1
|
Capurso C. Editorial: Reviews in psychiatry 2023: aging psychiatry. Front Psychiatry 2025; 16:1601909. [PMID: 40352368 PMCID: PMC12062018 DOI: 10.3389/fpsyt.2025.1601909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Affiliation(s)
- Cristiano Capurso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
2
|
Alvarez AC, Maguire D, Brannigan RP. Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:435-463. [PMID: 40166479 PMCID: PMC11956074 DOI: 10.3762/bjnano.16.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
This review explores the recent advancements in polymer-assisted delivery systems for antisense oligonucleotides (ASOs) and their potential in precision disease treatment. Synthetic polymers have shown significant promise in enhancing the delivery, stability, and therapeutic efficacy of ASOs by addressing key challenges such as cellular uptake, endosomal escape, and reducing cytotoxicity. The review highlights key studies from the past decade demonstrating how these polymers improve gene silencing efficiencies, particularly in cancer and neurodegenerative disease models. Despite the progress achieved, barriers such as immunogenicity, delivery limitations, and scalability still need to be overcome for broader clinical application. Emerging strategies, including stimuli-responsive polymers and advanced nanoparticle systems, offer potential solutions to these challenges. The review underscores the transformative potential of polymer-enhanced ASO delivery in personalised medicine, emphasising the importance of continued innovation to optimise ASO-based therapeutics for more precise and effective disease treatments.
Collapse
Affiliation(s)
- Ana Cubillo Alvarez
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Dylan Maguire
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Ruairí P Brannigan
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
3
|
Xie Y, Meng X, Li T, Zhang H, Zheng Y, Kim S, Zhang C, Yu X, Wang H. Plasma amyloid-β oligomerization tendency as a potential predictor for conversion from mild cognitive impairment to Alzheimer's dementia: Findings from the GMCII cohort. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70064. [PMID: 39996033 PMCID: PMC11848609 DOI: 10.1002/dad2.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 02/26/2025]
Abstract
INTRODUCTION This study aimed to explore the association between plasma amyloid-β oligomerization tendency (OAβ) and cognitive performance in Alzheimer's disease (AD) and determine its predictive value for outcomes of mild cognitive impairment (MCI). METHODS Plasma from 727 subjects (286 AD, 260 MCI, and 181 controls) in a case registry was analyzed using the multimer detection system (MDS) to measure plasma OAβ. RESULTS Elevated plasma OAβ was strongly correlated with multidomain cognitive performance in patients with MCI and AD. Patients with MCI with high baseline plasma OAβ demonstrated a higher risk of progressing to dementia (hazard ratio = 1.083, 95% confidence interval [CI] 1.032-1.137). Baseline plasma OAβ effectively predicted MCI-dementia conversion (area under the curve [AUC] = 0.824, 95% CI 0.752-0.897). DISCUSSION The real-world findings underscore the clinical relevance of plasma OAβ as a potential predictor for the conversion from mild cognitive impairment (MCI) to dementia. Highlights We recruit study participants of Alzheimer's dementia (AD), mild cognitive impairment (MCI), and cognitively normal controls in a case registry.We use the multimer detection system (MDS) to measure plasma amyloid-β oligomerization tendency (OAβ).We observe that elevated plasma OAβ strongly correlates with multidomain cognitive performance in patients with MCI and AD.MCI individuals with high baseline plasma OAβ demonstrate a higher risk of progressing to dementia.The real-world findings underscore the clinical relevance of plasma Oaβ as a potential predictor for the conversion from MCI to dementia.
