1
|
Doyle C, Wall K, Fanning S, McMahon BJ. Making sense of sentinels: wildlife as the One Health bridge for environmental antimicrobial resistance surveillance. J Appl Microbiol 2025; 136:lxaf017. [PMID: 39805713 DOI: 10.1093/jambio/lxaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 01/12/2025] [Indexed: 01/16/2025]
Abstract
Antimicrobial resistance (AMR), arising from decades of imprudent anthropogenic use of antimicrobials in healthcare and agriculture, is considered one of the greatest One Health crises facing healthcare globally. Antimicrobial pollutants released from human-associated sources are intensifying resistance evolution in the environment. Due to various ecological factors, wildlife interact with these polluted ecosystems, acquiring resistant bacteria and genes. Although wildlife are recognized reservoirs and disseminators of AMR in the environment, current AMR surveillance systems still primarily focus on clinical and agricultural settings, neglecting this environmental dimension. Wildlife can serve as valuable sentinels of AMR in the environment, reflecting ecosystem health, and the effectiveness of mitigation strategies. This review explores knowledge gaps surrounding the ecological factors influencing AMR acquisition and dissemination in wildlife, and highlights limitations in current surveillance systems and policy instruments that do not sufficiently address the environmental component of AMR. We discuss the underutilized opportunity of using wildlife as sentinel species in a holistic, One Health-centred AMR surveillance system. By better integrating wildlife into systematic AMR surveillance and policy, and leveraging advances in high-throughput technologies, we can track and predict resistance evolution, assess the ecological impacts, and better understand the complex dynamics of environmental transmission of AMR across ecosystems.
Collapse
Affiliation(s)
- Caoimhe Doyle
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Katie Wall
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Barry J McMahon
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Foysal MJ, Kawser AQMR, Paul SI, Chaklader MR, Gupta SK, Tay A, Neilan BA, Gagnon MM, Fotedar R, Rahman MM, Timms VJ. Prevalence of opportunistic pathogens and anti-microbial resistance in urban aquaculture ponds. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134661. [PMID: 38815393 DOI: 10.1016/j.jhazmat.2024.134661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
Bacterial antimicrobial resistance (AMR) has emerged as a significant concern worldwide. The microbial community profile and potential AMR level in aquaculture ponds are often undervalued and attract less attention than other aquatic environments. We used amplicon and metagenomic shotgun sequencing to study microbial communities and AMR in six freshwater polyculture ponds in rural and urban areas of Bangladesh. Amplicon sequencing revealed different community structures between rural and urban ponds, with urban ponds having a higher bacterial diversity and opportunistic pathogens including Streptococcus, Staphylococcus, and Corynebacterium. Despite proteobacterial dominance, Firmicutes was the most interactive in the community network, especially in the urban ponds. Metagenomes showed that drug resistance was the most common type of AMR found, while metal resistance was only observed in urban ponds. AMR and metal resistance genes were found mainly in beta and gamma-proteobacteria in urban ponds, while AMR was found primarily in alpha-proteobacteria in rural ponds. We identified potential pathogens with a high profile of AMR and metal resistance in urban aquaculture ponds. As these ponds provide a significant source of protein for humans, our results raise significant concerns for the environmental sustainability of this food source and the dissemination of AMR into the food chain.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia; School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia; Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - A Q M Robiul Kawser
- Department of Aquaculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh; School of Veterinary Medicine and Science, University of Nottingham, United Kingdom
| | - Sulav Indra Paul
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh; Institute for Biosecurity and Microbial Forensics, Oklahoma State University, OK, USA
| | - Md Reaz Chaklader
- Department of Primary Industries and Regional Development, Fremantle, WA, Australia
| | - Sanjay Kumar Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Alfred Tay
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | | | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Md Mahbubur Rahman
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Verlaine J Timms
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
3
|
Liu H, Pan S, Cheng Y, Luo L, Zhou L, Fan S, Wang L, Jiang S, Zhou Z, Liu H, Zhang S, Ren Z, Ma X, Cao S, Shen L, Wang Y, Cai D, Gou L, Geng Y, Peng G, Yan Q, Luo Y, Zhong Z. Distribution and associations for antimicrobial resistance and antibiotic resistance genes of Escherichia coli from musk deer (Moschus berezovskii) in Sichuan, China. PLoS One 2023; 18:e0289028. [PMID: 38011149 PMCID: PMC10681177 DOI: 10.1371/journal.pone.0289028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/08/2023] [Indexed: 11/29/2023] Open
