1
|
Wang Z, Deng W, Tang K, Zhou Y, Chen J, Wang B, Zhang Z, Zou J, Zhao W. Isoginkgetin Inhibits RANKL-induced Osteoclastogenesis and Alleviates Bone Loss. Biochem Pharmacol 2025; 231:116673. [PMID: 39613114 DOI: 10.1016/j.bcp.2024.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Osteoporosis is characterized by excessive osteoclast activity leading to bone loss, decreased bone mineral density, and increased susceptibility to fractures. Through in vivo/vitro experiments, along with network pharmacology analysis, we aimed to explore the underlying mechanisms of Isoginkgetin (IGG) in inhibiting osteoclastogenesis, providing valuable insights for further research in the future. Firstly, we ascertained the safe concentration of IGG stimulation on BMMs, followed by a systematic exploration of the concentration gradient at which IGG inhibited osteoclastogenesis using TRAP analysis. An osteoporosis model was established to further validate the in vitro experimental findings by combining Micro-CT and immunohistochemical analysis. The results show that IGG did not exhibit cytotoxicity or proliferative effects on BMMs at concentrations equal to or less than 10 μM. Additionally, IGG inhibited the activity of osteoclastogenesis and bone resorption function at lower concentrations. RT-PCR and Western Blot results demonstrated that IGG could downregulate genes and proteins associated with osteoclastogenesis. The Western Blot results also showed that IGG inhibited the phosphorylation expression of P38, ERK, and P65 in the MAPK and NF-κB pathways. At the same time, it rescued the degradation of IκB-α at 15 and 60 min. IGG can also impact the relative expression levels of oxidative proteins such as SOD-1, HO-1, and catalase, thereby influencing cellular equilibrium and stress levels, ultimately inhibiting the formation of mature OC. In vivo experiments demonstrated that IGG alleviated bone loss caused by osteoclasts and improved relevant parameters of trabecular bone. So, IGG effectively attenuated osteoclastogenesis, and improved bone density, thereby portraying its role in osteoporosis management.
Collapse
Affiliation(s)
- Zihe Wang
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The Third School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Wei Deng
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The First School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Kai Tang
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The First School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Yi Zhou
- Nanjing University of Chinese Medicine, China
| | - Junchun Chen
- Shenzhen University of Advanced Technology, Chinese Academy of Sciences, China
| | - Bin Wang
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The Third School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Zhida Zhang
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, China; Guangzhou Medical University, China.
| | - Jian Zou
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; Dongguan Hospital of Traditional Chinese Medicine, China.
| | - Wenhua Zhao
- The Second Affiliated Hospital, Guangzhou Medical University, China; Guangzhou Medical University, China.
| |
Collapse
|
2
|
Chou AA, Lin CH, Chang YC, Chang HW, Lin YC, Pi CC, Kan YM, Chuang HF, Chen HW. Antiviral activity of Vigna radiata extract against feline coronavirus in vitro. Vet Q 2024; 44:1-13. [PMID: 38712855 PMCID: PMC11078076 DOI: 10.1080/01652176.2024.2349665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal illness caused by a mutated feline coronavirus (FCoV). This disease is characterized by its complexity, resulting from systemic infection, antibody-dependent enhancement (ADE), and challenges in accessing effective therapeutics. Extract derived from Vigna radiata (L.) R. Wilczek (VRE) exhibits various pharmacological effects, including antiviral activity. This study aimed to investigate the antiviral potential of VRE against FCoV, addressing the urgent need to advance the treatment of FIP. We explored the anti-FCoV activity, antiviral mechanism, and combinational application of VRE by means of in vitro antiviral assays. Our findings reveal that VRE effectively inhibited the cytopathic effect induced by FCoV, reduced viral proliferation, and downregulated spike protein expression. Moreover, VRE blocked FCoV in the early and late infection stages and was effective under in vitro ADE infection. Notably, when combined with VRE, the polymerase inhibitor GS-441524 or protease inhibitor GC376 suppressed FCoV more effectively than monotherapy. In conclusion, this study characterizes the antiviral property of VRE against FCoV in vitro, and VRE possesses therapeutic potential for FCoV treatment.
Collapse
Affiliation(s)
- Ai-Ai Chou
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Hui Lin
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- TACS-alliance Research Center, Taipei, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Lin
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Chia-Chen Pi
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Yao-Ming Kan
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Fen Chuang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Animal Resource Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Pantanam A, Mana N, Semkum P, Lueangaramkul V, Phecharat N, Lekcharoensuk P, Theerawatanasirikul S. Dual effects of ipecac alkaloids with potent antiviral activity against foot-and-mouth disease virus as replicase inhibitors and direct virucides. Int J Vet Sci Med 2024; 12:134-147. [PMID: 39359867 PMCID: PMC11445910 DOI: 10.1080/23144599.2024.2408189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Foot-and-Mouth Disease (FMD) is a contagious, blistering disease caused by the Foot-and-Mouth Disease virus (FMDV), which affects livestock globally. Currently, no commercial antiviral agent is available for effective disease control. This study investigated the antiviral potential of natural-derived alkaloids against FMDV in BHK-21 cells. Twelve alkaloids were assessed for their antiviral activities at various stages of FMDV infection, including pre-viral entry, post-viral entry, and prophylactic assays, as well as attachment and penetration assays by evaluating cytopathic effect reduction and directed-virucidal effects. The results showed that ipecac alkaloids, cephaeline (CPL) and emetine (EMT), exhibited dual effects with robust antiviral efficacy by reducing cytopathic effect and inhibiting FMDV replication in a dose-dependent manner. Evaluation through immunoperoxidase monolayer assay and RT-PCR indicated effectiveness at post-viral entry stage, with sub-micromolar EC50 values for CPL and EMT at 0.05 and 0.24 µM, respectively, and high selective indices. Prophylactic effects prevented infection with EC50 values of 0.23 and 0.64 µM, respectively. Directed-virucidal effects demonstrated significant reduction of extracellular FMDV, with CPL exhibiting a dose-dependent effect. Furthermore, the replicase (3Dpol) inhibition activity was identified using the FMDV minigenome assay, which revealed strong inhibition with IC50 values of 0.15 µM for CPL and 4.20 µM for EMT, consistent with the decreased negative-stranded RNA production. Molecular docking confirmed the interaction of CPL and EMT with residues in the active site of FMDV 3Dpol. In conclusion, CPL and EMT exhibited promising efficacy through their dual effects and provide an alternative approach for controlling FMD in livestock.