Collapse
Affiliation(s)
- Yuhan Xie
- Dementia Care & Research CenterPeking University Institute of Mental Health (Sixth Hospital)Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of DementiaBeijingChina
- National Clinical Research Center for Mental DisordersKey Laboratory for Mental HealthNational Health CommissionBeijingChina
| | - Xue Meng
- Dementia Care & Research CenterPeking University Institute of Mental Health (Sixth Hospital)Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of DementiaBeijingChina
- National Clinical Research Center for Mental DisordersKey Laboratory for Mental HealthNational Health CommissionBeijingChina
- Beijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Tao Li
- Dementia Care & Research CenterPeking University Institute of Mental Health (Sixth Hospital)Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of DementiaBeijingChina
- National Clinical Research Center for Mental DisordersKey Laboratory for Mental HealthNational Health CommissionBeijingChina
| | - Haifeng Zhang
- Dementia Care & Research CenterPeking University Institute of Mental Health (Sixth Hospital)Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of DementiaBeijingChina
- National Clinical Research Center for Mental DisordersKey Laboratory for Mental HealthNational Health CommissionBeijingChina
| | - Yaonan Zheng
- Dementia Care & Research CenterPeking University Institute of Mental Health (Sixth Hospital)Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of DementiaBeijingChina
- National Clinical Research Center for Mental DisordersKey Laboratory for Mental HealthNational Health CommissionBeijingChina
| | - SangYun Kim
- Department of NeurologySeoul National University Bundang Hospital and Seoul National University College of MedicineSeongnamSouth Korea
| | - Chen Zhang
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xin Yu
- Dementia Care & Research CenterPeking University Institute of Mental Health (Sixth Hospital)Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of DementiaBeijingChina
- National Clinical Research Center for Mental DisordersKey Laboratory for Mental HealthNational Health CommissionBeijingChina
| | - Huali Wang
- Dementia Care & Research CenterPeking University Institute of Mental Health (Sixth Hospital)Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of DementiaBeijingChina
- National Clinical Research Center for Mental DisordersKey Laboratory for Mental HealthNational Health CommissionBeijingChina
| |
Collapse
|
4
|
Teunissen CE, Kolster R, Triana‐Baltzer G, Janelidze S, Zetterberg H, Kolb HC. Plasma p-tau immunoassays in clinical research for Alzheimer's disease. Alzheimers Dement 2025; 21:e14397. [PMID: 39625101 PMCID: PMC11977406 DOI: 10.1002/alz.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 01/29/2025]
Abstract
The revised biomarker framework for diagnosis and staging of Alzheimer's disease (AD) relies on amyloid beta (Aβ) and tau pathologies as core markers, and markers for adjacent pathophysiology, such as neurodegeneration and inflammation. Many of the core fluid biomarkers are phosphorylated tau (p-tau) fragments, with p-tau217 showing a prominent association with Aβ and tau. While positron emission tomography (PET) imaging is well established, plasma p-tau assays are newer and likely to reduce the use of expensive, and less accessible cerebrospinal fluid and PET imaging tests, thereby promoting wider access to AD screening. There is a need for greater understanding of how the various plasma p-tau species reflect different pathological processes of AD and how different immunoassays perform. This review surveys the available immunoassays and highlights their strengths and limitations in different contexts of use. Assays need to be standardized to maximize their impact on AD clinical research, and patient diagnosis and management. HIGHLIGHTS: Different plasma phosphorylated tau (p-tau) species reflect different pathological processes of Alzheimer's disease (AD), with p-tau231 showing the greatest association with the earliest increases in brain amyloid beta (Aβ) accumulation, while p-tau217 shows greater association with both brain Aβ and early tau pathology, and other p-tau and tau fragment species show greater association with later stages of brain tau pathology. Plasma p-tau217 has proven to be an excellent biomarker for AD pathology due to its close association with both brain Aβ and tau pathology, as well as its large dynamic range. Many different assays with varying performance exist for the same p-tau species, with mass spectrometry assays performing uniformly well, and several immunoassays achieving comparable performance. "Round robin" head-to-head studies have been performed to compare different assays for several key plasma biomarkers, including p-tau181 and p-tau217, but additional head-to-head studies are needed, especially for new analytes and for measuring performance in diverse populations. Plasma immunoassays have the potential to increase accessibility of early diagnostic testing for a broad population, including diverse historically under-represented and under-served populations, due to the potential to be implemented globally, including in primary care settings; however, further research is needed to validate the optimal cutoffs for each assay for real-world clinical usage. Eventually, clinical implementation of a two-step workflow may allow standalone use of plasma testing in certain contexts, minimizing the need for confirmation with costly and less accessible cerebrospinal fluid/positron emission tomography testing.
