1
|
Kong C, Li SW, Su J, Zang LG, He M, Ding NZ, He CQ. The origin and evolution of European eel rhabdovirus dominant genotype. Microb Pathog 2024; 197:107054. [PMID: 39481692 DOI: 10.1016/j.micpath.2024.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/04/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
The Eel Virus European X (EVEX) is a significant pathogen contributing to the decline of eel populations. As an important evolutionary driving force, it is crucial to understand whether homologous recombination (HR)occurs between EVEXs for revealing the evolutionary patterns of the virus. This study indicates that HR may enhance genetic diversity and accelerate the evolution and spread of EVEX. Phylogenetic analysis reveals that the current popular EVEX is primarily composed of a dominant recombinant genotype. Further investigation suggests that recombination events, which likely occurred approximately 54 years ago, may alter codon preferences, highlighting the adaptive advantages this provides and enhancing the virus's ability to infect its eel host. The emergence of this advantageous genotype may be driven by environmental selection pressures, consistent with natural selection principles. In summary, our findings suggest that HR might plays an important role in EVEX evolution, facilitating its adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Chao Kong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Sheng-Wen Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Jian Su
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Li-Guo Zang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Mei He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Nai-Zheng Ding
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China.
| | - Cheng-Qiang He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China.
| |
Collapse
|
2
|
Pu J, Lin X, Dong W. The first mitogenome of the genus Amphalius (Siphonaptera: Ceratophyllidae) and its phylogenetic implications. Parasitology 2024; 151:1085-1095. [PMID: 39623585 PMCID: PMC11894015 DOI: 10.1017/s0031182024000635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 03/04/2025]
Abstract
Amphalius spirataenius belongs to Arthropoda, Insecta, Siphonaptera, Ceratophylloidea, Ceratophyllinae, Amphalius. Only 2 species from the subfamily Ceratophyllinae have been sequenced for mitogenomes to date. The genus Amphalius mitogenome research was still blank. The A. spirataenius mitogenome was determined, annotated and analysed for the first time in this study. The 14 825 bp long genome has the typical metazoan of 37 genes with insect ancestral genome arrangement pattern. There was no significant difference in codon usage of 13 protein-coding genes: UUA, UCU, GUU, ACU and GCU were the most frequently used codons. It was found that the reason for codon preference mainly contributed to natural selection base on PR2, ENC-plot and neutrality curve analysis. Evolutionary rate, conserved sites, variable sites and nucleotide diversity analysis indicated that nad6 of A. spirataenius had the fastest evolutionary rate, while cox1 had the slowest evolutionary rate. Phylogenetic trees were reconstructed based on 13 protein-coding genes and 2 rRNA genes datasets using Bayesian inference and maximum likelihood method. The phylogenetic tree supported that both Siphonaptera and Mecoptera were monophyletic, and were sister groups to each other. This study filled gap of the genus Amphalius mitogenome sequences and was of great significance for understanding evolution of the order Siphonaptera.
Collapse
Affiliation(s)
- Ju Pu
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Institute of Pathogens and Vectors, Dali University, Dali, Yunnan, China
| | - Xiaoxia Lin
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Institute of Pathogens and Vectors, Dali University, Dali, Yunnan, China
| | - Wenge Dong
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Institute of Pathogens and Vectors, Dali University, Dali, Yunnan, China
| |
Collapse
|
3
|
Aktürk Dizman Y. Analysis of codon usage bias of exonuclease genes in invertebrate iridescent viruses. Virology 2024; 593:110030. [PMID: 38402641 DOI: 10.1016/j.virol.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Invertebrate iridescent viruses (IIVs) are double-stranded DNA viruses that belong to the Iridoviridae family. IIVs result diseases that vary in severity from subclinical to lethal in invertebrate hosts. Codon usage bias (CUB) analysis is a versatile method for comprehending the genetic and evolutionary aspects of species. In this study, we analyzed the CUB in 10 invertebrate iridescent viruses exonuclease genes by calculating and comparing the nucleotide contents, effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and others. The results revealed that IIVs exonuclease genes are rich in A/T. The ENC analysis displayed a low codon usage bias in IIVs exonuclease genes. ENC-plot, neutrality plot, and parity rule 2 plot demonstrated that besides mutational pressure, other factors like natural selection, dinucleotide content, and aromaticity also contributed to CUB. The findings could enhance our understanding of the evolution of IIVs exonuclease genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye.
