1
|
Zhang Q, Huo Y, Zhu R, Zhang X, Zeng L, Hu Z. Molecular mechanism of METTL3 regulating hippocampal neuronal injury induced by sepsis-associated encephalopathy. Arch Physiol Biochem 2025:1-11. [PMID: 40025626 DOI: 10.1080/13813455.2025.2465337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVE This study explores the mechanism of methyltransferase like 3 (METTL3) on sepsis-associated encephalopathy (SAE)-induced hippocampal neuronal injury. METHODS A murine model of SAE was established by caecal ligation and puncture. Hippocampal cells were induced by lipopolysaccharide (LPS). The mouse survival was observed and behavioural tests evaluated cognitive function. METTL3 and glutamic-oxaloacetic transaminase 1 (GOT1) expressions were detected via RT-qPCR and Western blot. Immunofluorescence staining examined the co-localization of NeuN and METTL3. The m6A enrichment on GOT1 was determined by MeRIP. RESULTS METTL3 and GOT1 were highly expressed in SAE mice and LPS-stimulated hippocampal cells. SAE mice exhibited cognitive function impairment, reduced survival rate, and decreased neuronal cells. LPS induction increased hippocampal cell apoptosis and enhanced inflammation. Silence of METTL3 reduced hippocampal neuronal injury in SAE mice and LPS-induced hippocampal cell injury. CONCLUSION METTL3-mediated m6A modification on GOT1 mRNA elevates GOT1 expression, thereby aggravating SAE-induced hippocampal neuronal injury.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Huo
- Department of Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Runying Zhu
- Department of Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xujie Zhang
- Department of Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lingwei Zeng
- Department of Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenjie Hu
- Department of Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Hao J, Yang Y, Xie L, Li Z, Ma B, Wang B, Chen J, Zeng Z, Zhou X. Actl6a regulates autophagy via Sox2-dependent Atg5 and Atg7 expression to inhibit apoptosis in spinal cord injury. J Adv Res 2025:S2090-1232(25)00057-8. [PMID: 39875055 DOI: 10.1016/j.jare.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) is a severe central nervous system disorder with limited treatment options. While autophagy plays a protective role in neural repair, its regulatory mechanisms in SCI remain unclear. Actin-like protein 6A (Actl6a) influences cell fate and neural development, yet its specific role in SCI repair is not well understood. This study investigates Actl6a's function in regulating autophagy and apoptosis via the transcription factor Sox2 in SCI. OBJECTIVES This study aims to determine if Actl6a promotes neural survival post-SCI by regulating autophagy-related genes Atg5 and Atg7 through Sox2. It also examines how the demethylase Fto modulates Actl6a mRNA stability via m6A methylation. METHODS In vitro experiments were conducted using primary neurons and HT-22 hippocampal cells exposed to hydrogen peroxide (H2O2)-induced oxidative stress. Actl6a expression was manipulated by knockdown or overexpression. For in vivo studies, a rat SCI model was established with AAV-Actl6a injected at the injury site to induce Actl6a overexpression. Autophagy and apoptosis markers were analyzed using immunofluorescence, Western blotting, and qPCR. Additionally, m6A dot blot and RNA immunoprecipitation (RIP) assays were performed to assess Fto's role in regulating Actl6a mRNA methylation and stability. RESULTS Actl6a expression significantly decreased after SCI, resulting in increased apoptosis. Overexpressing Actl6a enhanced autophagy, reduced apoptosis, and improved neurological function in SCI models. Mechanistically, Actl6a and Sox2 collaboratively upregulated Atg5 and Atg7 expression, promoting autophagy. Fto's modulation of Actl6a mRNA stability via m6A demethylation further influenced autophagy and apoptosis. CONCLUSION Actl6a, through interaction with Sox2, plays a critical role in modulating autophagy and reducing apoptosis in SCI, with Fto's m6A modification affecting Actl6a stability. This Fto/Actl6a/Sox2 axis is a promising therapeutic target for SCI repair.