Collapse
Affiliation(s)
- Charlotte E. Teunissen
- Department of Clinical ChemistryAmsterdam University Medical CentersAmsterdamthe Netherlands
| | | | | | - Shorena Janelidze
- Clinical Memory Research UnitFaculty of MedicineLund UniversityLundSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGöteborgSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | |
Collapse
|
5
|
Cantero-Fortiz Y, Boada M. The use of plasma exchange with albumin replacement in the management of Alzheimer's disease: a scoping review. Front Neurol 2024; 15:1443132. [PMID: 39421573 PMCID: PMC11484623 DOI: 10.3389/fneur.2024.1443132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction AD is a progressive neurodegenerative disorder causing significant cognitive decline and impaired daily functioning. Current treatments offer only modest relief, and many amyloid-targeting therapies have failed, prompting exploration of alternative approaches such as PE with albumin replacement. Objectives This scoping review systematically maps the literature on PE with albumin replacement in AD management, focusing on outcomes, methodologies, and reported benefits and risks. Methods A comprehensive search in PubMed, supplemented by reference scanning and hand-searching, identified studies involving PE with albumin replacement in AD patients. Data charting and critical appraisal were conducted using standardized tools. Results Seven primary studies from the AMBAR (Alzheimer Management by Albumin Replacement) trial met the inclusion criteria, consistently reporting improvements in cognitive function, positive neuroimaging results, and favorable neuropsychiatric outcomes. For instance, one study found a significant slowing of cognitive decline (p < 0.05) among patients receiving PE with albumin replacement. Another study showed better preservation of hippocampal volume and improved brain perfusion metrics in the treatment group (p < 0.05). The intervention was generally well-tolerated with manageable side effects. Conclusion PE with albumin replacement is a promising therapeutic approach for AD, warranting further investigation to confirm its efficacy and safety across broader settings. Scoping review registration https://osf.io/v6dez/?view_only=1cd9637e7e0347d39713bf19aac0dfe8.
Collapse
Affiliation(s)
- Yahveth Cantero-Fortiz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Albadawi EA. Microstructural Changes in the Corpus Callosum in Neurodegenerative Diseases. Cureus 2024; 16:e67378. [PMID: 39310519 PMCID: PMC11413839 DOI: 10.7759/cureus.67378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
The corpus callosum, the largest white matter structure in the brain, plays a crucial role in interhemispheric communication and cognitive function. This review examines the microstructural changes observed in the corpus callosum across various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). New neuroimaging studies, mainly those that use diffusion tensor imaging (DTI) and advanced tractography methods, were put together to show how changes have happened in the organization of white matter and the connections between them. Some of the most common ways the corpus callosum breaks down are discussed, including less fractional anisotropy, higher mean diffusivity, and atrophy in certain regions. The relationship between these microstructural changes and cognitive decline, motor dysfunction, and disease progression is explored. Additionally, we consider the potential of corpus callosum imaging as a biomarker for early disease detection and monitoring. Studies show that people with these disorders have lower fractional anisotropy and higher mean diffusivity in the corpus callosum, often in ways that are specific to the disease. These changes often happen before gray matter atrophy and are linked to symptoms, which suggests that the corpus callosum could be used as an early sign of neurodegeneration. The review also highlights the implications of these findings for understanding disease mechanisms and developing therapeutic strategies. Future directions, including the application of advanced imaging techniques and longitudinal studies, are discussed to elucidate the role of corpus callosum degeneration in neurodegenerative processes. This review underscores the importance of the corpus callosum in understanding the pathophysiology of neurodegenerative diseases and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Emad A Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah Univeristy, Madinah, SAU
| |
Collapse
|
7
|
Clark AL, Thomas KR, Ortega N, Haley AP, Duarte A, O'Bryant S. Empirically derived psychosocial-behavioral phenotypes in Black/African American and Hispanic/Latino older adults enrolled in HABS-HD: Associations with AD biomarkers and cognitive outcomes. Alzheimers Dement 2024; 20:1360-1373. [PMID: 37990803 PMCID: PMC10917046 DOI: 10.1002/alz.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 10/14/2023] [Indexed: 11/23/2023]
Abstract
INTRODUCTION Identification of psychosocial-behavioral phenotypes to understand within-group heterogeneity in risk and resiliency to Alzheimer's disease (AD) within Black/African American and Hispanic/Latino older adults is essential for the implementation of precision health approaches. METHODS A cluster analysis was performed on baseline measures of socioeconomic resources (annual income, social support, occupational complexity) and psychiatric distress (chronic stress, depression, anxiety) for 1220 racially/ethnically minoritized adults enrolled in the Health and Aging Brain Study-Health Disparities (HABS-HD). Analyses of covariance adjusting for sociodemographic factors examined phenotype differences in cognition and plasma AD biomarkers. RESULTS The cluster analysis identified (1) Low Resource/High Distress (n = 256); (2) High Resource/Low Distress (n = 485); and (3) Low Resource/Low Distress (n = 479) phenotypes. The Low Resource/High Distress phenotype displayed poorer cognition and higher plasma neurofilament light chain; differences between the High Resource/Low Distress and Low Resource/Low Distress phenotypes were minimal. DISCUSSION The identification of psychosocial-behavioral phenotypes within racially/ethnically minoritized older adults is crucial to the development of targeted AD prevention and intervention efforts.
