1
|
Komal J, Desai HR, Samal I, Mastinu A, Patel RD, Kumar PVD, Majhi PK, Mahanta DK, Bhoi TK. Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:3961. [PMID: 38068598 PMCID: PMC10708123 DOI: 10.3390/plants12233961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024]
Abstract
Phytophagous insects pose a significant threat to global crop yield and food security. The need for increased agricultural output while reducing dependence on harmful synthetic insecticides necessitates the implementation of innovative methods. The utilization of CRISPR-Cas (Clustered regularly interspaced short palindromic repeats) technology to develop insect pest-resistant plants is believed to be a highly effective approach in reducing production expenses and enhancing the profitability of farms. Insect genome research provides vital insights into gene functions, allowing for a better knowledge of insect biology, adaptability, and the development of targeted pest management and disease prevention measures. The CRISPR-Cas gene editing technique has the capability to modify the DNA of insects, either to trigger a gene drive or to overcome their resistance to specific insecticides. The advancements in CRISPR technology and its various applications have shown potential in developing insect-resistant varieties of plants and other strategies for effective pest management through a sustainable approach. This could have significant consequences for ensuring food security. This approach involves using genome editing to create modified insects or crop plants. The article critically analyzed and discussed the potential and challenges associated with exploring and utilizing CRISPR-Cas technology for reducing insect pest pressure in crop plants.
Collapse
Affiliation(s)
- J. Komal
- Basic Seed Multiplication and Training Centre, Central Silk Board, Kharaswan 833216, Jharkhand, India;
| | - H. R. Desai
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Surat 395007, Gujarat, India; (H.R.D.); (R.D.P.)
| | - Ipsita Samal
- Indian Council of Agricultural Research-National Research Centre on Litchi, Mushahari, Ramna, Muzaffarpur 842002, Bihar, India;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy
| | - R. D. Patel
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Surat 395007, Gujarat, India; (H.R.D.); (R.D.P.)
| | - P. V. Dinesh Kumar
- Research Extension Centre, Central Silk Board, Hoshangabad 461001, Madhya Pradesh, India;
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India;
| | - Deepak Kumar Mahanta
- Forest Entomology Discipline, Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE)-Forest Research Institute (ICFRE-FRI), Dehradun 248006, Uttarakhand, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE)-Arid Forest Research Institute (ICFRE-AFRI), Jodhpur 342005, Rajasthan, India
| |
Collapse
|
2
|
Xu X, Wang Y, Chen J, Du X, Yao L, Xu J, Zhang Y, Huang Y, Wang Y. Mutation of Serine protease 1 Induces Male Sterility in Bombyx mori. Front Physiol 2022; 13:828859. [PMID: 35222089 PMCID: PMC8867212 DOI: 10.3389/fphys.2022.828859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/17/2022] [Indexed: 01/19/2023] Open
Abstract
Serine proteases are important in reproduction, embryonic development, cell differentiation, apoptosis, and immunity. The genes encoding some serine proteases are essential for male fertility in both humans and rodents and are functionally conserved among metazoan. For example, the Serine protease 1 (Ser1) gene determines male reproductive success in the model lepidopteran insect Bombyx mori. In this study, we explored the function of BmSer1 through transgenic CRISPR/Cas9 technology-mediated mutations in silkworm. We found that the mutation of BmSer1 gene resulted in male sterility but had no effect on female fertility. Male mutants produce normal eupyrene sperm bundles, but the sperm bundles do not dissociate into single sperm. Male sterility caused by the BmSer1 gene mutation was inherited stably through female individuals. Therefore, the serine protease encoded by BmSer1 is essential for male reproductive success in lepidopterans and is a potential target gene for biological reproductive regulation.