Collapse
Affiliation(s)
- Jian Hao
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.
| | - Yubiao Yang
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China
| | - Li Xie
- Department of Anesthesiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Zhenhan Li
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Boyuan Ma
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Bitao Wang
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jinyu Chen
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zhi Zeng
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xianhu Zhou
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
3
|
Du Q, Zhang C, Qu T, Zhou X, Liu Y, Chen Z, Shen Z, Chen P, Zhang R. Methyltransferase-Like 3-Driven N6-Methyladenosine Modification of Recombination Signal Binding Protein for Immunoglobulin Kappa J Region Promotes Vascular Remodeling in Pulmonary Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2252-2271. [PMID: 39222906 DOI: 10.1016/j.ajpath.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The dysregulation of N6-methyladenosine (m6A) RNA modification is widely recognized for its crucial roles in various diseases, including pulmonary hypertension (PH). Prior studies have highlighted the significant role of methyltransferase-like 3 (METTL3) in the pathogenesis of PH. Nevertheless, the potential and underlying mechanisms of METTL3 and its inhibitors as targets for PH treatment require further elucidation. In this study, increased levels of METTL3 were observed in various rodent models of PH. In vitro studies revealed that METTL3 silencing or treatment with STM2457, a specific METTL3 inhibitor, attenuated the proliferation and migration of pulmonary artery smooth muscle cells stimulated by platelet-derived growth factor-BB or hypoxia. Moreover, in vivo experiments using adeno-associated virus 9-mediated METTL3 silencing or STM2457 inhibition demonstrated improvement in SU5416/hypoxia-induced PH in mice. Additionally, m6A RNA immunoprecipitation analysis identified recombination signal binding protein for immunoglobulin kappa J region (RBPJ) regulated by METTL3 in rodent models of PH. Loss-of-function studies showed that silencing RBPJ could attenuate the changes in the proliferation and migration of pulmonary artery smooth muscle cells induced by platelet-derived growth factor-BB or hypoxia. Further studies indicated that METTL3 and YTH N6-methyladenosine RNA binding protein F1 (YTHDF1) regulated RBPJ mRNA expression in an m6A-dependent manner. These findings indicated that targeting METTL3 may be a promising therapeutic strategy for treating PH, and modulation of RBPJ could offer a potential intervention mechanism.
Collapse
Affiliation(s)
- Qiang Du
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Nanjing, China
| | - Chun Zhang
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Nanjing, China
| | - Tianyu Qu
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Nanjing, China
| | - Xiao Zhou
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Nanjing, China
| | - Yingying Liu
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Nanjing, China
| | - Zhixuan Chen
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Nanjing, China
| | - Ziling Shen
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Nanjing, China
| | - Pingsheng Chen
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Ruifeng Zhang
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Jiang X, Zhang W, Xie S. METTL3 inhibits microglial pyroptosis in neonatal hypoxia-ischemia encephalopathy by regulating GPR39 expression in an m6A-HuR-dependent manner. Neuroscience 2024; 563:175-187. [PMID: 39461660 DOI: 10.1016/j.neuroscience.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Neonatal hypoxia-ischemia encephalopathy (HIE) is a significant reason for neonatal mortality and prolonged disability. We have previously revealed that GPR39 activation attenuates neuroinflammation in a neonatal HIE rat model. This study aimed to investigate whether GPR39 affected microglial pyroptosis post-HIE. METHODS A neonatal rat model of HIE and a microglia cell model of oxygen-glucose deprivation (OGD) were established. Neuronal loss and cerebral infarction were assessed by using TTC, H&E staining, and Nissl staining. Pyroptosis was evaluated with western blot, LDH assay kit, ELISA, and flow cytometry. Total m6A level and GPR39 m6A modification were determined using m6A dot blot and MeRIP. The interaction between METTL3/HuR/GSK3β and GPR39 was analyzed by performing molecular interaction experiments. GPR39 mRNA stability was examined with actinomycin D. RESULTS The level of GPR39 was increased in neonatal HIE rats and OGD-treated microglia. Brain injury and neuronal loss were significantly increased in the HIE model when GPR39 was knocked down. GPR39 knockdown aggravated NLRP3 inflammasome-mediated microglial pyroptosis. METTL3 upregulated GPR39 expression in an m6A-dependent manner. METTL3 enhanced the interaction of HuR and GPR39. In OGD-exposed microglia, METTL3 elevated GPR39 expression and mRNA stability, which declined after HuR depletion. METTL3 knockdown promoted microglial pyroptosis, which was reversed by GPR39 agonist. Furthermore, microglial pyroptosis was inhibited by GPR39 upregulation, but the outcome was reverted by GSK3β activator SNP. CONCLUSION METTL3 inhibits microglial pyroptosis in neonatal HIE via regulating m6A-HuR dependent stabilization of GPR39, which contributes to therapeutics development for neonatal HIE.