Collapse
Affiliation(s)
- Alexandra L. Clark
- Department of PsychologyThe University of Texas at AustinAustinTexasUSA
- Research ServiceVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Kelsey R. Thomas
- Research ServiceVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
- Department of PsychiatryUniversity of California San Diego Medical SchoolLa JollaCaliforniaUSA
| | - Nazareth Ortega
- Department of PsychologyThe University of Texas at AustinAustinTexasUSA
| | - Andreana P. Haley
- Department of PsychologyThe University of Texas at AustinAustinTexasUSA
| | - Audrey Duarte
- Department of PsychologyThe University of Texas at AustinAustinTexasUSA
| | - Sid O'Bryant
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Department of Family MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | | |
Collapse
|
8
|
Nielsen JE, Andreassen T, Gotfredsen CH, Olsen DA, Vestergaard K, Madsen JS, Kristensen SR, Pedersen S. Serum metabolic signatures for Alzheimer's Disease reveal alterations in amino acid composition: a validation study. Metabolomics 2024; 20:12. [PMID: 38180611 PMCID: PMC10770204 DOI: 10.1007/s11306-023-02078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Alzheimer's Disease (AD) is complex and novel approaches are urgently needed to aid in diagnosis. Blood is frequently used as a source for biomarkers; however, its complexity prevents proper detection. The analytical power of metabolomics, coupled with statistical tools, can assist in reducing this complexity. OBJECTIVES Thus, we sought to validate a previously proposed panel of metabolic blood-based biomarkers for AD and expand our understanding of the pathological mechanisms involved in AD that are reflected in the blood. METHODS In the validation cohort serum and plasma were collected from 25 AD patients and 25 healthy controls. Serum was analysed for metabolites using nuclear magnetic resonance (NMR) spectroscopy, while plasma was tested for markers of neuronal damage and AD hallmark proteins using single molecule array (SIMOA). RESULTS The diagnostic performance of the metabolite biomarker panel was confirmed using sparse-partial least squares discriminant analysis (sPLS-DA) with an area under the curve (AUC) of 0.73 (95% confidence interval: 0.59-0.87). Pyruvic acid and valine were consistently reduced in the discovery and validation cohorts. Pathway analysis of significantly altered metabolites in the validation set revealed that they are involved in branched-chain amino acids (BCAAs) and energy metabolism (glycolysis and gluconeogenesis). Additionally, strong positive correlations were observed for valine and isoleucine between cerebrospinal fluid p-tau and t-tau. CONCLUSIONS Our proposed panel of metabolites was successfully validated using a combined approach of NMR and sPLS-DA. It was discovered that cognitive-impairment-related metabolites belong to BCAAs and are involved in energy metabolism.
Collapse
Affiliation(s)
- Jonas Ellegaard Nielsen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Trygve Andreassen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Central staff, St. Olavs Hospital HF, 7006, Trondheim, Norway
| | | | - Dorte Aalund Olsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Jonna Skov Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Søren Risom Kristensen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Shona Pedersen
- Department of Basic Medical Science, College of Medicine, Qatar University, QU Health, Doha, Qatar.
- College of Medicine, Department of Basic Medical Science, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
9
|
Patwekar M, Patwekar F, Khan S, Sharma R, Kumar D. Navigating the Alzheimer's Treatment Landscape: Unraveling Amyloid-beta Complexities and Pioneering Precision Medicine Approaches. Curr Top Med Chem 2024; 24:1665-1682. [PMID: 38644708 DOI: 10.2174/0115680266295495240415114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024]
Abstract
A variety of cutting-edge methods and good knowledge of the illness's complex causes are causing a sea change in the field of Alzheimer's Disease (A.D.) research and treatment. Precision medicine is at the vanguard of this change, where individualized treatment plans based on genetic and biomarker profiles give a ray of hope for customized therapeutics. Combination therapies are becoming increasingly popular as a way to address the multifaceted pathology of Alzheimer's by simultaneously attacking Aβ plaques, tau tangles, neuroinflammation, and other factors. The article covers several therapeutic design efforts, including BACE inhibitors, gamma- secretase modulators, monoclonal antibodies (e.g., Aducanumab and Lecanemab), and anti- Aβ vaccinations. While these techniques appear promising, clinical development faces safety concerns and uneven efficacy. To address the complicated Aβ pathology in Alzheimer's disease, a multimodal approach is necessary. The statement emphasizes the continued importance of clinical trials in addressing safety and efficacy concerns. Looking ahead, it suggests that future treatments may take into account genetic and biomarker traits in order to provide more personalized care. Therapies targeting Aβ, tau tangles, neuroinflammation, and novel drug delivery modalities are planned. Nanoparticles and gene therapies are only two examples of novel drug delivery methods that have the potential to deliver treatments more effectively, with fewer side effects, and with better therapeutic results. In addition, medicines that target tau proteins in addition to Aβ are in the works. Early intervention, based on precise biomarkers, is a linchpin of Alzheimer's care, emphasizing the critical need for detecting the disease at its earliest stages. Lifestyle interventions, encompassing diet, exercise, cognitive training, and social engagement, are emerging as key components in the fight against cognitive decline. Data analytics and art are gaining prominence as strategies to mitigate the brain's inflammatory responses. To pool knowledge and resources in the fight against Alzheimer's, international cooperation between scientists, doctors, and pharmaceutical companies is still essential. In essence, a complex, individualized, and collaborative strategy will characterize Alzheimer's research and therapy in the future. Despite obstacles, these encouraging possibilities show the ongoing commitment of the scientific and medical communities to combat A.D. head-on, providing a glimmer of hope to the countless people and families touched by this savage sickness.