Abstract
This study aimed to investigate the antimicrobial resistance (AMR), antibiotic resistance genes (ARGs) and integrons in 157 Escherichia coli (E. coli) strains isolated from feces of captive musk deer from 2 farms (Dujiang Yan and Barkam) in Sichuan province. Result showed that 91.72% (144/157) strains were resistant to at least one antimicrobial and 24.20% (38/157) strains were multi-drug resistant (MDR). The antibiotics that most E. coli strains were resistant to was sulfamethoxazole (85.99%), followed by ampicillin (26.11%) and tetracycline (24.84%). We further detected 13 ARGs in the 157 E. coli strains, of which blaTEM had the highest occurrence (91.72%), followed by aac(3')-Iid (60.51%) and blaCTX-M (16.56%). Doxycycline, chloramphenicol, and ceftriaxone resistance were strongly correlated with the presence of tetB, floR and blaCTX-M, respectively. The strongest positive association among AMR phenotypes was ampicillin/cefuroxime sodium (OR, 828.000). The strongest positive association among 16 pairs of ARGs was sul1/floR (OR, 21.667). Nine pairs positive associations were observed between AMR phenotypes and corresponding resistance genes and the strongest association was observed for CHL/floR (OR, 301.167). Investigation of integrons revealed intl1 and intl2 genes were detected in 10.19% (16/157) and 1.27% (2/157) E. coli strains, respectively. Only one type of gene cassettes (drA17-aadA5) was detected in class 1 integron positive strains. Our data implied musk deer is a reservoir of ARGs and positive associations were common observed among E. coli strains carrying AMRs and ARGs.
Collapse
Affiliation(s)
- Hang Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Shulei Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yuehong Cheng
- Sichuan Wolong National Natural Reserve Administration Bureau, Wenchuan, Sichuan, China
| | - Lijun Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Lei Zhou
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, China
| | - Siping Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, China
| | - Shaoqi Jiang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Shaqiu Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Dongjie Cai
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liping Gou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| |
Collapse
|
4
|
Rahman MK, Hassan MM, Islam S, Rostal MK, Uddin MH, Hagan E, Samad MA, Flora MS, Epstein JH, Islam A. Characterization and epidemiology of antimicrobial resistance patterns of Salmonella spp. and Staphylococcus spp. in free-ranging rhesus macaque ( Macaca mulatta) at high-risk interfaces with people and livestock in Bangladesh. Front Vet Sci 2023; 10:1103922. [PMID: 36793381 PMCID: PMC9922862 DOI: 10.3389/fvets.2023.1103922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a growing global health threat for humans and animals. Environmental contamination of antimicrobials from human and domestic animal feces has been linked to AMR in wildlife populations, including rhesus macaques. This study aimed to describe the eco-epidemiology of AMR within Salmonella and Staphylococcus species isolated from rhesus macaques. Methods We followed macaque groups for 4 h per day (2 days) to observe the direct and indirect contact rate and type between macaques and people and livestock. We collected 399 freshly defecated, non-invasive fecal samples from macaques at seven sites in Bangladesh in January-June 2017. Bacterial isolation and identification were conducted using culture, biochemical characteristics, and polymerase chain reaction (PCR). An antimicrobial susceptibility test (AST) for 12 antimicrobials for each organism was conducted using the Kirby-Bauer disc diffusion method. Results The overall prevalence of Salmonella spp. and Staphylococcus spp. in rhesus macaques was 5% (n = 18; 95% CI: 3-7%) and 16% (n = 64; 95% CI: 13-20%), respectively. All the isolated Salmonella spp. and most of the Staphylococcus spp. (95%; 61/64; 95% CI: 86.9-99%) were resistant to at least one antimicrobial. The odds of a fecal sample having antimicrobial-resistant Salmonella spp (OR = 6.6; CI: 0.9-45.8, P = 0.05) and Staphylococcus spp. (OR = 5.6; CI: 1.2-26, P = 0.02) were significantly higher in samples collected at peri-urban sites than those collected at rural and urban sites. Salmonella spp. were most frequently resistant to tetracycline (89%), azithromycin (83%), sulfamethoxazole-trimethoprim (50%), and nalidixic acid (44%). Staphylococcus spp. were found to be highly resistant to ampicillin (93%), methicillin (31%), clindamycin (26%), and rifampicin (18%). Both bacterial species produced colonies with multidrug resistance to up to seven antimicrobials. Direct and indirect contact rates (within 20 m for at least 15 min) and resource sharing between macaques and people were higher in urban sites, while macaque-livestock contact rates were higher in rural sites. Discussion The study shows that resistant microorganisms are circulating in rhesus macaque, and direct and indirect contact with humans and livestock might expand the resistant organisms.