Collapse
Affiliation(s)
- Xili Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha 410008, China
| | - Wei Zhang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha 410008, China
| | - Shucai Xie
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
5
|
Chen G, Shangguan Z, Ye X, Chen Z, Li J, Liu W. STM2457 Inhibits METTL3-Mediated m6A Modification of miR-30c to Alleviate Spinal Cord Injury by Inducing the ATG5-Mediated Autophagy. Neurospine 2024; 21:925-941. [PMID: 39363472 PMCID: PMC11456927 DOI: 10.14245/ns.2448494.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE The study aimed to investigate the role of N6-methyladenosine (m6A) modification in spinal cord injury (SCI) and its underlying mechanism, focusing on the interplay between m6A methyltransferase-like 3 (METTL3), miR-30c, and autophagy-related proteins. METHODS An SCI model was established in rats, and changes in autophagy-related proteins, m6A methylation levels, and miR-30c levels were analyzed. Hydrogen peroxide (H2O2)-stimulated spinal cord neuron cells (SCNCs) were used to assess the impact of METTL3 overexpression. The effects of STM2457, an antagonist of METTL3, were evaluated on cell viability, apoptosis, and autophagy markers in H2O2-stimulated SCNCs. RESULTS In the SCI model, decreased levels of autophagy markers and increased m6A methylation, miR-30c levels, and METTL3 were observed. Overexpression of METTL3 in SCNCs led to reduced cell viability, increased apoptosis, and suppressed autophagy. Conversely, co-overexpression of autophagy-related protein 5 (ATG5) or miR-30c inhibition reversed these effects. Knocking out METTL3 yielded opposite results. STM2457 treatment improved cell viability, reduced apoptosis, and upregulated autophagy markers in SCNCs, which also enhanced functional recovery in rats as measured by the Basso-Beattie-Bresnahan score and inclined plate test. CONCLUSION STM2457 alleviated SCI by suppressing METTL3-mediated m6A modification of miR-30c, which in turn induces ATG5-mediated autophagy. This study provides insights into the role of m6A modification in SCI and suggests a potential therapeutic approach through targeting METTL3.
Collapse
Affiliation(s)
- Gang Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Zhitao Shangguan
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Xiaoqing Ye
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Zhi Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Jiandong Li
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Wenge Liu
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| |
Collapse
|
6
|
Ye W, Liu Z, Liu Y, Xiao H, Tan Q, Yan A, Zhu G. METTL3 promotes the osteogenic differentiation of periosteum-derived MSCs via regulation of the HOXD8/ITGA5 axis in congenital pseudarthrosis. Regen Ther 2024; 26:42-49. [PMID: 38818480 PMCID: PMC11137358 DOI: 10.1016/j.reth.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/11/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
Background Congenital pseudarthrosis of the tibia (CPT) is a dominant health challenge in pediatric orthopedics. The essential process in the development of CPT is the limited capacity of mesenchymal stem cells (MSCs) derived from CPT to undergo osteogenic differentiation. Our research aimed to elucidate the role and mechanism of methyltransferase-like 3 (METTL3) in the osteogenic differentiation process of CPT MSCs. Methods The osteogenic differentiation medium was used to culture MSCs, and the detection of osteogenic differentiation was performed using Alizarin Red S and alkaline phosphatase (ALP) assays. Gene or protein expression was assessed by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, or immunofluorescence (IF) staining. The m6A modification of Homeobox D8 (HOXD8) was verified by methylated RNA immunoprecipitation (MeRIP) assay. Interactions between METTL3 and HOXD8 or HOXD8 and integrin alpha 5 (ITGA5) promoter were validated by the luciferase reporter gene, RIP, and chromatin immunoprecipitation (ChIP) assays. Results METTL3 overexpression enhanced CPT MSCs' osteogenic differentiation. METTL3 stabilized the HOXD8 in an m6A-dependent manner. Moreover, the overexpressed ITGA5 up-regulated the CPT MSCs' osteogenic differentiation. Further, HOXD8 could transcriptionally activate ITGA5. METTL3 increased the transcription of ITGA5 via HOXD8 to enhance the osteogenic differentiation of CPT MSCs. Conclusion METTL3 promoted osteogenic differentiation via modulating the HOXD8/ITGA5 axis in CPT MSCs.