Collapse
Affiliation(s)
- Mohsina Patwekar
- Department of Pharmacology, Luqman College of Pharmacy, P.B. 86, old Jewargi road, Gulbarga, Karnataka, 585102, India
| | - Faheem Patwekar
- Department of Pharmacognosy, Luqman College of Pharmacy, P.B. 86, old Jewargi Road, Gulbarga, Karnataka, 585102, India
| | - Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa City, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
10
|
Hampel H, Au R, Mattke S, van der Flier WM, Aisen P, Apostolova L, Chen C, Cho M, De Santi S, Gao P, Iwata A, Kurzman R, Saykin AJ, Teipel S, Vellas B, Vergallo A, Wang H, Cummings J. Designing the next-generation clinical care pathway for Alzheimer's disease. NATURE AGING 2022; 2:692-703. [PMID: 37118137 PMCID: PMC10148953 DOI: 10.1038/s43587-022-00269-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/07/2022] [Indexed: 04/30/2023]
Abstract
The reconceptualization of Alzheimer's disease (AD) as a clinical and biological construct has facilitated the development of biomarker-guided, pathway-based targeted therapies, many of which have reached late-stage development with the near-term potential to enter global clinical practice. These medical advances mark an unprecedented paradigm shift and requires an optimized global framework for clinical care pathways for AD. In this Perspective, we describe the blueprint for transitioning from the current, clinical symptom-focused and inherently late-stage diagnosis and management of AD to the next-generation pathway that incorporates biomarker-guided and digitally facilitated decision-making algorithms for risk stratification, early detection, timely diagnosis, and preventative or therapeutic interventions. We address critical and high-priority challenges, propose evidence-based strategic solutions, and emphasize that the perspectives of affected individuals and care partners need to be considered and integrated.
Collapse
Affiliation(s)
| | - Rhoda Au
- Depts of Anatomy & Neurobiology, Neurology and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Soeren Mattke
- Center for Improving Chronic Illness Care, University of Southern California, San Diego, San Diego, CA, USA
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Depts of Neurology and Epidemiology and Data Science, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Paul Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, San Diego, CA, USA
| | - Liana Apostolova
- Departments of Neurology, Radiology, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Min Cho
- Neurology Business Group, Eisai, Nutley, NJ, USA
| | | | - Peng Gao
- Neurology Business Group, Eisai, Nutley, NJ, USA
| | | | | | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center and the Departments of Radiology and Imaging Sciences, Medical and Molecular Genetics, and Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, University Medical Center Rostock, Rostock, Germany
| | - Bruno Vellas
- University Paul Sabatier, Gerontopole, Toulouse University Hospital, UMR INSERM 1285, Toulouse, France
| | | | - Huali Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), National Clinical Research Center for Mental Disorders, Beijing, China
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA
| |
Collapse
|
11
|
O’Bryant SE, Petersen M, Zhang F, Johnson L, German D, Hall J. Parkinson's Disease Blood Test for Primary Care. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2022; 12:545. [PMID: 37006377 PMCID: PMC10065753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Background A blood-test that could serve as a potential first step in a multi-tiered neurodiagnostic process for ruling out Parkinson's disease (PD) in primary care settings would be of tremendous value. This study therefore sought to conduct a large-scale cross-validation of our Parkinson's disease Blood Test (PDBT) for use in primary care settings. Methods Serum samples were analyzed from 846 PD and 2291 volunteer controls. Proteomic assays were run on a multiplex biomarker assay platform using Electrochemiluminescence (ECL). Diagnostic accuracy statistics were generated using area under the receiver operating characteristic curve (AUC), Sensitivity (SN), Specificity (SP) and Negative Predictive Value (NPV). Results In the training set, the PDBT reached an AUC of 0.98 when distinguishing PD cases from controls with a SN of 0.84 and SP of 0.98. When applied to the test set, the PDBT yielded an AUC of 0.96, SN of 0.79 and SP of 0.97. The PDBT obtained a negative predictive value of 99% for a 2% base rate. Conclusion The PDBT was highly successful in discriminating PD patients from control cases and has great potential for providing primary care providers with a rapid, scalable and cost-effective tool for screening out PD.
