1
|
Yang D, Zhang S, Cao H, Wu H, Liang Y, Teng CB, Yu HF. Detoxification of Aflatoxin B 1 by Phytochemicals in Agriculture and Food Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14481-14497. [PMID: 38897919 DOI: 10.1021/acs.jafc.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Aflatoxin B1 (AFB1), the most toxic and harmful mycotoxin, has a high likelihood of occurring in animal feed and human food, which seriously affects agriculture and food safety and endangers animal and human health. Recently, natural plant products have attracted widespread attention due to their low toxicity, high biocompatibility, and simple composition, indicating significant potential for resisting AFB1. The mechanisms by which these phytochemicals resist toxins mainly involve antioxidative, anti-inflammatory, and antiapoptotic pathways. Moreover, these substances also inhibit the genotoxicity of AFB1 by directly influencing its metabolism in vivo, which contributes to its elimination. Here, we review various phytochemicals that resist AFB1 and their anti-AFB1 mechanisms in different animals, as well as the common characteristics of phytochemicals with anti-AFB1 function. Additionally, the shortcomings of current research and future research directions will be discussed. Overall, this comprehensive summary contributes to the better application of phytochemicals in agriculture and food safety.
Collapse
Affiliation(s)
- Dian Yang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Sihua Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hongda Cao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Huan Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Liang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chun-Bo Teng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hai-Fan Yu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
2
|
Li M, Tang S, Peng X, Sharma G, Yin S, Hao Z, Li J, Shen J, Dai C. Lycopene as a Therapeutic Agent against Aflatoxin B1-Related Toxicity: Mechanistic Insights and Future Directions. Antioxidants (Basel) 2024; 13:452. [PMID: 38671900 PMCID: PMC11047733 DOI: 10.3390/antiox13040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Aflatoxin (AFT) contamination poses a significant global public health and safety concern, prompting widespread apprehension. Of the various AFTs, aflatoxin B1 (AFB1) stands out for its pronounced toxicity and its association with a spectrum of chronic ailments, including cardiovascular disease, neurodegenerative disorders, and cancer. Lycopene, a lipid-soluble natural carotenoid, has emerged as a potential mitigator of the deleterious effects induced by AFB1 exposure, spanning cardiac injury, hepatotoxicity, nephrotoxicity, intestinal damage, and reproductive impairment. This protective mechanism operates by reducing oxidative stress, inflammation, and lipid peroxidation, and activating the mitochondrial apoptotic pathway, facilitating the activation of mitochondrial biogenesis, the endogenous antioxidant system, and the nuclear factor erythroid 2-related factor 2 (Nrf2)/kelch-like ECH-associated protein 1 (KEAP1) and peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) pathways, as well as regulating the activities of cytochrome P450 (CYP450) enzymes. This review provides an overview of the protective effects of lycopene against AFB1 exposure-induced toxicity and the underlying molecular mechanisms. Furthermore, it explores the safety profile and potential clinical applications of lycopene. The present review underscores lycopene's potential as a promising detoxification agent against AFB1 exposure, with the intent to stimulate further research and practical utilization in this domain.
Collapse
Affiliation(s)
- Meng Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Xinyan Peng
- College of Life Sciences, Yantai University, Yantai 264000, China;
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Shutao Yin
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China;
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| |
Collapse
|
3
|
Long Y, Paengkoum S, Lu S, Niu X, Thongpea S, Taethaisong N, Han Y, Paengkoum P. Physicochemical properties, mechanism of action of lycopene and its application in poultry and ruminant production. Front Vet Sci 2024; 11:1364589. [PMID: 38562916 PMCID: PMC10983797 DOI: 10.3389/fvets.2024.1364589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Lycopene is a kind of natural carotenoid that could achieve antioxidant, anti-cancer, lipid-lowering and immune-improving effects by up-regulating or down-regulating genes related to antioxidant, anti-cancer, lipid-lowering and immunity. Furthermore, lycopene is natural, pollution-free, and has no toxic side effects. The application of lycopene in animal production has shown that it could improve livestock production performance, slaughter performance, immunity, antioxidant capacity, intestinal health, and meat quality. Therefore, lycopene as a new type of feed additive, has broader application prospects in many antibiotic-forbidden environments. This article serves as a reference for the use of lycopene as a health feed additive in animal production by going over its physical and chemical characteristics, antioxidant, lipid-lowering, anti-cancer, and application in animal production.