Collapse
Affiliation(s)
- Xia Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaohui Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jine Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Du
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lusong Yao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jun Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yong Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Yongping Huang,
| | - Yongqiang Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Yongqiang Wang,
| |
Collapse
|
3
|
Liu G, Liu W, Zhao R, He J, Dong Z, Chen L, Wan W, Chang Z, Wang W, Li X. Genome-wide identification and gene-editing of pigment transporter genes in the swallowtail butterfly Papilio xuthus. BMC Genomics 2021; 22:120. [PMID: 33596834 PMCID: PMC7891156 DOI: 10.1186/s12864-021-07400-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/19/2021] [Indexed: 02/03/2023] Open
Abstract
Background Insect body coloration often functions as camouflage to survive from predators or mate selection. Transportation of pigment precursors or related metabolites from cytoplasm to subcellular pigment granules is one of the key steps in insect pigmentation and usually executed via such transporter proteins as the ATP-binding cassette (ABC) transmembrane transporters and small G-proteins (e.g. Rab protein). However, little is known about the copy numbers of pigment transporter genes in the butterfly genomes and about the roles of pigment transporters in the development of swallowtail butterflies. Results Here, we have identified 56 ABC transporters and 58 Rab members in the genome of swallowtail butterfly Papilio xuthus. This is the first case of genome-wide gene copy number identification of ABC transporters in swallowtail butterflies and Rab family in lepidopteran insects. Aiming to investigate the contribution of the five genes which are orthologous to well-studied pigment transporters (ABCG: white, scarlet, brown and ok; Rab: lightoid) of fruit fly or silkworm during the development of swallowtail butterflies, we performed CRISPR/Cas9 gene-editing of these genes using P. xuthus as a model and sequenced the transcriptomes of their morphological mutants. Our results indicate that the disruption of each gene produced mutated phenotypes in the colors of larvae (cuticle, testis) and/or adult eyes in G0 individuals but have no effect on wing color. The transcriptomic data demonstrated that mutations induced by CRISPR/Cas9 can lead to the accumulation of abnormal transcripts and the decrease or dosage compensation of normal transcripts at gene expression level. Comparative transcriptomes revealed 606 ~ 772 differentially expressed genes (DEGs) in the mutants of four ABCG transporters and 1443 DEGs in the mutants of lightoid. GO and KEGG enrichment analysis showed that DEGs in ABCG transporter mutants enriched to the oxidoreductase activity, heme binding, iron ion binding process possibly related to the color display, and DEGs in lightoid mutants are enriched in glycoprotein binding and protein kinases. Conclusions Our data indicated these transporter proteins play an important role in body color of P. xuthus. Our study provides new insights into the function of ABC transporters and small G-proteins in the morphological development of butterflies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07400-z.
Collapse
Affiliation(s)
- Guichun Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jinwu He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China
| | - Wenting Wan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhou Chang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Kunming, 650223, Yunnan, China.
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
4
|
Zhang R, He J, Dong Z, Liu G, Yin Y, Zhang X, Li Q, Ren Y, Yang Y, Liu W, Chen X, Xia W, Duan K, Hao F, Lin Z, Yang J, Chang Z, Zhao R, Wan W, Lu S, Peng Y, Ge S, Wang W, Li X. Genomic and experimental data provide new insights into luciferin biosynthesis and bioluminescence evolution in fireflies. Sci Rep 2020; 10:15882. [PMID: 32985577 PMCID: PMC7522259 DOI: 10.1038/s41598-020-72900-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Fireflies are among the most charismatic insects for their spectacular bioluminescence, but the origin and evolution of bioluminescence remain elusive. Especially, the genic basis of luciferin (D-luciferin) biosynthesis and light patterns is largely unknown. Here, we present the high-quality reference genomes of two fireflies Lamprigera yunnana (1053 Mb) and Abscondita terminalis (501 Mb) with great differences in both morphology and luminous behavior. We sequenced the transcriptomes and proteomes of luminous organs of two species. We created the CRISPR/Cas9-induced mutants of Abdominal B gene without luminous organs in the larvae of A. terminalis and sequenced the transcriptomes of mutants and wild-types. Combining gene expression analyses with comparative genomics, we propose a more complete luciferin synthesis pathway, and confirm the convergent evolution of bioluminescence in insects. Using experiments, the function of the firefly acyl-CoA thioesterase (ACOT1) to convert L-luciferin to D-luciferin was validated for the first time. Comparisons of three-dimension reconstruction of luminous organs and their differentially expressed genes among two species suggest that two positive genes in the calcium signaling pathway and structural difference of luminous organs may play an important role in the evolution of flash pattern. Altogether, our results provide important resources for further exploring bioluminescence in insects.