Collapse
Affiliation(s)
- Sid E. O’Bryant
- Department of Neuroscience and Pharmacology, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Melissa Petersen
- Department of Neuroscience and Pharmacology, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Fan Zhang
- Department of Neuroscience and Pharmacology, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Leigh Johnson
- Department of Neuroscience and Pharmacology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Dwight German
- Department of Psychiatry, UT Southwestern Medical School, Dallas, Texas, USA
| | - James Hall
- Department of Neuroscience and Pharmacology, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
12
|
Varesi A, Carrara A, Pires VG, Floris V, Pierella E, Savioli G, Prasad S, Esposito C, Ricevuti G, Chirumbolo S, Pascale A. Blood-Based Biomarkers for Alzheimer's Disease Diagnosis and Progression: An Overview. Cells 2022; 11:1367. [PMID: 35456047 PMCID: PMC9044750 DOI: 10.3390/cells11081367] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease characterized by amyloid-β (Aβ) plaque deposition and neurofibrillary tangle accumulation in the brain. Although several studies have been conducted to unravel the complex and interconnected pathophysiology of AD, clinical trial failure rates have been high, and no disease-modifying therapies are presently available. Fluid biomarker discovery for AD is a rapidly expanding field of research aimed at anticipating disease diagnosis and following disease progression over time. Currently, Aβ1-42, phosphorylated tau, and total tau levels in the cerebrospinal fluid are the best-studied fluid biomarkers for AD, but the need for novel, cheap, less-invasive, easily detectable, and more-accessible markers has recently led to the search for new blood-based molecules. However, despite considerable research activity, a comprehensive and up-to-date overview of the main blood-based biomarker candidates is still lacking. In this narrative review, we discuss the role of proteins, lipids, metabolites, oxidative-stress-related molecules, and cytokines as possible disease biomarkers. Furthermore, we highlight the potential of the emerging miRNAs and long non-coding RNAs (lncRNAs) as diagnostic tools, and we briefly present the role of vitamins and gut-microbiome-related molecules as novel candidates for AD detection and monitoring, thus offering new insights into the diagnosis and progression of this devastating disease.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Vitor Gomes Pires
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA;
| | - Valentina Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Sakshi Prasad
- Faculty of Medicine, National Pirogov Memorial Medical University, 21018 Vinnytsya, Ukraine;
| | - Ciro Esposito
- Unit of Nephrology and Dialysis, ICS Maugeri, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
13
|
Batko K, Ślęzak A. The use of Big Data Analytics in healthcare. JOURNAL OF BIG DATA 2022; 9:3. [PMID: 35013701 PMCID: PMC8733917 DOI: 10.1186/s40537-021-00553-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/19/2021] [Indexed: 05/30/2023]
Abstract
The introduction of Big Data Analytics (BDA) in healthcare will allow to use new technologies both in treatment of patients and health management. The paper aims at analyzing the possibilities of using Big Data Analytics in healthcare. The research is based on a critical analysis of the literature, as well as the presentation of selected results of direct research on the use of Big Data Analytics in medical facilities. The direct research was carried out based on research questionnaire and conducted on a sample of 217 medical facilities in Poland. Literature studies have shown that the use of Big Data Analytics can bring many benefits to medical facilities, while direct research has shown that medical facilities in Poland are moving towards data-based healthcare because they use structured and unstructured data, reach for analytics in the administrative, business and clinical area. The research positively confirmed that medical facilities are working on both structural data and unstructured data. The following kinds and sources of data can be distinguished: from databases, transaction data, unstructured content of emails and documents, data from devices and sensors. However, the use of data from social media is lower as in their activity they reach for analytics, not only in the administrative and business but also in the clinical area. It clearly shows that the decisions made in medical facilities are highly data-driven. The results of the study confirm what has been analyzed in the literature that medical facilities are moving towards data-based healthcare, together with its benefits.
