1
|
Islam A, Amin E, Khan MA, Islam M, Gupta SD, Abedin J, Rahman MZ, Forwood JK, Hosaain ME, Shirin T. Epidemiology and evolutionary dynamics of H9N2 avian influenza virus in Bangladesh. Emerg Microbes Infect 2025; 14:2498574. [PMID: 40271995 PMCID: PMC12123974 DOI: 10.1080/22221751.2025.2498574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/11/2025] [Accepted: 04/22/2025] [Indexed: 04/25/2025]
Abstract
Low pathogenicity avian influenza (LPAI) H9N2 has been enzootic in Bangladeshi poultry since 2006. H9N2 outbreaks can decrease egg production and growth and pose a risk to human health. The role of avian hosts in the persistence, evolution, and dispersion of H9N2 is poorly understood in Bangladesh. Hence, this study unveils the intricate role of major host species in virus maintenance and evolution and the temporal and seasonal patterns of H9N2 in Bangladesh from 2006 to 2023. Multinomial logistic regression analysis indicated that the circulation of H9N2 in different species and interfaces is significantly influenced by the seasons. Bayesian phylogenetic analysis of H9N2 sequences in Bangladesh revealed two distinct lineages: G1 and Eurasian. The G1 lineage split into two clusters, coexisting until 2019, at which point only one cluster persisted. Bayesian phylodynamic analysis of G1 lineage unveiled frequent bidirectional viral transitions among ducks, chickens, and quails. Chickens might be a pivotal source of H9N2 in Bangladesh, with a higher number of viral transitions from chickens to ducks and quails. Quails appear to acquire most of their viral transitions from chickens rather than ducks, suggesting that quail epizootics are primarily triggered by spillover events from chickens. Our results suggest viral circulation in commercial chickens despite vaccination. The vaccination approach should be revised, assess vaccine efficacy, and extension of vaccination to backyard chickens and quails.
Collapse
Affiliation(s)
- Ariful Islam
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, Australia
- Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, Australia
| | - Emama Amin
- Institute of Epidemiology, Disease Control and Research (IEDCR), DhakaBangladesh
| | - Md Arif Khan
- Institute of Epidemiology, Disease Control and Research (IEDCR), DhakaBangladesh
| | - Monjurul Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), DhakaBangladesh
| | - Suman Das Gupta
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, Australia
| | - Josefina Abedin
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Brisbane, Australia
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jade K. Forwood
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, Australia
- Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, Australia
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Mohammed Enayet Hosaain
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), DhakaBangladesh
| |
Collapse
|
2
|
Genetic Evolution of Avian Influenza A (H9N2) Viruses Isolated from Domestic Poultry in Uganda Reveals Evidence of Mammalian Host Adaptation, Increased Virulence and Reduced Sensitivity to Baloxavir. Viruses 2022; 14:v14092074. [PMID: 36146881 PMCID: PMC9505320 DOI: 10.3390/v14092074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
A (H9N2) avian influenza A viruses were first detected in Uganda in 2017 and have since established themselves in live bird markets. The aim of this study was to establish the subsequent genetic evolution of H9N2 viruses in Uganda. Cloacal samples collected from live bird market stalls in Kampala from 2017 to 2019 were screened by RT-PCR for influenza A virus and H9N2 viruses were isolated in embryonated eggs. One hundred and fifty H9N2 isolates were subjected to whole genome sequencing on the Illumina MiSeq platform. The sequence data analysis and comparison with contemporary isolates revealed that the virus was first introduced into Uganda in 2014 from ancestors in the Middle East. There has since been an increase in nucleotide substitutions and reassortments among the viruses within and between live bird markets, leading to variations in phylogeny of the different segments, although overall diversity remained low. The isolates had several mutations such as HA-Q226L and NS-I106M that enable mammalian host adaptation, NP-M105V, PB1-D3V, and M1-T215A known for increased virulence/pathogenicity and replication, and PA-E199D, NS-P42S, and M2-S31N that promote drug resistance. The PA-E199D substitution in particular confers resistance to the endonuclease inhibitor Baloxavir acid, which is one of the new anti-influenza drugs. Higher EC50 was observed in isolates with a double F105L+E199D substitution that may suggest a possible synergistic effect. These H9N2 viruses have established an endemic situation in live bird markets in Uganda because of poor biosecurity practices and therefore pose a zoonotic threat. Regular surveillance is necessary to further generate the needed evidence for effective control strategies and to minimize the threats.
Collapse
|