Collapse
Affiliation(s)
- Md. Kaisar Rahman
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh,Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh,EcoHealth Alliance, New York, NY, United States,School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh,Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| | - Shariful Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh,EcoHealth Alliance, New York, NY, United States
| | | | - Md. Helal Uddin
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Emily Hagan
- EcoHealth Alliance, New York, NY, United States
| | - Mohammed Abdus Samad
- Antimicrobial Resistance Action Center (ARAC), Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Meerjady Sabrina Flora
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh,Directorate General of Health Services, Dhaka, Bangladesh
| | | | - Ariful Islam
- EcoHealth Alliance, New York, NY, United States,*Correspondence: Ariful Islam ✉
| |
Collapse
|
5
|
Duangurai T, Rungruengkitkul A, Kong-Ngoen T, Tunyong W, Kosoltanapiwat N, Adisakwattana P, Vanaporn M, Indrawattana N, Pumirat P. Phylogenetic analysis and antibiotic resistance of Escherichia coli isolated from wild and domestic animals at an agricultural land interface area of Salaphra wildlife sanctuary, Thailand. Vet World 2022; 15:2800-2809. [PMID: 36718336 PMCID: PMC9880845 DOI: 10.14202/vetworld.2022.2800-2809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022] Open
Abstract
Background and Aim Domestic and wild animals are important reservoirs for antibiotic-resistant bacteria. This study aimed to isolate Escherichia coli from feces of domestic and wild animals at an agricultural land interface area of Salaphra Wildlife Sanctuary, Thailand, and study the phylogenic characteristics and antibiotic resistance in these isolates. Materials and Methods In this cross-sectional, descriptive study, we randomly collected ground feces from free-ranging wild animals (deer and elephants) and domestic animals (cattle and goats). All fecal samples were inoculated onto MacConkey agar plates, and lactose-fermenting colonies were identified as E. coli. Antibiotic susceptibility of the E. coli isolates was determined using the disc diffusion method. Polymerase chain reaction assays were used to detect antibiotic resistance and virulence genes. Results We obtained 362 E. coli isolates from the collected fecal samples. The E. coli isolates were categorized into four phylogenetic groups according to the virulence genes (chuA, vjaA, and TspE4C2). Phylogenetic Group D was predominant in the deer (41.67%) and elephants (63.29%), whereas phylogenetic Group B1 was predominant in the cattle (62.31%), and phylogenetic Groups A (36.36%) and B2 (33.33%) were predominant in the goats. Antibiotic susceptibility testing revealed that most antibiotic-resistant E. coli were isolated from domestic goats (96.96%). Among the 362 E. coli isolates, 38 (10.5%) were resistant to at least one antibiotic, 21 (5.8%) were resistant to two antibiotics, and 6 (1.66%) were resistant to three or more antibiotics. Ampicillin (AMP) was the most common antibiotic (48.48%) to which the E. coli were resistant, followed by tetracycline (TET) (45.45%) and trimethoprim-sulfamethoxazole (3.03%). One isolate from an elephant was resistant to five antibiotics: AMP, amoxicillin, sulfisoxazole, TET, and ciprofloxacin. Determination of antibiotic resistance genes confirmed that E. coli isolates carried antibiotic resistance genes associated with phenotypic resistance to antibiotics. Most antibiotic-resistant E. coli belonged to phylogenic Groups A and B1, and most non-resistant E. coli belonged to phylogenic Groups B2 and D. Conclusion Monitoring E. coli isolates from wild and domestic animals showed that all four phylogenic groups of E. coli have developed antibiotic resistance and are potential sources of multidrug resistance. High levels of antibiotic resistance have been linked to domestic animals. Our results support strengthening surveillance to monitor the emergence and effects of antibiotic-resistant microorganisms in animals.