Collapse
Affiliation(s)
- Kornelia Batko
- Department of Business Informatics, University of Economics in Katowice, Katowice, Poland
| | - Andrzej Ślęzak
- Department of Biomedical Processes and Systems, Institute of Health and Nutrition Sciences, Częstochowa University of Technology, Częstochowa, Poland
| |
Collapse
|
14
|
Analysis of a precision medicine approach to treating Parkinson's disease: Analysis of the DATATOP study. Parkinsonism Relat Disord 2021; 94:15-21. [PMID: 34864471 DOI: 10.1016/j.parkreldis.2021.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The aim of this study was to examine the potential application of a targeted proteomic predictive biomarker comprised predominantly of inflammatory proteins in distinguishing those who responded to a previously conducted clinical trial for Parkinson's disease (PD). METHODS Plasma samples obtained from a biorepository were assayed from a total of n = 520 DATATOP (Deprenyl And Tocopherol Antioxidative Therapy Of Parkinsonism) clinical trial participants across treatment arms. Support vector machine analyses were conducted to distinguish responder status on primary (need for Levodopa) and secondary trial endpoints (UPDRS Motor and Total Scores). RESULTS For the α-tocopherol and deprenyl placebo treatment arm (TOC), the targeted proteomic biomarker was able to distinguish responder status with an accuracy (area under the curve [AUC]) of 91% for the primary endpoint while it was 100% across secondary endpoints. For the deprenyl and α-tocopherol placebo treatment arm (DEP), the AUC was 93% for the primary endpoint and 99-100% for the secondary endpoints. For the combined treatment arm, AUC was 87% for the primary and 94-96% for the secondary endpoints. DISCUSSION The targeted proteomic predictive biomarker was highly accurate in distinguishing responder status across treatment arms thereby supporting the application of a precision medicine approach to treating PD.
Collapse
|
15
|
Nielsen JE, Maltesen RG, Havelund JF, Færgeman NJ, Gotfredsen CH, Vestergård K, Kristensen SR, Pedersen S. Characterising Alzheimer's disease through integrative NMR- and LC-MS-based metabolomics. Metabol Open 2021; 12:100125. [PMID: 34622190 PMCID: PMC8479251 DOI: 10.1016/j.metop.2021.100125] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Alzheimer's Disease (AD) is a complex and multifactorial disease and novel approaches are needed to illuminate the underlying pathology. Metabolites comprise the end-product of genes, transcripts, and protein regulations and might reflect disease pathogenesis. Blood is a common biofluid used in metabolomics; however, since extracellular vesicles (EVs) hold cell-specific biological material and can cross the blood-brain barrier, their utilization as biological material warrants further investigation. We aimed to investigate blood- and EV-derived metabolites to add insigts to the pathological mechanisms of AD. Methods Blood samples were collected from 10 AD and 10 Mild Cognitive Impairment (MCI) patients, and 10 healthy controls. EVs were enriched from plasma using 100,000×g, 1 h, 4 °C with a wash. Metabolites from serum and EVs were measured using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Multivariate and univariate analyses were employed to identify altered metabolites in cognitively impaired individuals. Results While no significant EV-derived metabolites were found differentiating patients from healthy individuals, six serum metabolites were found important; valine (p = 0.001, fold change, FC = 0.8), histidine (p = 0.001, FC = 0.9), allopurinol riboside (p = 0.002, FC = 0.2), inosine (p = 0.002, FC = 0.3), 4-pyridoxic acid (p = 0.006, FC = 1.6), and guanosine (p = 0.004, FC = 0.3). Pathway analysis revealed branched-chain amino acids, purine and histidine metabolisms to be downregulated, and vitamin B6 metabolism upregulated in patients compared to controls. Conclusion Using a combination of LC-MS and NMR methodologies we identified several altered mechanisms possibly related to AD pathology. EVs require additional optimization prior to their possible utilization as a biological material for AD-related metabolomics studies.