Collapse
Affiliation(s)
- Weihua Ye
- Orthopedic Department, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children's Hospital, Children's Hospital Affiliated to Xiangya Medical College of Central South University, 86# Ziyuan Road, Changsha, Hunan 410007, China
| | - Zheng Liu
- Orthopedic Department, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children's Hospital, Children's Hospital Affiliated to Xiangya Medical College of Central South University, 86# Ziyuan Road, Changsha, Hunan 410007, China
| | - Yaoxi Liu
- Orthopedic Department, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children's Hospital, Children's Hospital Affiliated to Xiangya Medical College of Central South University, 86# Ziyuan Road, Changsha, Hunan 410007, China
| | - Han Xiao
- Orthopedic Department, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children's Hospital, Children's Hospital Affiliated to Xiangya Medical College of Central South University, 86# Ziyuan Road, Changsha, Hunan 410007, China
| | - Qian Tan
- Orthopedic Department, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children's Hospital, Children's Hospital Affiliated to Xiangya Medical College of Central South University, 86# Ziyuan Road, Changsha, Hunan 410007, China
| | - An Yan
- Orthopedic Department, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children's Hospital, Children's Hospital Affiliated to Xiangya Medical College of Central South University, 86# Ziyuan Road, Changsha, Hunan 410007, China
| | - Guanghui Zhu
- Orthopedic Department, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children's Hospital, Children's Hospital Affiliated to Xiangya Medical College of Central South University, 86# Ziyuan Road, Changsha, Hunan 410007, China
| |
Collapse
|
7
|
Xu J, Ren Z, Niu T, Li S. Mechanism of Fat Mass and Obesity-Related Gene-Mediated Heme Oxygenase-1 m6A Modification in the Recovery of Neurological Function in Mice with Spinal Cord Injury. Orthop Surg 2024; 16:1175-1186. [PMID: 38514911 PMCID: PMC11062882 DOI: 10.1111/os.14002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 03/23/2024] Open
Abstract
OBJECTIVES This study examined the mechanism of fat mass and obesity-related gene (FTO)-mediated heme oxygenase-1 (HO-1) m6A modification facilitating neurological recovery in spinal cord injury (SCI) mice. FTO/HO-1 was identified as a key regulator of SCI as well as a potential target for treatment of SCI. METHODS An SCI mouse was treated with pcDNA3.1-FTO/pcDNA3.1-NC/Dac51. An oxygen/glucose deprivation (OGD) cell model simulated SCI, with cells treated with pcDNA3.1-FTO/si-HO-1/Dac51. Motor function and neurobehavioral evaluation were assessed using the Basso, Beattie, and Bresnahan (BBB) scale and modified neurological severity score (mNSS). Spinal cord pathology and neuronal apoptosis were assessed. Further, FTO/HO-1 mRNA and protein levels, HO-1 mRNA stability, the interaction of YTHDF2 with HO-1 mRNA, neuronal viability/apoptosis, and HO-1 m6A modification were evaluated. RESULTS Spinal cord injury mice exhibited reduced BBB, elevated mNSS scores, disorganized spinal cord cells, scattered nuclei, and severe nucleus pyknosis. pcDNA3.1-FTO elevated FTO mRNA, protein expression, and BBB score; reduced the mNSS score of SCI mice; decreased neuronal apoptosis; improved the cell arrangement; and improved nucleus pyknosis in spinal cord tissues. OGD decreased FTO expression. FTO upregulation ameliorated OGD-induced neuronal apoptosis. pcDNA3.1-FTO reduced HO-1 mRNA and protein and HO-1 m6A modification, while increasing HO-1 mRNA stability and FTO in OGD-treated cells. FTO upregulated HO-1 by modulating m6A modification. HO-1 downregulation attenuated the effect of FTO. pcDNA3.1-FTO/Dac51 increased the HO-1 m6A level in mouse spinal cord tissue homogenate, reduced BBB, boosted mNSS scores of SCI mice, aggravated nucleus pyknosis, and increased neuronal apoptosis in spinal cord tissues, confirming that FTO mediated HO-1 m6A modification facilitated neurological recovery in SCI mice. CONCLUSION The fat mass and obesity-related gene modulates HO-1 mRNA stability by regulating m6A modification levels, thereby influencing HO-1 expression and promoting neurological recovery in SCI mice.