| |
Collapse
|
4
|
Wang Y, Chi C, Zhang J, Zhang K, Deng D, Zheng W, Chen N, Meurens F, Zhu J. Systematic analysis of the codon usage patterns of African swine fever virus genome coding sequences reveals its host adaptation phenotype. Microb Genom 2024; 10:001186. [PMID: 38270515 PMCID: PMC10868601 DOI: 10.1099/mgen.0.001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
African swine fever (ASF) is a severe haemorrhagic disease caused by the African swine fever virus (ASFV), transmitted by ticks, resulting in high mortality among domestic pigs and wild boars. The global spread of ASFV poses significant economic threats to the swine industry. This study employs diverse analytical methods to explore ASFV's evolution and host adaptation, focusing on codon usage patterns and associated factors. Utilizing phylogenetic analysis methods including neighbour-joining and maximum-likelihood, 64 ASFV strains were categorized into four clades. Codon usage bias (CUB) is modest in ASFV coding sequences. This research identifies multiple factors - such as nucleotide composition, mutational pressures, natural selection and geographical diversity - contributing to the formation of CUB in ASFV. Analysis of relative synonymous codon usage reveals CUB variations within clades and among ASFVs and their hosts. Both Codon Adaptation Index and Similarity Index analyses confirm that ASFV strains are highly adapted to soft ticks (Ornithodoros moubata) but less so to domestic pigs, which could be a result of the long-term co-evolution of ASFV with ticks. This study sheds light on the factors influencing ASFV's codon usage and fitness dynamics, enriching our understanding of its evolution, adaptation and host interactions.
Collapse
Affiliation(s)
- Yuening Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Chenglin Chi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Jiajia Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Kaili Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Dafu Deng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - François Meurens
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St. Hyacinthe, QC, J2S 2M2, Canada
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| |
Collapse
|
5
|
Yang B, Cheng Z, Luo L, Cheng K, Gan S, Shi Y, Liu C, Wang D. Comparative analysis of codon usage patterns of Plasmodium helical interspersed subtelomeric (PHIST) proteins. Front Microbiol 2023; 14:1320060. [PMID: 38156001 PMCID: PMC10752978 DOI: 10.3389/fmicb.2023.1320060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Background Plasmodium falciparum is a protozoan parasite that causes the most severe form of malaria in humans worldwide, which is predominantly found in sub-Saharan Africa, where it is responsible for the majority of malaria-related deaths. Plasmodium helical interspersed subtelomeric (PHIST) proteins are a family of proteins, with a conserved PHIST domain, which are typically located at the subtelomeric regions of the Plasmodium falciparum chromosomes and play crucial roles in the interaction between the parasite and its human host, such as cytoadherence, immune evasion, and host cell remodeling. However, the specific utilization of synonymous codons by PHIST proteins in Plasmodium falciparum is still unknown. Methods Codon usage bias (CUB) refers to the unequal usage of synonymous codons during translation, resulting in over- or underrepresentation of certain nucleotide patterns. This imbalance in CUB can impact various cellular processes, including protein expression levels and genetic variation. To investigate this, the CUB of 88 PHIST protein coding sequences (CDSs) from 5 subgroups were analyzed in this study. Results The results showed that both codon base composition and relative synonymous codon usage (RSCU) analysis identified a higher occurrence of AT-ended codons (AGA and UUA) in PHIST proteins of Plasmodium falciparum. The average effective number of codons (ENC) for these PHIST proteins was 36.69, indicating a weak codon preference among them, as it was greater than 35. Additionally, the correlation analysis among codon base composition (GC1, GC2, GC3, GCs), codon adaptation index (CAI), codon bias index (CBI), frequency of optimal codons (FOP), ENC, general average hydropathicity (GRAVY), aromaticity (AROMO), length of synonymous codons (L_sym), and length of amino acids (L_aa) revealed the influence of base composition and codon usage indices on codon usage bias, with GC1 having a significant impact in this study. Furthermore, the neutrality plot analysis, PR2-bias plot analysis, and ENC-GC3 plot analysis provided additional evidence that natural selection plays a crucial role in determining codon bias in PHIST proteins. Conclusion In conclusion, this study has enhanced our understanding of the characteristics of codon usage and genetic evolution in PHIST proteins, thereby providing data foundation for further research on antimalarial drugs or vaccines.
