MH, Smolenski RT. Mammalian mismatches in nucleotide metabolism: implications for xenotransplantation. Mol Cell Biochem 2007; 304:109-17. [PMID: 17657591 DOI: 10.1007/s11010-007-9491-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/19/2007] [Indexed: 02/06/2023]
Abstract
Acute humoral rejection (AHR) limits the clinical application of animal organs for xenotransplantation. Mammalian disparities in nucleotide metabolism may contribute significantly to the microvascular component in AHR; these, however remain ill-defined. We evaluated the extent of species-specific differences in nucleotide metabolism. HPLC analysis was performed on venous blood samples (nucleotide metabolites) and heart biopsies (purine enzymes) from wild type mice, rats, pigs, baboons, and human donors.Ecto-5'-nucleotidase (E5'N) activities were 4-fold lower in pigs and baboon hearts compared to human and mice hearts while rat activity was highest. Similar differences between pigs and humans were also observed with kidneys and endothelial cells. More than 10-fold differences were observed with other purine enzymes. AMP deaminase (AMPD) activity was exceptionally high in mice but very low in pig and baboon hearts. Adenosine deaminase (ADA) activity was highest in baboons. Adenosine kinase (AK) activity was more consistent across different species. Pig blood had the highest levels of hypoxanthine, inosine and adenine. Human blood uric acid concentration was almost 100 times higher than in other species studied. We conclude that species-specific differences in nucleotide metabolism may affect compatibility of pig organs within a human metabolic environment. Furthermore, nucleotide metabolic mismatches may affect clinical relevance of animal organ transplant models. Supplementation of deficient precursors or application of inhibitors of nucleotide metabolism (e.g., allopurinol) or transgenic upregulation of E5'N may overcome some of these differences.
Collapse
Affiliation(s)
- Zain Khalpey
- Heart Science Centre, Imperial College London, Harefield, Middlesex, UB9 6JH, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Rainis T, Maor I, Lanir A, Shnizer S, Lavy A. Enhanced oxidative stress and leucocyte activation in neoplastic tissues of the colon. Dig Dis Sci 2007; 52:526-30. [PMID: 17195121 DOI: 10.1007/s10620-006-9177-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 01/25/2006] [Indexed: 12/09/2022]
Abstract
Excess of intracellular reactive oxygen species results in an environment that may modulate gene expression, or damage cellular molecules. These events are assumed to contribute to the process of carcinogenesis. In the present study, we measured the extent of lipid peroxidation and antioxidative status in colonic tumors and normal colonic mucosa obtained from 25 patients with colorectal carcinoma. Levels of lipid peroxides (PD) and of thiobarbituric acid reactive substances (TBARS) were significantly increased, by 54 and 59%, respectively, in tissue specimens obtained from the colonic tumor as compared with normal colonic mucosa (PD, 2.78+/-0.31 versus 1.81+/-0.29 nmol/mg tissue, TBARS, 0.86+/-0.1 versus 0.54+/-0.08 nmol/mg tissue). Activities of the antioxidant enzymes catalase and glutathione peroxidase (GPx) were also higher (by 67 and 29%, respectively) than in normal mucosa, probably in response to the increased free radical stress occurring in cancerous tissues. Myeloperoxidase (MPO) and adenosine deaminase (ADA) are markers of activated leukocytes and are related to the production of oxygen free radicals by these cells. Their activities were significantly elevated in the neoplastic tissue as compared to the normal tissue (MPO, 7.4+/-1.5 versus 4.1+/-0.95 U/mg tissue, ADA, 4.17+/-0.65 versus 2.99+/-0.80 U/g tissue), suggesting a possible involvement of activated leukocytes in the enhanced oxidative stress in the cancerous tissue. Our results demonstrate an enhanced oxidative stress in the neoplastic tissue. Leukocyte activation was also higher in the carcinogenic tissue, indicating a possible contribution of these cells to a further oxidative stress-derived tissue injury. These observations add to previous studies and may encourage therapeutic trials with antioxidants as a means of preventing colorectal cancer and preventing further tissue injury in the neoplastic tissue and its surroundings.