Collapse
Affiliation(s)
- Jinghui Xu
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology)GuangzhouChina
| | - Zhenxiao Ren
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology)GuangzhouChina
| | - Tianzuo Niu
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology)GuangzhouChina
| | - Siyuan Li
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology)GuangzhouChina
| |
Collapse
|
8
|
Zhou Z, Zhang P. Formononetin ameliorates the LPS-induced inflammatory response and apoptosis of neuronal cells via NF-κB/NLRP3 signaling pathway. Funct Integr Genomics 2023; 23:321. [PMID: 37847432 DOI: 10.1007/s10142-023-01247-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
The objective of this study was to investigate the impact of formononetin on cellular apoptosis and inflammatory responses following spinal cord injury (SCI), as well as the underlying mechanisms involved. In this study, PC12 cells were treated with lipopolysaccharide (LPS) and different concentrations of Formononetin (FT) (50 μM, 100 μM, 200 μM). To confirm the effect of nuclear factor-κB (NF-κB)/NLR family pyrin domain containing 3 (NLRP3) signaling pathways, the cells in the phorbol-12-myristate-13-acetate (PMA) group were treated with 0.1 μmol/L PMA (NF-κB/NLRP3 signaling pathway activators). The lactate dehydrogenase (LDH) concentration and cell viability, proliferating cell nuclear antigen (PCNA) fluorescence intensity, and cell apoptosis were determined using an LDH kit, Cell Counting Kit-8 (CCK-8), immunofluorescence, and flow cytometry assays, respectively. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-16 (IL-6) expression levels were detected by quantitative ELISA assay. The expression of proteins related to the NF-κB/NLRP3 signaling pathway was detected by western blotting. Our results showed that LPS increased LDH levels in PC12 cells, suggesting that inflammation caused PC12 cell damage. However, the PC12 cell damage was decreased by methylprednisolone. Formononetin promotes cell survival and proliferation, and prevents apoptosis in a concentration-dependent manner. Formononetin reduced the TNF-α, IL-1β, and IL-6 levels in the LPS-treated model. Moreover, formononetin decreased the levels of p-p65 NF-κB and NLRP3 in PC12 cells. We conclude that formononetin ameliorated the inflammatory response and apoptosis in LPS-induced inflammatory injury in neuronal cells via the NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Zhijing Zhou
- Department of Orthopedic, Lianyungang Hospital of Traditional Chinese Medicine, Chaoyang Middle Road No. 160, Haizhou District, Lianyungang, 222004, Jiangsu, China
| | - Peng Zhang
- Department of Orthopedic, Lianyungang Hospital of Traditional Chinese Medicine, Chaoyang Middle Road No. 160, Haizhou District, Lianyungang, 222004, Jiangsu, China.
| |
Collapse
|
9
|
Han I. From the Editor-in-Chief: Featured Articles in the June 2023 Issue. Neurospine 2023; 20:413-414. [PMID: 37401059 PMCID: PMC10323349 DOI: 10.14245/ns.2346622.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] Open
Affiliation(s)
- Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam, Korea
| |
Collapse
|