Collapse
Affiliation(s)
- Achiraya Pantanam
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Natjira Mana
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Ploypailin Semkum
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Varanya Lueangaramkul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Nantawan Phecharat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
4
|
Ismat F, Tariq A, Shaheen A, Ullah R, Raheem K, Muddassar M, Mahboob S, Abbas W, Iqbal M, Rahman M. Inhibition of NS2B-NS3 protease from all four serotypes of dengue virus by punicalagin, punicalin and ellagic acid identified from Punica granatum. J Biomol Struct Dyn 2024:1-16. [PMID: 38373021 DOI: 10.1080/07391102.2024.2314258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Despite a major threat to the public health in tropical and subtropical regions, dengue virus (DENV) infections are untreatable. Therefore, efforts are needed to investigate cost-effective therapeutic agents that could cure DENV infections in future. The NS2B-NS3 protease encoded by the genome of DENV is considered a critical target for the development of anti-dengue drugs. The objective of the current study was to find out a specific inhibitor of the NS2B-NS3 proteases from all four serotypes of DENV. To begin with, nine plant extracts with a medicinal history were evaluated for their role in inhibiting the NS2B-NS3 proteases by Fluorescence Resonance Energy Transfer (FRET) assay. Among the tested extracts, Punica granatum was found to be the most effective one. The metabolic profiling of this extract revealed the presence of several active compounds, including ellagic acid, punicalin and punicalagin, which are well-established antiviral agents. Further evaluation of IC50 values of these three antiviral molecules revealed punicalagin as the most potent anti-NS2B-NS3 protease drug with IC50 of 0.91 ± 0.10, 0.75 ± 0.05, 0.42 ± 0.03, 1.80 ± 0.16 µM against proteases from serotypes 1, 2, 3 and 4, respectively. The docking studies demonstrated that these compounds interacted at the active site of the enzyme, mainly with His and Ser residues. Molecular dynamics simulations analysis also showed the structural stability of the NS2B-NS3 proteases in the presence of punicalagin. In summary, this study concludes that the punicalagin can act as an effective inhibitor against NS2B-NS3 proteases from all four serotypes of DENV.
Collapse
Affiliation(s)
- Fouzia Ismat
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Anam Tariq
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Aqsa Shaheen
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Raheem Ullah
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Kayode Raheem
- Department of Bioscience, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Muddassar
- Department of Bioscience, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sadia Mahboob
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Wasim Abbas
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Moazur Rahman
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
5
|
Tasker S, Addie DD, Egberink H, Hofmann-Lehmann R, Hosie MJ, Truyen U, Belák S, Boucraut-Baralon C, Frymus T, Lloret A, Marsilio F, Pennisi MG, Thiry E, Möstl K, Hartmann K. Feline Infectious Peritonitis: European Advisory Board on Cat Diseases Guidelines. Viruses 2023; 15:1847. [PMID: 37766254 PMCID: PMC10535984 DOI: 10.3390/v15091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Feline coronavirus (FCoV) is a ubiquitous RNA virus of cats, which is transmitted faeco-orally. In these guidelines, the European Advisory Board on Cat Diseases (ABCD) presents a comprehensive review of feline infectious peritonitis (FIP). FCoV is primarily an enteric virus and most infections do not cause clinical signs, or result in only enteritis, but a small proportion of FCoV-infected cats develop FIP. The pathology in FIP comprises a perivascular phlebitis that can affect any organ. Cats under two years old are most frequently affected by FIP. Most cats present with fever, anorexia, and weight loss; many have effusions, and some have ocular and/or neurological signs. Making a diagnosis is complex and ABCD FIP Diagnostic Approach Tools are available to aid veterinarians. Sampling an effusion, when present, for cytology, biochemistry, and FCoV RNA or FCoV antigen detection is very useful diagnostically. In the absence of an effusion, fine-needle aspirates from affected organs for cytology and FCoV RNA or FCoV antigen detection are helpful. Definitive diagnosis usually requires histopathology with FCoV antigen detection. Antiviral treatments now enable recovery in many cases from this previously fatal disease; nucleoside analogues (e.g., oral GS-441524) are very effective, although they are not available in all countries.
Collapse
Affiliation(s)
- Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
- Linnaeus Veterinary Limited, Shirley, Solihull B90 4BN, UK
| | - Diane D. Addie
- Independent Researcher, 64000 Pyrénées Aquitaine, France;
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | | | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università Degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| |
Collapse
|