Collapse
Affiliation(s)
- Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jinwu He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Guichun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yuan Yin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Xinying Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yongzhi Yang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Xianqing Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wenhao Xia
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Kang Duan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Fei Hao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Zeshan Lin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Jie Yang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Zhou Chang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wenting Wan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Sihan Lu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yanqiong Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Siqin Ge
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Kunming, 650223, Yunnan, China.
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
5
|
Identification of a novel strong promoter from the anhydrobiotic midge, Polypedilum vanderplanki, with conserved function in various insect cell lines. Sci Rep 2019; 9:7004. [PMID: 31065019 PMCID: PMC6504868 DOI: 10.1038/s41598-019-43441-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/24/2019] [Indexed: 11/09/2022] Open
Abstract
Larvae of the African midge Polypedilum vanderplanki (Diptera: Chironomidae) show a form of extreme desiccation tolerance known as anhydrobiosis. The cell line Pv11 was recently established from the species, and these cells can also survive under desiccated conditions, and proliferate normally after rehydration. Here we report the identification of a new promoter, 121, which has strong constitutive transcriptional activity in Pv11 cells and promotes effective expression of exogenous genes. Using a luciferase reporter assay, this strong transcriptional activity was shown to be conserved in cell lines from various insect species, including S2 (Drosophila melanogaster, Diptera), SaPe-4 (Sarcophaga peregrina, Diptera), Sf9 (Spodoptera frugiperda, Lepidoptera) and Tc81 (Tribolium castaneum, Coleoptera) cells. In conjunction with an appropriate selection maker gene, the 121 promoter was able to confer zeocin resistance on SaPe-4 cells and allowed the establishment of stable SaPe-4 cell lines expressing the fluorescent protein AcGFP1; this is the first report of heterologous gene expression in this cell line. These results show the 121 promoter to be a versatile tool for exogenous gene expression in a wide range of insect cell lines, particularly useful to those from non-model insect species.
Collapse
|
6
|
Establishment and characterization of an immortalized renal cell line of the Chinese tree shrew (Tupaia belangeri chinesis). Appl Microbiol Biotechnol 2019; 103:2171-2180. [PMID: 30637496 DOI: 10.1007/s00253-019-09615-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 12/22/2022]
Abstract
The Chinese tree shrew holds a great potential as a viable animal model in biomedical research, especially for infectious diseases and neuropsychiatric disorders. A thorough understanding of the innate immunity, which represents the first line that defends the host against viral infection, of the Chinese tree shrew, is needed. However, the progress is hindered by the lack of a proper cell line for research usage. In this study, we established a cell line that is applicable to the study of tree shrew innate immune responses against viral infections. The Chinese tree shrew primary renal cells (TSPRCs) were immortalized by simian virus 40 large T antigen (SV40LT) transduction, and the immortalized cells were termed TSR6 (tree shrew renal cell #6). TSR6 showed a similar morphology to TSPRCs and expressed the epithelial cell-specific marker cytokeratin 18 (KRT18). In addition, TSR6 could be transfected by transfection reagent and was suitable for CRISPR/Cas9-mediated gene editing. Infection of Newcastle disease virus (NDV) or herpes simplex virus 1 (HSV-1) in TSR6 induced the mRNA expression of tree shrew interferon-β (tIFNB1) and myxovirus resistance protein 1 (tMx1) in a dose- and time-dependent manner. Collectively, we successfully established a tree shrew renal cell line and demonstrated that this cell line was suitable for the study of the innate immune response to viral infections.