Collapse
Affiliation(s)
- Baoling Yang
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Ziwen Cheng
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Like Luo
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Kuo Cheng
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Shengqi Gan
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yuyi Shi
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Che Liu
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Dawei Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| |
Collapse
|
6
|
Yuan B, He G, Dong W. The evolutionary characterization of Gamasida based on mitochondrial genes codon usage pattern. Parasitol Res 2023; 123:30. [PMID: 38085374 DOI: 10.1007/s00436-023-08019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Mites belonging to the suborder Gamasida are species-rich and habitat-diverse, with a worldwide distribution. To adapt to the environment and obtain better living conditions, all species of the suborder Gamasida have been undergoing constant evolution. The complete mitochondrial genome (mitogenome) is an invaluable molecular marker for studying the origin of species, genetic differentiation between closely related species, and between intraspecific groups. In some species of the suborder Gamasida, mitochondrial tRNA genes are truncated and carried unstable genetic information. This study presents a comparative analysis of codon usage pattern and preference of 13 protein-coding genes of 24 species in 17 genera and 10 families of the suborder Gamasida. Results showed that have an obvious AT preference (0.664-0.829) for codon usage in the suborder Gamasida. Most of the optimal and high-frequency codons also end in A/T. The degree of natural selection varies between the same protein-coding genes of different gamasid mites or among different protein-coding genes within the same gamasid mites. Base and codon usage pattern and preference are very similar between the same species and genus, namely the closer species, the more similar their bases and codons usage patterns and preference are. T bases and C bases were the preference bases for codon usage of 24 species in the suborder Gamasida. Evolution of the suborder Gamasida was dominated by natural selection (64.1%). This study provides the first comprehensive analysis of codon usage in the suborder Gamasida, which will greatly improve our understanding of codon usage patterns and preference, genetics, and evolution of the suborder Gamasida. It will help to evaluate the degree of molecular adaptation in the suborder Gamasida and to further explore evolutionary features of the suborder Gamasida.
Collapse
Affiliation(s)
- Bili Yuan
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Institute of Pathogens and Vectors, Dali University, Dali, 671000, Yunnan, China
| | - Gangxian He
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Institute of Pathogens and Vectors, Dali University, Dali, 671000, Yunnan, China
| | - Wenge Dong
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Institute of Pathogens and Vectors, Dali University, Dali, 671000, Yunnan, China.
| |
Collapse
|
7
|
Wang D, Yang B. Analysis of codon usage bias of thioredoxin in apicomplexan protozoa. Parasit Vectors 2023; 16:431. [PMID: 37990340 PMCID: PMC10664530 DOI: 10.1186/s13071-023-06002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Apicomplexan protozoa are a diverse group of obligate intracellular parasites causing many diseases that affect humans and animals, such as malaria, toxoplasmosis, and cryptosporidiosis. Apicomplexan protozoa possess unique thioredoxins (Trxs) that have been shown to regulate various cellular processes including metabolic redox regulation, parasite survival, and host immune evasion. However, it is still unknown how synonymous codons are used by apicomplexan protozoa Trxs. METHODS Codon usage bias (CUB) is the unequal usage of synonymous codons during translation which leads to the over- or underrepresentation of certain nucleotide patterns. This imbalance in CUB can impact a variety of cellular processes including protein expression levels and genetic variation. This study analyzed the CUB of 32 Trx coding sequences (CDS) from 11 apicomplexan protozoa. RESULTS The results showed that both codon base composition and relative synonymous codon usage (RSCU) analysis revealed that AT-ended codons were more frequently used in Cryptosporidium spp. and Plasmodium spp., while the Eimeria spp., Babesia spp., Hammondia hammondi, Neospora caninum, and Toxoplasma gondii tended to end in G/C. The average effective number of codon (ENC) value of these apicomplexan protozoa is 46.59, which is > 35, indicating a weak codon preference among apicomplexan protozoa Trxs. Furthermore, the correlation analysis among codon base composition (GC1, GC2, GC3, GCs), codon adaptation index (CAI), codon bias index (CBI), frequency of optimal codons (FOP), ENC, general average hydropathicity (GRAVY), aromaticity (AROMO), length of synonymous codons (L_sym), and length of amino acids (L_aa) indicated the influence of base composition and codon usage indices on CUB. Additionally, the neutrality plot analysis, PR2-bias plot analysis, and ENC-GC3 plot analysis further demonstrated that natural selection plays an important role in apicomplexan protozoa Trxs codon bias. CONCLUSIONS In conclusion, this study increased the understanding of codon usage characteristics and genetic evolution of apicomplexan protozoa Trxs, which expanded new ideas for vaccine and drug research.