Collapse
Affiliation(s)
- Taksaon Duangurai
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Amporn Rungruengkitkul
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thida Kong-Ngoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Witawat Tunyong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Muthita Vanaporn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,Corresponding author: Pornpan Pumirat, e-mail: Co-authors: TD: , AR: , TK: , WT: , NK: , PA: , MV: , NI:
| |
Collapse
|
6
|
A Proposed Safari Park in a Subtropical Forest in Northeastern Bangladesh Will Be Detrimental to Native Biodiversity. CONSERVATION 2022. [DOI: 10.3390/conservation2020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biodiversity in tropical and subtropical forests are at high risk of decline due to rapid anthropogenic development. Planned activities that potentially benefit communities near forests are often undertaken at the expense of forest biodiversity. Recently, the Government of Bangladesh released plans to develop a safari park in Lathitila forest in northeastern Bangladesh. This mixed evergreen, stream-fed, trans-border forest harbors 26 globally threatened species. The proposed plan aims to bring several exotic game animals such as the lion (Panthera leo), spotted hyaena (Crocuta crocuta) and cheetah (Acionyx jubatus) to be maintained in captivity. Additionally, exotic bird aviaries, gardens, a dolphinarium, a marine aquarium exhibit, and a carp pond have been proposed for construction. Here, we (i) summarize some of the key attributes of safari parks and the misconceptions associated with them; (ii) highlight some of the planned development activities of the proposed safari park; (ii) list the threatened species found in the area, and (iii) explain why establishing a park in the area would be detrimental the region’s biodiversity. We urge the government to abandon the plans to develop a safari park and suggest that the area be brought under formal protection for the benefit of biodiversity conservation.
Collapse
|
7
|
Siddiky NA, Sarker S, Khan SR, Rahman T, Kafi A, Samad MA. Virulence and antimicrobial resistance profile of non-typhoidal Salmonella enterica serovars recovered from poultry processing environments at wet markets in Dhaka, Bangladesh. PLoS One 2022; 17:e0254465. [PMID: 35130286 PMCID: PMC8820648 DOI: 10.1371/journal.pone.0254465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
The rapid emergence of virulent and multidrug-resistant (MDR) non-typhoidal Salmonella (NTS) enterica serovars is a growing public health concern globally. The present study focused on the assessment of the pathogenicity and antimicrobial resistance (AMR) profiling of NTS enterica serovars isolated from the chicken processing environments at wet markets in Dhaka, Bangladesh. A total of 870 samples consisting of carcass dressing water (CDW), chopping board swabs (CBS), and knife swabs (KS) were collected from 29 wet markets. The prevalence of Salmonella was found to be 20% in CDW, 19.31% in CBS, and 17.58% in KS, respectively. Meanwhile, the MDR Salmonella was found to be 72.41%, 73.21%, and 68.62% in CDW, CBS, and KS, respectively. All isolates were screened by polymerase chain reaction (PCR) for eight virulence genes, namely invA, agfA, IpfA, hilA, sivH, sefA, sopE, and spvC. The S. Enteritidis and untyped Salmonella isolates harbored all virulence genes while S. Typhimurium isolates carried six virulence genes, except sefA and spvC. Phenotypic resistance revealed decreased susceptibility to ciprofloxacin, streptomycin, ampicillin, tetracycline, gentamicin, sulfamethoxazole-trimethoprim, amoxicillin-clavulanic acid, and azithromycin. Genotypic resistance showed a higher prevalence of plasmid-mediated blaTEM followed by tetA, sul1, sul2, sul3, and strA/B genes. The phenotypic and genotypic resistance profiles of the isolates showed a harmonic and symmetrical trend. According to the findings, MDR and virulent NTS enterica serovars predominate in wet market conditions and can easily enter the human food chain. The chi-square analysis showed significantly higher associations among the phenotypic resistance, genotypic resistance and virulence genes in CDW, CBS, and KS respectively (p < 0.05).