Collapse
Affiliation(s)
- Yong Long
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Siwaporn Paengkoum
- Program in Agriculture, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | - Shengyong Lu
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Xinran Niu
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sorasak Thongpea
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nittaya Taethaisong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Yong Han
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
4
|
Ofori-Attah E, Hashimoto M, Oki M, Kadowaki D. Therapeutic Effect of Natural Products and Dietary Supplements on Aflatoxin-Induced Nephropathy. Int J Mol Sci 2024; 25:2849. [PMID: 38474096 PMCID: PMC10932067 DOI: 10.3390/ijms25052849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Aflatoxins are harmful natural contaminants found in foods and are known to be hepatotoxic. However, recent studies have linked chronic consumption of aflatoxins to nephrotoxicity in both animals and humans. Here, we conducted a systematic review of active compounds, crude extracts, herbal formulations, and probiotics against aflatoxin-induced renal dysfunction, highlighting their mechanisms of action in both in vitro and in vivo studies. The natural products and dietary supplements discussed in this study alleviated aflatoxin-induced renal oxidative stress, inflammation, tissue damage, and markers of renal function, mostly in animal models. Therefore, the information provided in this review may improve the management of kidney disease associated with aflatoxin exposure and potentially aid in animal feed supplementation. However, future research is warranted to translate the outcomes of this study into clinical use in kidney patients.
Collapse
Affiliation(s)
- Ebenezer Ofori-Attah
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mai Hashimoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mayu Oki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Daisuke Kadowaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan
| |
Collapse
|
5
|
Ghazaghi M, Isazaei A, Bagherzadeh-Kasmani F, Mehri M. Regression-derived optimal milk thistle in growing quail's diet. Poult Sci 2024; 103:103465. [PMID: 38277889 PMCID: PMC10840340 DOI: 10.1016/j.psj.2024.103465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
A study was conducted to evaluate the nutritional benefits of milk thistle (Silybum marianum) in quail nutrition as an additive containing antioxidant compounds such as silymarin. A total of 300, 14-d old Japanese quail chicks were randomly allotted to 5 treatments with 6 replicates and 10 birds each. The experimental diets, including a basal diet and 4 diets containing 10, 20, 30, and 40 g/kg milk thistle, were used from d 14 to 35 and spline and segmented models were applied to fit data. The optimized values of dietary milk thistle (breakpoints) for optimum amounts of serum albumin (ALB), total protein (TP), glucose (Glu), magnesium (Mg), calcium (Ca), phosphorus (P), iron (Fe), and water holding capacity (WHC) in meat samples, as predicted by the regression models, were 24.14, 20.00, 20.00, 24.50, 20.00, 10.43, 23.75, and 25.85 g/kg of diet, respectively, based on maximum R2 and minimum Sy.x. While the breakpoints for minimum cooking loss, drip loss, malondialdehyde after 10 and 30 d (MDA10 and MDA30), triglyceride (TG), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), cholesterol (CHOL), uric acid (UA), and creatinine (CRT) were 27.00, 15.82, 15.78, 33.09, 27.39, 17.99, 20.00, 20.00, 20.90, and 32.57 g/kg of diet, respectively. The use of spline models revealed an objective estimate of the optimal amounts of milk thistle for optimizing physiological responses in growing quails. The present analysis showed that higher dietary levels of milk thistle were needed for optimizing meat quality compared to other physiological responses.
Collapse
Affiliation(s)
- Mahmoud Ghazaghi
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan, 98661-5538, Iran.
| | - Arezoo Isazaei
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan, 98661-5538, Iran
| | | | - Mehran Mehri
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan, 98661-5538, Iran
| |
Collapse
|
6
|
Research Progress on Lycopene in Swine and Poultry Nutrition: An Update. Animals (Basel) 2023; 13:ani13050883. [PMID: 36899740 PMCID: PMC10000198 DOI: 10.3390/ani13050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Oxidative stress and in-feed antibiotics restrictions have accelerated the development of natural, green, safe feed additives for swine and poultry diets. Lycopene has the greatest antioxidant potential among the carotenoids, due to its specific chemical structure. In the past decade, increasing attention has been paid to lycopene as a functional additive for swine and poultry feed. In this review, we systematically summarized the latest research progress on lycopene in swine and poultry nutrition during the past ten years (2013-2022). We primarily focused on the effects of lycopene on productivity, meat and egg quality, antioxidant function, immune function, lipid metabolism, and intestinal physiological functions. The output of this review highlights the crucial foundation of lycopene as a functional feed supplement for animal nutrition.