Collapse
Affiliation(s)
- Dawei Wang
- Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China
| | - Baoling Yang
- Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China.
| |
Collapse
|
8
|
Aktürk Dizman Y. Codon usage bias analysis of the gene encoding NAD +-dependent DNA ligase protein of Invertebrate iridescent virus 6. Arch Microbiol 2023; 205:352. [PMID: 37812231 DOI: 10.1007/s00203-023-03688-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
The genome of Invertebrate iridescent virus 6 (IIV6) contains a sequence that shows similarity to eubacterial NAD+-dependent DNA ligases. The 615-amino acid open reading frame (ORF 205R) consists of several domains, including an N-terminal domain Ia, followed by an adenylation domain, an OB-fold domain, a helix-hairpin-helix (HhH) domain, and a BRCT domain. Notably, the zinc finger domain, typically present in NAD+-dependent DNA ligases, is absent in ORF 205R. Since the protein encoded by ORF 205R (IIV6 DNA ligase gene) is involved in critical functions such as DNA replication, modification, and repair, it is crucial to comprehend the codon usage associated with this gene. In this paper, the codon usage bias (CUB) in DNA ligase gene of IIV6 and 11 reference iridoviruses was analyzed by comparing the nucleotide contents, relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), relative abundance of dinucleotides and other indices. Both the base content and the RCSU analysis indicated that the A- and T-ending codons were mostly favored in the DNA ligase gene of IIV6. The ENC value of 35.64 implied a high CUB in the IIV6 DNA ligase gene. The ENC plot, neutrality plot, parity rule 2 plot, correspondence analysis revealed that mutation pressure and natural selection had an impact on the CUB of the IIVs DNA ligase genes. Additionally, the analysis of codon adaptation index demonstrated that the IIV6 DNA ligase gene is strongly adapted to its host. These findings will improve our comprehension of the CUB of IIV6 DNA ligase and reference genes, which may provide the required information for a fundamental evolutionary analysis of these genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| |
Collapse
|
9
|
Suresh KP, Indrabalan UB, Shreevatsa B, Dharmashekar C, Singh P, Patil SS, Syed A, Elgorban AM, Eswaramoorthy R, Amachawadi RG, Shivamallu C, Kollur SP. Evaluation of codon usage patterns and molecular evolution dynamics in Japanese encephalitis virus: An integrated bioinformatics approach. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105410. [PMID: 36791944 DOI: 10.1016/j.meegid.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
In the recent survey, Japanese encephalitis (JE) is one of the most common mosquito-borne diseases, accounting for ∼30% of fatalities. The outbreaks of the JE virus (JEV) suggests that exhaustive study is essential for the prevention and management of the disease. The disease mainly spreads in humans and pigs by the vector: mosquito; as this is a major concern, this study had employed various bioinformatics tools to investigate the codon usage bias, evolutionary inference and selection pressure analysis of the Japanese encephalitis virus disease. The results indicated that the JE virus was biased and natural selection was the main factor shaping the codon usage that was determined and confirmed with the Nc, neutrality, PR2 plots and correlation analysis. The evolutionary analysis revealed that the virus had a substitution rate of 1.54 × 10-4 substitution/site/year and the tMRCA was found to be in 1723. The transmission of the virus in the map found transmissions mostly from China and transmitted across Asia and Africa. The selection pressure analysis employed three methods which had 969th codon site as diversifying site and had many purifying sites that shows the virus had evolved rapidly. The inferences from this study would aid people to employ this methodology on various diseases and also perform insilico studies in the field of vaccinology and immunoinformatics.
Collapse
Affiliation(s)
| | - Uma Bharathi Indrabalan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560063, India
| | - Bhargav Shreevatsa
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru 570015, Karnataka, India.
| | - Chandan Dharmashekar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru 570015, Karnataka, India.
| | - Pranav Singh
- Department of Internal Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560063, India.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.
| | - Rajalakshmanan Eswaramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamilnadu, India.
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5606, USA.
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru 570015, Karnataka, India.