Collapse
Affiliation(s)
- Nure Alam Siddiky
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Samun Sarker
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Shahidur Rahman Khan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Tanvir Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammed A. Samad
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| |
Collapse
|
8
|
Siddiky NA, Sarker MS, Khan MSR, Begum R, Kabir ME, Karim MR, Rahman MT, Mahmud A, Samad MA. Virulence and Antimicrobial Resistance Profiles of Salmonella enterica Serovars Isolated from Chicken at Wet Markets in Dhaka, Bangladesh. Microorganisms 2021; 9:952. [PMID: 33924919 PMCID: PMC8145576 DOI: 10.3390/microorganisms9050952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 04/18/2021] [Indexed: 01/06/2023] Open
Abstract
Virulent and multi drug resistant (MDR) Salmonellaenterica is a foremost cause of foodborne diseases and had serious public health concern globally. The present study was undertaken to identify the pathogenicity and antimicrobial resistance (AMR) profiles of Salmonellaenterica serovars recovered from chicken at wet markets in Dhaka, Bangladesh. A total of 870 cecal contents of broiler, sonali, and native chickens were collected from 29 wet markets. The overall prevalence of S. Typhimurium, S. Enteritidis, and untyped Salmonella spp., were found to be 3.67%, 0.57%, and 1.95% respectively. All isolates were screened by polymerase chain reaction (PCR) for eight virulence genes, namely invA, agfA, IpfA, hilA, sivH, sefA, sopE, and spvC. S. Enteritidis isolates carried all virulence genes whilst S. Typhimurium isolates carried six virulence genes except sefA and spvC. A diverse phenotypic and genotypic AMR pattern was found. Harmonic descending trends of resistance patterns were observed among the broiler, sonali, and native chickens. Interestingly, virulent and MDR Salmonella enterica serovars were found in native chicken, although antimicrobials were not used in their production cycle. The research findings anticipate that virulent and MDR Salmonella enterica are roaming in the wet markets which can easily anchor to the vendor, consumers, and in the food chain.
Collapse
Affiliation(s)
- Nure Alam Siddiky
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh; (N.A.S.); (M.S.S.); (R.B.); (M.E.K.); (M.R.K.); (A.M.)
| | - Md Samun Sarker
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh; (N.A.S.); (M.S.S.); (R.B.); (M.E.K.); (M.R.K.); (A.M.)
| | - Md. Shahidur Rahman Khan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.S.R.K.); (M.T.R.)
| | - Ruhena Begum
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh; (N.A.S.); (M.S.S.); (R.B.); (M.E.K.); (M.R.K.); (A.M.)
| | - Md. Ehsanul Kabir
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh; (N.A.S.); (M.S.S.); (R.B.); (M.E.K.); (M.R.K.); (A.M.)
| | - Md. Rezaul Karim
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh; (N.A.S.); (M.S.S.); (R.B.); (M.E.K.); (M.R.K.); (A.M.)