Collapse
|
7
|
Restoring Activity of Milk Thistle ( Silybum marianum L.) on Serum Biochemical Parameters, Oxidative Status, Immunity, and Performance in Poultry and Other Animal Species, Poisoned by Mycotoxins: A Review. Animals (Basel) 2023; 13:ani13030330. [PMID: 36766219 PMCID: PMC9913068 DOI: 10.3390/ani13030330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Grains are major farm animals' diet ingredients, and one of the main concerns is when are mycotoxin (MyT) contaminated, compromising animals' health, performance, and product safety. Among the natural phytocompounds that are being used to prevent MyT damage, silymarin (SIL), an extract from the seed of the milk thistle (MT) is a suitable candidate. This review aims to examine the scientific evidence concerning the anti-MyT toxicity effects of MT/SIL in poultry and livestock. In vitro and in vivo studies (n = 27) showed that MT whole plant, seed, or SIL-standardized extract had positive effects on animal health, performance, and restoring the hepatic activity, with a reduction of organ lesions caused by MyT. Furthermore, showed utility for combating MyT-immunodepression, improving intestinal health, and limiting the excretion of toxins residues in food of animal origin, although in some cases, MT/SIL supplementation does not produce appreciable effects. The use of MT in animal nutrition can be useful since the bioactive compounds, also if present in variable amounts, can help the animals to counteract the effects of MyT. The use of the phytoextract of SIL, due to its cost, can be useful if it reported the specific bioactive compounds, recognize for their pharmacological activities.
Collapse
|
8
|
Surai PF. Silymarin as a vitagene modulator: effects on mitochondria integrity in stress conditions. MOLECULAR NUTRITION AND MITOCHONDRIA 2023:535-559. [DOI: 10.1016/b978-0-323-90256-4.00007-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Promising hepatoprotective effects of lycopene in different liver diseases. Life Sci 2022; 310:121131. [PMID: 36306869 DOI: 10.1016/j.lfs.2022.121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
10
|
Wang X, Wang T, Nepovimova E, Long M, Wu W, Kuca K. Progress on the detoxification of aflatoxin B1 using natural anti-oxidants. Food Chem Toxicol 2022; 169:113417. [PMID: 36096290 DOI: 10.1016/j.fct.2022.113417] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022]
Abstract
Aflatoxins are toxic secondary metabolites produced by Aspergillus fungi. The most toxic among them is Aflatoxin B1 (AFB1) which is known to have genotoxic, immunotoxic, teratogenic, carcinogenic, and mutagenic toxic effects (amongst others). The mechanisms responsible for its toxicity include the induction of oxidative stress, cytotoxicity, and DNAdamage. Studies have found that natural anti-oxidants can reduce the damage that AFB1 inflicts on the body by alleviating oxidative stress and inhibiting the biotransformation of AFB1. Therefore, this review outlines the latest progress in research on the use of natural anti-oxidants as antidotes to aflatoxin poisoning and their detoxification mechanisms. It also considers the problems that may possibly arise from their use and their application prospects. Our aim is to provide a useful reference for the prevention and treatment of AFB1 poisoning.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Tiancheng Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| |
Collapse
|
11
|
Křen V, Valentová K. Silybin and its congeners: from traditional medicine to molecular effects. Nat Prod Rep 2022; 39:1264-1281. [PMID: 35510639 DOI: 10.1039/d2np00013j] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2015 up to 2022 (Feb)Silymarin, an extract of milk thistle (Silybum marianum) fruits, has been used in various medicinal applications since ancient times. A major component of silymarin is the flavonolignan silybin and its relatives isosilybin, silychristin, silydianin, 2,3-dehydrosilybin, and some others. Except for silydianin, they occur in nature as two stereomers. This review focuses on recent developments in chemistry, biosynthesis, modern advanced analytical methods, and transformations of flavonolignans specifically reflecting their chirality. Recently described chemotypes of S. marianum, but also the newest findings regarding the pharmacokinetics, hepatoprotective, antiviral, neuroprotective, and cardioprotective activity, modulation of endocrine functions, modulation of multidrug resistance, and safety of flavonolignans are discussed. A growing number of studies show that the respective diastereomers of flavonolignans have significantly different activities in anisotropic biological systems. Moreover, it is now clear that flavonolignans do not act as antioxidants in vivo, but as specific ligands of biological targets and therefore their chirality is crucial. Many controversies often arise, mainly due to the non-standard composition of this phytopreparation, the use of various undefined mixtures, the misattribution of silymarin vs. silybin, and also the failure to consider the chemistry of the respective components of silymarin.