Collapse
|
7
|
Sun D, Guo Z, Liu Y, Zhang Y. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Front Physiol 2017; 8:608. [PMID: 28932198 PMCID: PMC5592444 DOI: 10.3389/fphys.2017.00608] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated gene Cas9 represent an invaluable system for the precise editing of genes in diverse species. The CRISPR/Cas9 system is an adaptive mechanism that enables bacteria and archaeal species to resist invading viruses and phages or plasmids. Compared with zinc finger nucleases and transcription activator-like effector nucleases, the CRISPR/Cas9 system has the advantage of requiring less time and effort. This efficient technology has been used in many species, including diverse arthropods that are relevant to agriculture, forestry, fisheries, and public health; however, there is no review that systematically summarizes its successful application in the editing of both insect and non-insect arthropod genomes. Thus, this paper seeks to provide a comprehensive and impartial overview of the progress of the CRISPR/Cas9 system in different arthropods, reviewing not only fundamental studies related to gene function exploration and experimental optimization but also applied studies in areas such as insect modification and pest control. In addition, we also describe the latest research advances regarding two novel CRISPR/Cas systems (CRISPR/Cpf1 and CRISPR/C2c2) and discuss their future prospects for becoming crucial technologies in arthropods.
Collapse
Affiliation(s)
- Dan Sun
- Longping Branch, Graduate School of Hunan UniversityChangsha, China.,Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan UniversityChangsha, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
8
|
Macias VM, Ohm JR, Rasgon JL. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1006. [PMID: 28869513 PMCID: PMC5615543 DOI: 10.3390/ijerph14091006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 02/08/2023]
Abstract
Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease.
Collapse
Affiliation(s)
- Vanessa M Macias
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Johanna R Ohm
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
9
|
Meccariello A, Monti SM, Romanelli A, Colonna R, Primo P, Inghilterra MG, Del Corsano G, Ramaglia A, Iazzetti G, Chiarore A, Patti F, Heinze SD, Salvemini M, Lindsay H, Chiavacci E, Burger A, Robinson MD, Mosimann C, Bopp D, Saccone G. Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes. Sci Rep 2017; 7:10061. [PMID: 28855635 PMCID: PMC5577161 DOI: 10.1038/s41598-017-10347-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
The Mediterranean fruitfly Ceratitis capitata (medfly) is an invasive agricultural pest of high economic impact and has become an emerging model for developing new genetic control strategies as an alternative to insecticides. Here, we report the successful adaptation of CRISPR-Cas9-based gene disruption in the medfly by injecting in vitro pre-assembled, solubilized Cas9 ribonucleoprotein complexes (RNPs) loaded with gene-specific single guide RNAs (sgRNA) into early embryos. When targeting the eye pigmentation gene white eye (we), a high rate of somatic mosaicism in surviving G0 adults was observed. Germline transmission rate of mutated we alleles by G0 animals was on average above 52%, with individual cases achieving nearly 100%. We further recovered large deletions in the we gene when two sites were simultaneously targeted by two sgRNAs. CRISPR-Cas9 targeting of the Ceratitis ortholog of the Drosophila segmentation paired gene (Ccprd) caused segmental malformations in late embryos and in hatched larvae. Mutant phenotypes correlate with repair by non-homologous end-joining (NHEJ) lesions in the two targeted genes. This simple and highly effective Cas9 RNP-based gene editing to introduce mutations in C. capitata will significantly advance the design and development of new effective strategies for pest control management.