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.S.R.K.); (M.T.R.)
| | - Asheak Mahmud
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh; (N.A.S.); (M.S.S.); (R.B.); (M.E.K.); (M.R.K.); (A.M.)
| | - Mohammed A. Samad
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh; (N.A.S.); (M.S.S.); (R.B.); (M.E.K.); (M.R.K.); (A.M.)
| |
Collapse
|
9
|
Shahein MA, Dapgh AN, Kamel E, Ali SF, Khairy EA, Abuelhag HA, Hakim AS. Advanced molecular characterization of enteropathogenic Escherichia coli isolated from diarrheic camel neonates in Egypt. Vet World 2021; 14:85-91. [PMID: 33642790 PMCID: PMC7896916 DOI: 10.14202/vetworld.2021.85-91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIM Camels are important livestock in Egypt on cultural and economic bases, but studies of etiological agents of camelid diseases are limited. The enteropathogen Escherichia coli is a cause of broad spectrum gastrointestinal infections among humans and animals, especially in developing countries. Severe infections can lead to death. The current study aimed to identify pathogenic E. coli strains that cause diarrhea in camel calves and characterize their virulence and drug resistance at a molecular level. MATERIALS AND METHODS Seventy fecal samples were collected from diarrheic neonatal camel calves in Giza Governorate during 2018-2019. Samples were cultured on a selective medium for E. coli, and positive colonies were confirmed biochemically, serotyped, and tested for antibiotic susceptibility. E. coli isolates were further confirmed through detection of the housekeeping gene, yaiO, and examined for the presence of virulence genes; traT and fimH and for genes responsible for antibiotic resistance, ampC, aadB, and mphA. The isolates in the important isolated serotype, E. coli O26, were examined for toxigenic genes and sequenced. RESULTS The bacteriological and biochemical examination identified 12 E. coli isolates from 70 fecal samples (17.1%). Serotyping of these isolates showed four types: O26, four isolates, 33.3%; O103, O111, three isolates each, 25%; and O45, two isolates, 16.7%. The isolates showed resistance to vancomycin (75%) and ampicillin (66.6%), but were highly susceptible to ciprofloxacin, norfloxacin, and tetracycline (100%). The structural gene, yaiO (115 bp), was amplified from all 12 E. coli isolates and traT and fimH genes were amplified from 10 and 8 isolates, respectively. Antibiotic resistance genes, ampC, mphA, and aadB, were harbored in 9 (75%), 8 (66.6%), and 5 (41.7%), respectively. Seven isolates (58.3%) were MDR. Real-time-polymerase chain reaction of the O26 isolates identified one isolate harboring vt1, two with vt2, and one isolate with neither gene. Sequencing of the isolates revealed similarities to E. coli O157 strains. CONCLUSION Camels and other livestock suffer various diseases, including diarrhea often caused by microbial pathogens. Enteropathogenic E. coli serotypes were isolated from diarrheic neonatal camel calves. These isolates exhibited virulence and multiple drug resistance genes.
Collapse
Affiliation(s)
- Momtaz A. Shahein
- Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Amany N. Dapgh
- Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Essam Kamel
- Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Samah F. Ali
- Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Eman A. Khairy
- Department of Microbiology and Immunology, National Research Centre, 33 Bohouth St., Dokki, Cairo, Egypt
| | - Hussein A. Abuelhag
- Department of Microbiology and Immunology, National Research Centre, 33 Bohouth St., Dokki, Cairo, Egypt
| | - Ashraf S. Hakim
- Department of Microbiology and Immunology, National Research Centre, 33 Bohouth St., Dokki, Cairo, Egypt
| |
Collapse
|
10
|
Deb P, Das T, Nath C, Ahad A, Chakraborty P. Isolation of multidrug-resistant Escherichia coli, Staphylococcus spp., and Streptococcus spp. from dogs in Chattogram Metropolitan Area, Bangladesh. J Adv Vet Anim Res 2020; 7:669-677. [PMID: 33409311 PMCID: PMC7774779 DOI: 10.5455/javar.2020.g466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 11/26/2022] Open
Abstract