Collapse
Affiliation(s)
- Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, CZ 14220, Czech Republic.
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, CZ 14220, Czech Republic.
| |
Collapse
|
12
|
Reda FM, Madkour M, El-Azeem NA, Aboelazab O, Ahmed SYA, Alagawany M. Tomato pomace as a nontraditional feedstuff: productive and reproductive performance, digestive enzymes, blood metabolites, and the deposition of carotenoids into egg yolk in quail breeders. Poult Sci 2022; 101:101730. [PMID: 35176706 PMCID: PMC8857486 DOI: 10.1016/j.psj.2022.101730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
This study aimed to evaluate the inclusion of tomato pomace (TP) into Japanese quail breeders' diet by investigating its effects on digestive enzymes, immune response, antioxidant status, blood biomarkers, productive performance, and the deposition of carotenoids into the egg yolk. A total of 150 mature 8-wk of age Japanese quails (100 females and 50 males) were allocated into 5 treatment groups, with 5 replicates, each of 6 quails (4 females and 2 males). The experimental diets were isoenergetic and isonitrogenous, based on corn and soybean meal, and included 0, 3, 6, 9, and 12% of tomato pomace, respectively. The results showed that dietary supplementation of tomato pomace up to 12% significantly improved the immune response, antioxidant response, and digestive enzymes of Japanese quail breeders, significantly decreased cholesterol, low-density lipoprotein (LDL), and increased high-density lipoprotein (HDL). Also, TP increased egg weight, egg mass and hatchability , where TP 6% had the greatest egg weight, egg mass and hatchability among other groups. Moreover, tomato pomace inclusion significantly had a positive effect on the deposition of lycopene into the egg yolk and it can be used as a good delivery system to improve human health. Tomato pomace up to 12% could be used as an alternative feedstuff in quail breeders' diets.
Collapse
Affiliation(s)
- Fayiz M Reda
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Giza 12622, Egypt
| | | | - Osama Aboelazab
- Animal Production Department, National Research Centre, Giza 12622, Egypt
| | - Sarah Y A Ahmed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
13
|
Bechynska K, Kosek V, Fenclova M, Muchova L, Smid V, Suk J, Chalupsky K, Sticova E, Hurkova K, Hajslova J, Vitek L, Stranska M. The Effect of Mycotoxins and Silymarin on Liver Lipidome of Mice with Non-Alcoholic Fatty Liver Disease. Biomolecules 2021; 11:1723. [PMID: 34827721 PMCID: PMC8615755 DOI: 10.3390/biom11111723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Milk thistle-based dietary supplements have become increasingly popular. The extract from milk thistle (Silybum marianum) is often used for the treatment of liver diseases because of the presence of its active component, silymarin. However, the co-occurrence of toxic mycotoxins in these preparations is quite frequent as well. The objective of this study was to investigate the changes in composition of liver lipidome and other clinical characteristics of experimental mice fed by a high-fat methionine-choline deficient diet inducing non-alcoholic fatty liver disease. The mice were exposed to (i) silymarin, (ii) mycotoxins (trichothecenes, enniatins, beauvericin, and altertoxins) and (iii) both silymarin and mycotoxins, and results were compared to the controls. The liver tissue extracts were analyzed by ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry. Using tools of univariate and multivariate statistical analysis, we were able to identify 48 lipid species from the classes of diacylglycerols, triacylglycerols, free fatty acids, fatty acid esters of hydroxy fatty acids and phospholipids clearly reflecting the dysregulation of lipid metabolism upon exposure to mycotoxin and/or silymarin.
Collapse
Affiliation(s)
- Kamila Bechynska
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Vit Kosek
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Marie Fenclova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Lucie Muchova
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
| | - Vaclav Smid
- 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic;
| | - Jakub Suk
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
| | - Karel Chalupsky
- Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic;
| | - Eva Sticova
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic;
| | - Kamila Hurkova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Jana Hajslova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
- 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic;
| | - Milena Stranska
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| |
Collapse
|