Collapse
Affiliation(s)
- Tova Rainis
- Bnai-Zion Medical Center, Gastroenterology Unit, Haifa, Israel.
| | | | | | | | | |
Collapse
|
31
|
Buffon A, Ribeiro VB, Wink MR, Casali EA, Sarkis JJF. Nucleotide metabolizing ecto-enzymes in Walker 256 tumor cells: molecular identification, kinetic characterization and biochemical properties. Life Sci 2006; 80:950-8. [PMID: 17169379 DOI: 10.1016/j.lfs.2006.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 11/02/2006] [Accepted: 11/16/2006] [Indexed: 02/06/2023]
Abstract
In this study we describe the molecular identification, kinetic characterization and biochemical properties of an E-NTPDase and an 5'-nucleotidase in Walker 256 cells. For the ATP, ADP and AMP hydrolysis there were optimum pH in the range 6.5-8.0, and absolute requirement for divalent cations (Mg(2+)>Ca(2+)). A significant inhibition of ATP and ADP hydrolysis was observed in the presence of high concentrations of sodium azide and 0.5 mM of Gadolinium chloride. These activities were insensitive to ATPase, adenylate kinase and alkaline phosphatase classical inhibitors. The K(m) values were 464.2+/-86.6 microM (mean+/-SEM, n=4), 137.0+/-31 microM (mean+/-SEM, n=5) and 44.8+/-10.2 microM (mean+/-SEM, n=4), and V(max) values were 655.0+/-94.6 (mean+/-SEM, n=4), 236.3+/-27.2 (mean+/-SEM, n=5) and 177.6+/-13.8 (mean+/-SEM, n=5) nmol of inorganic phosphate min(-1) mg of protein(-1) for ATP, ADP and AMP, respectively. Using RT-PCR analysis we identified the mRNA of two members of the ecto-nucleoside triphosphate diphosphohydrolase family (NTPDase 2 and 5) and a 5'-nucleotidase. The presence of NTPDases and 5'-nucleotidase enzymes in Walker 256 tumor cells may be important to regulate the ratio adenine nucleotides/adenine nucleoside extracellularly, therefore motivating tumor growth.
Collapse
Affiliation(s)
- Andréia Buffon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 ANEXO, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
32
|
Sadej R, Spychala J, Skladanowski AC. Expression of ecto-5'-nucleotidase (eN, CD73) in cell lines from various stages of human melanoma. Melanoma Res 2006; 16:213-22. [PMID: 16718268 DOI: 10.1097/01.cmr.0000215030.69823.11] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ecto-5'-nucleotidase is a GPI-anchored enzyme localized in cell membrane lipid rafts. Although it is highly expressed in many tumour cells, its specific function during tumorigenesis is unclear. We have found that, among different melanoma cells, upregulated expression of ecto-5'-nucleotidase is associated with a highly invasive phenotype. Analysis of other cell membrane proteins involved in melanoma adhesion and metastasis demonstrated that expression of alpha5, beta1, beta3-integrin subunits and CD44 was elevated gradually in accordance with increasing metastatic potential. Expression of alphav-integrin and caveolin-1 was seen mostly in cells derived from metastatic melanomas. Furthermore, in contrast to N-cadherin, which was unaltered in all lines, we could not detect E-cadherin in any cell type. Functional assays demonstrated that highly expressed ecto-5'-nucleotidase is a catalytically competent protein that is very sensitive to inhibition by concanavalin A. The interaction with concanavalin A also caused increased association of ecto-5'-nucleotidase-rich lipid rafts with much heavier cytoskeletal complexes as determined by density gradient centrifugation. A similar shift towards heavier cytoskeletal fractions also took place with other proteins coexpressed with ecto-5'-nucleotidase, such as alphav, alpha5, beta1 and beta3-integrins, caveolin-1 and CD44. As ConA-induced clustering may reflect the interactions of membrane proteins with extracellular matrix, we also analysed the effect of several extracellular matrix proteins on the in-situ activity of ecto-5'-nucleotidase in WM9 cells and found that tenascin C strongly inhibited ecto-5'-nucleotidase activity and adenosine generation from AMP. We also developed WM9 cells with reduced ecto-5'-nucleotidase expression and tested differences in cell adhesion on various extracellular matrix proteins. WM9 cells attached significantly weaker to tenascin C layer. These observations indicate that expression of ecto-5'-nucleotidase correlates with a number of metastasis-related markers and thus may have a function in this process. Furthermore, our data suggest that, in addition to generating adenosine, ecto-5'-nucleotidase may have independent roles in adhesion and interaction with extracellular matrix components in melanoma.