Objectives: Antibacterial resistance is a great concern in human and food animal medicine, and it poses a significant concern in pet animals like dogs. This cross-sectional study was conducted to evaluate the antimicrobial resistance pattern of Escherichia coli, Staphylococcus spp., and Streptococcus spp. along with the carryover of some resistance genes in E. coli from dogs in the Chattogram metropolitan area, Bangladesh. Materials and Methods: Rectal swab (n = 50), nasal swab (n = 50), and skin swab (n = 50) samples were collected from dogs having respiratory infections, skin infections, and/or enteritis, respectively. Three types of bacteria were identified and isolated by conventional bacteriological techniques and biochemical tests. Antimicrobial susceptibility testing was carried out against 12 antimicrobials by disk diffusion methods. Six resistance genes, namely blaTEM, blaCTX-M, tetA, tetB, Sul-I, and Sul-II, were screened for phenotypically resistant E. coli isolates by the polymerase chain reaction. Results: A total of 39 (78%) E. coli, 25 (50%) Staphylococcus spp., and 24 (48%) Streptococcus spp. isolates were isolated from the rectal swab, nasal swab, and skin swab samples, respectively. In the cultural sensitivity test, the E. coli isolates showed resistance to ceftriaxone (79%) and sulfamethoxazole/trimethoprim (64%). Doxycycline (80%) demonstrated the highest resistance among Staphylococcus isolates, followed by sulfamethoxazole/trimethoprim (60%). Streptococcus isolates showed the highest resistance to penicillin (63%), followed by ceftriaxone (54%), while no isolate showed resistance to gentamycin. The prevalence of blaTEM, blaCTX-M, tetA, tetB, Sul-I, and Sul-II genes in phenotypically resistant E. coli isolates were 100%, 61.29%, 100%, 8.33%, 56%, and 72%, respectively. Conclusions: Spillover of such multidrug-resistant bacteria and resistance genes from pet dogs pose a serious public health risk.
Collapse
Affiliation(s)
- Probir Deb
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh.,These authors contributed equally to this work
| | - Tridip Das
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh.,These authors contributed equally to this work
| | - Chandan Nath
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Abdul Ahad
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Pankaj Chakraborty
- Department of Medicine and Surgery, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
11
|
Khan SA, Imtiaz MA, Sayeed MA, Shaikat AH, Hassan MM. Antimicrobial resistance pattern in domestic animal - wildlife - environmental niche via the food chain to humans with a Bangladesh perspective; a systematic review. BMC Vet Res 2020; 16:302. [PMID: 32838793 PMCID: PMC7445918 DOI: 10.1186/s12917-020-02519-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a growing concern globally, but the impact is very deleterious in the context of Bangladesh. Recent review article on the AMR issue demonstrates the scenario in human medicine; unfortunately, no attempt was taken to address this as One Health issue. The antimicrobial resistance bacteria or genes are circulating in the fragile ecosystems and disseminate into human food chain through direct or indirect ways. In this systematic review we are exploring the mechanism or the process of development of resistance pathogen into human food chain via the domestic animal, wildlife and environmental sources in the context of One Health and future recommendation to mitigate this issue in Bangladesh. RESULTS Tetracycline resistance genes were presenting in almost all sample sources in higher concentrations against enteric pathogen Escherichia coli. The second most significant antibiotics are amino-penicillin that showed resistant pattern across different source of samples. It is a matter of concerns that cephalosporin tends to acquire resistance in wildlife species that might be an indication of this antibiotic resistance gene or the pathogen been circulating in our surrounding environment though the mechanism is still unclear. CONCLUSIONS Steps to control antibiotic release and environmental disposal from all uses should be immediate and obligatory. There is a need for detailed system biology analysis of resistance development in-situ.
Collapse
Affiliation(s)
- Shahneaz Ali Khan
- Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road,Khulshi, 4225, Chattogram, Bangladesh.
| | - Mohammed Ashif Imtiaz
- Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road,Khulshi, 4225, Chattogram, Bangladesh
| | - Md Abu Sayeed
- Jhenaidah Government Veterinary College, Jhenaidah, Bangladesh
| | - Amir Hossan Shaikat
- Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road,Khulshi, 4225, Chattogram, Bangladesh
| | - Mohammad Mahmudul Hassan
- Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road,Khulshi, 4225, Chattogram, Bangladesh
| |
Collapse
|