Collapse
Affiliation(s)
- Angela Meccariello
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134, Naples, Italy
| | - Alessandra Romanelli
- Department of Pharmacy, University of Naples "Federico II", 80134, Napoli, Italy
| | - Rita Colonna
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | - Pasquale Primo
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | | | | | - Antonio Ramaglia
- Department of Physics "E. Pancini", University of Naples "Federico II", 80126, Napoli, Italy
| | - Giovanni Iazzetti
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | - Antonia Chiarore
- Stazione Zoologica Anton Dohrn, Center Villa Dohrn for Benthic Ecology, Punta San Pietro, 80077, Ischia, Italy
| | - Francesco Patti
- Stazione Zoologica Anton Dohrn, Center Villa Dohrn for Benthic Ecology, Punta San Pietro, 80077, Ischia, Italy
| | - Svenia D Heinze
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Marco Salvemini
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | - Helen Lindsay
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, 8057, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, 8057, Switzerland
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Daniel Bopp
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Giuseppe Saccone
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy.
| |
Collapse
|
10
|
Ye ZF, Liu XL, Han Q, Liao H, Dong XT, Zhu GH, Dong SL. Functional characterization of PBP1 gene in Helicoverpa armigera (Lepidoptera: Noctuidae) by using the CRISPR/Cas9 system. Sci Rep 2017; 7:8470. [PMID: 28814748 PMCID: PMC5559583 DOI: 10.1038/s41598-017-08769-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/12/2017] [Indexed: 01/10/2023] Open
Abstract
Pheromone binding proteins (PBPs) are thought to play crucial roles in perception of the sex pheromones particularly in noctuid moths, but this is rarely in vivo evidenced due to lacking an effective technique. Here, we reported an in vivo functional study of PBP1 in the important lepidopteran pest Helicoverpa armigera (HarmPBP1), by using the CRISPR/Cas9 system. Efficient and heritable mutagenesis was achieved by egg injection of mixture of Cas9-mRNA and HarmPBP1-sgRNA. The TA cloning and sequencing revealed various insertion and/or deletion (indel) mutations at the target site. Among those, one mutation resulted in a premature stop codon at the target site, which led to a highly truncated protein with only 10 amino acids. The HarmPBP1 with this mutation would completely loss its function, and thus was used to select the homozygous mutant insects for functional analysis. The electroantennogram recording showed that the mutant male adults displayed severely impaired responses to all three sex pheromone components (Z11-16:Ald, Z9-16:Ald and Z9-14:Ald). Our study provides the first in vivo evidence that HarmPBP1 plays important role in perception of female sex pheromones, and also an effective methodology for using CRISPR/Cas9 system in functional genetic study in H. armigera as well as other insects.
Collapse
Affiliation(s)
- Zhan-Feng Ye
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Long Liu
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Han
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Liao
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Tong Dong
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guan-Heng Zhu
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Arikawa K. The eyes and vision of butterflies. J Physiol 2017; 595:5457-5464. [PMID: 28332207 DOI: 10.1113/jp273917] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/16/2017] [Indexed: 11/08/2022] Open
Abstract
Butterflies use colour vision when searching for flowers. Unlike the trichromatic retinas of humans (blue, green and red cones; plus rods) and honeybees (ultraviolet, blue and green photoreceptors), butterfly retinas typically have six or more photoreceptor classes with distinct spectral sensitivities. The eyes of the Japanese yellow swallowtail (Papilio xuthus) contain ultraviolet, violet, blue, green, red and broad-band receptors, with each ommatidium housing nine photoreceptor cells in one of three fixed combinations. The Papilio eye is thus a random patchwork of three types of spectrally heterogeneous ommatidia. To determine whether Papilio use all of their receptors to see colours, we measured their ability to discriminate monochromatic lights of slightly different wavelengths. We found that Papilio can detect differences as small as 1-2 nm in three wavelength regions, rivalling human performance. We then used mathematical modelling to infer which photoreceptors are involved in wavelength discrimination. Our simulation indicated that the Papilio vision is tetrachromatic, employing the ultraviolet, blue, green and red receptors. The random array of three ommatidial types is a common feature in butterflies. To address the question of how the spectrally complex eyes of butterflies evolved, we studied their developmental process. We have found that the development of butterfly eyes shares its molecular logic with that of Drosophila: the three-way stochastic expression pattern of the transcription factor Spineless determines the fate of ommatidia, creating the random array in Papilio.
Collapse
|