Collapse
Affiliation(s)
- Rafal Sadej
- Department of Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
33
|
Aghaei M, Karami-Tehrani F, Salami S, Atri M. Adenosine deaminase activity in the serum and malignant tumors of breast cancer: the assessment of isoenzyme ADA1 and ADA2 activities. Clin Biochem 2006; 38:887-91. [PMID: 16054616 DOI: 10.1016/j.clinbiochem.2005.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 05/04/2005] [Accepted: 05/25/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The potential relationship between adenosine deaminase activity and cancer progression was examined by investigating the activity of total ADA and its isoenzymes in serum and simultaneously in the cancerous tissue of each patient with breast cancer. METHODS Total ADA and its isoenzymes were measured using the Giusti method. ADA2 activity was measured in the presence of a specific ADA1 inhibitor, EHNA. RESULTS Our results indicated that ADA2 and total ADA activities were higher in serum and malignant tissues than those of corresponding controls (P < 0.05). Tumor ADA2 and total ADA activities were significantly (P < 0.05) correlated with lymph node involvement, histological grade and tumor size, whereas their levels in serum were significantly (P < 0.05) correlated with menopausal status and patient age. CONCLUSION Although serum and tumor total ADA activity and its ADA2 isoenzyme were both found to be increased, distinct correlation patterns were observed with some of the prognostic factors. It can be speculated that increased ADA and isoenzyme activities in serum originated from sources other than the breast tumors.
Collapse
Affiliation(s)
- Mahmood Aghaei
- Clinical Biochemistry Department, Cancer Research Laboratory, School of Medical Science, Tarbiat Modarres University, PO Box: 14115-111, Tehran, Iran
| | | | | | | |
Collapse
|
34
|
Krasnov A, Koskinen H, Rexroad C, Afanasyev S, Mölsä H, Oikari A. Transcriptome responses to carbon tetrachloride and pyrene in the kidney and liver of juvenile rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2005; 74:70-81. [PMID: 15963578 DOI: 10.1016/j.aquatox.2005.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 04/07/2005] [Accepted: 04/27/2005] [Indexed: 05/03/2023]
Abstract
We report the effects of the hepatotoxic compound carbon tetrachloride (CCl(4)) and pyrene, a model polycyclic aromatic hydrocarbon, on the transcriptomes of juvenile rainbow trout kidneys and livers. Fish were exposed to sublethal doses for 4 days and expression of 1273 genes was measured using a cDNA microarray. Efforts were focused on differentiating between unspecific responses and those that can be regarded as molecular signatures of CCl(4) and pyrene toxicities. Expression profiles were analyzed in terms of Gene Ontology categories. Universal reactions to chemical toxicity were observed in metallothionein, HSP90 and mitochondrial proteins of oxidative phosphorylation, which were induced in both tissues. Several genes showed similar responses to both compounds in either kidney or liver; most of the effects are implicated in hematopoiesis and immune response. Stimulation of mitochondrial and heat shock proteins was greater in the liver than in the kidney, whereas genes involved in transcription, humoral immune response and apoptosis were suppressed. Pyrene and CCl(4) caused opposite effects on expression of several genes, including HSP-27, macrophage receptor Marco, metalloproteinases (MMP9 and MMP13), and delta-6 fatty acid desaturase. Pyrene affected mainly genes implicated in the maintenance of the genetic apparatus, immune response, glycolysis, and iron homeostasis. CCl(4) affected the structural proteins and genes involved in cellular stress, protein folding, and steroid metabolism. Overall, pyrene suppressed a range of protective or acclimative reactions, many of which were stimulated with CCl(4). Additionally, gene profiling analyses indicated adaptive and potentially maladaptive reactions to toxicity. For instance, stimulation of mitochondrial proteins coincided with suppression of catalase, whereas CCl(4) down-regulated fatty acid metabolism and peroxisomal proteins. A number of candidate biomarkers for ecotoxicological risk assessment were identified as our understanding of mechanisms of pyrene and CCl(4) toxicities in rainbow trout increased.
Collapse
Affiliation(s)
- Aleksei Krasnov
- Institute of Applied Biotechnology, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|