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidhyapeetham, Mysuru Campus, Mysuru 570 026, Karnataka, India.
| |
Collapse
|
10
|
Jiang L, Zhang Q, Xiao S, Si F. Deep decoding of codon usage strategies and host adaption preferences of soybean mosaic virus. Int J Biol Macromol 2022; 222:803-817. [PMID: 36167098 DOI: 10.1016/j.ijbiomac.2022.09.179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/05/2022]
Abstract
Soybean mosaic virus (SMV) has threatened the global yield of Leguminosae crops, but the mechanism of its infection, spread, and evolution remains unknown. A systemic analysis of 107 SMV strains was performed to explore the genome-wide codon usage profile and the various factors influencing the codon usage patterns of SMV, which provides insight into its molecular evolution and elucidates its unknown host adaptation pattern. The overall nucleotide composition and correlation analysis revealed that the preferred synonymous codons mostly end with A/U. Clustering by RSCU value of each strain and phylogenetic tree analysis showed that the SMV isolates studied were divided into four clades, with a low overall extent of codon usage bias (CUB) in SMV. According to the ENC, PR2, neutrality plot, and correspondence analysis, natural selection of geographical diversity may play a critical role in the CUB. Higher adaptability was shown in Glycine with SMV and more pressure was received by clade III. These findings could not only provide valuable information about the overall codon usage pattern of the SMV genome, but could also aid in the clarification of the involved mechanisms that dominate the codon usage patterns and genetic evolution of the SMV genome.
Collapse
Affiliation(s)
- Li Jiang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Qiang Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Shimin Xiao
- Shanwei Marine Industry Institute, Shanwei Institute of Technology, Shanwei 516600, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
11
|
Shueb M, Prasad SK, Suresh KP, Indrabalan UB, Beelagi MS, Shivamallu C, Silina E, Stupin V, Manturova N, Kollur SP, Shome BR, Achar RR, Patil SS. The first study on analysis of the codon usage bias and evolutionary analysis of the glycoprotein envelope E2 gene of seven Pestiviruses. Vet World 2022; 15:1857-1868. [PMID: 36185504 PMCID: PMC9394142 DOI: 10.14202/vetworld.2022.1857-1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND AIM Pestivirus, a genus of the Flaviviridae family, comprises viruses that affect bovines, sheep, and pigs. Symptoms, including hemorrhagic syndromes, abortion, respiratory complications, and deadly mucosal diseases, are produced in infected animals, which cause huge economic losses to the farmers. Bovine viral diarrhea virus-1, bovine viral diarrhea virus-2, classical swine fever virus, border disease virus, Bungowannah, Hobi-like, and atypical porcine pestivirus belonging to the Pestivirus genus were selected for the study. This study aimed to estimate the codon usage bias and the rate of evolution using the glycoprotein E2 gene. Furthermore, codon usage bias analysis was performed using publicly available nucleotide sequences of the E2 gene of all seven Pestiviruses. These nucleotide sequences might elucidate the disease epidemiology and facilitate the development of designing better vaccines. MATERIALS AND METHODS Coding sequences of the E2 gene of Pestiviruses A (n = 89), B (n = 60), C (n = 75), D (n = 10), F (n = 07), H (n = 52), and K (n = 85) were included in this study. They were analyzed using different methods to estimate the codon usage bias and evolution. In addition, the maximum likelihood and Bayesian methodologies were employed to analyze a molecular dataset of seven Pestiviruses using a complete E2 gene region. RESULTS The combined analysis of codon usage bias and evolutionary rate analysis revealed that the Pestiviruses A, B, C, D, F, H, and K have a codon usage bias in which mutation and natural selection have played vital roles. Furthermore, while the effective number of codons values revealed a moderate bias, neutrality plots indicated the natural selection in A, B, F, and H Pestiviruses and mutational pressure in C, D, and K Pestiviruses. The correspondence analysis revealed that axis-1 significantly contributes to the synonymous codon usage pattern. In this study, the evolutionary rate of Pestiviruses B, H, and K was very high. The most recent common ancestors of all Pestivirus lineages are 1997, 1975, 1946, 1990, 2004, 1990, and 1990 for Pestiviruses A, B, C, D, F, H, and K, respectively. This study confirms that both mutational pressure and natural selection have played a significant role in codon usage bias and evolutionary studies. CONCLUSION This study provides insight into the codon usage bias and evolutionary lineages of pestiviruses. It is arguably the first report of such kind. The information provided by the study can be further used to elucidate the respective host adaptation strategies of the viruses. In turn, this information helps study the epidemiology and control methods of pestiviruses.
Collapse
Affiliation(s)
- Mohammad Shueb
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | | | - Uma Bharathi Indrabalan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Mallikarjun S. Beelagi
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Surgery, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Victor Stupin
- Department of Surgery, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Natalia Manturova
- Department of Surgery, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | | - Bibek Ranjan Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Sharanagouda S. Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| |
Collapse
|