Collapse
Key Words
- ACE, Addenbrooke's cognitive examination
- AD, Alzheimer's Disease
- AUC, Area under the curve
- Alzheimer
- Aβ, Amyloid-β
- BBB, Blood-brain barrier
- BCAA, Branched-chain amino acid
- Blood
- CNS, Central nervous system
- CSF, Cerebrospinal fluid
- CV, Cross-validation
- EVs, Extracellular vesicles
- Extracellular vesicles
- FAQ, Functional activities questionnaire
- FDR, False discovery rate
- MCI, Mild cognitive impairment
- MMSE, Mini-mental state examination
- Mass spectrometry
- Metabolites
- Nuclear magnetic resonance
- PCA, Principal component analysis
- ROC, Receiver operating characteristics
- p-tau, Phospho-tau
- sPLS-DA, Sparse partial least squared discriminant analysis
- t-tau, Total-tau
Collapse
Affiliation(s)
- Jonas Ellegaard Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Raluca Georgiana Maltesen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, Australia.,Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Aalborg, Denmark
| | - Jesper F Havelund
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | | | - Søren Risom Kristensen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Shona Pedersen
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Qatar Health, Doha, Qatar
| |
Collapse
|
16
|
Kim SJ, Li J, Mahairaki V. Stem cell-derived three-dimensional (organoid) models of Alzheimer's disease: a precision medicine approach. Neural Regen Res 2021; 16:1546-1547. [PMID: 33433475 PMCID: PMC8323699 DOI: 10.4103/1673-5374.303019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Sujung Jun Kim
- Department of Neurology; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiaxin Li
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vasiliki Mahairaki
- Department of Neurology, Johns Hopkins School of Medicine; The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| |
Collapse
|
17
|
hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible. Nat Rev Neurol 2021; 17:381-392. [PMID: 33658662 PMCID: PMC7928200 DOI: 10.1038/s41582-021-00465-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) were first generated in 2007, but the full translational potential of this valuable tool has yet to be realized. The potential applications of hiPSCs are especially relevant to neurology, as brain cells from patients are rarely available for research. hiPSCs from individuals with neuropsychiatric or neurodegenerative diseases have facilitated biological and multi-omics studies as well as large-scale screening of chemical libraries. However, researchers are struggling to improve the scalability, reproducibility and quality of this descriptive disease modelling. Addressing these limitations will be the first step towards a new era in hiPSC research - that of predictive disease modelling - involving the correlation and integration of in vitro experimental data with longitudinal clinical data. This approach is a key element of the emerging precision medicine paradigm, in which hiPSCs could become a powerful diagnostic and prognostic tool. Here, we consider the steps necessary to achieve predictive modelling of neurodegenerative disease with hiPSCs, using Huntington disease as an example.
Collapse
|
18
|
O’Bryant SE, Zhang F, Petersen M, Johnson L, Hall J, Rissman RA. A Precision Medicine Approach to Treating Alzheimer's Disease Using Rosiglitazone Therapy: A Biomarker Analysis of the REFLECT Trials. J Alzheimers Dis 2021; 81:557-568. [PMID: 33814447 PMCID: PMC8203239 DOI: 10.3233/jad-201610] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The REFLECT trials were conducted to examine the treatment of mild-to-moderate Alzheimer's disease utilizing a peroxisome proliferator-activated receptor gamma agonist. OBJECTIVE To generate a predictive biomarker indicative of positive treatment response using samples from the previously conducted REFLECT trials. METHODS Data were analyzed on 360 participants spanning multiple negative REFLECT trials, which included treatment with rosiglitazone and rosiglitazone XR. Support vector machine analyses were conducted to generate a predictive biomarker profile. RESULTS A pre-defined 6-protein predictive biomarker (IL6, IL10, CRP, TNFα, FABP-3, and PPY) correctly classified treatment response with 100%accuracy across study arms for REFLECT Phase II trial (AVA100193) and multiple Phase III trials (AVA105640, AV102672, and AVA102670). When the data was combined across all rosiglitazone trial arms, a global RSG-predictive biomarker with the same 6-protein predictive biomarker was able to accurately classify 98%of treatment responders. CONCLUSION A predictive biomarker comprising of metabolic and inflammatory markers was highly accurate in identifying those patients most likely to experience positive treatment response across the REFLECT trials. This study provides additional proof-of-concept that a predictive biomarker can be utilized to help with screening and predicting treatment response, which holds tremendous benefit for clinical trials.
Collapse
Affiliation(s)
- Sid E. O’Bryant
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Fan Zhang
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Melissa Petersen
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Leigh Johnson
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - James Hall
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Robert A. Rissman
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
19
|
Baldacci F, Lista S, Manca ML, Chiesa PA, Cavedo E, Lemercier P, Zetterberg H, Blennow K, Habert MO, Potier MC, Dubois B, Vergallo A, Hampel H. Age and sex impact plasma NFL and t-Tau trajectories in individuals with subjective memory complaints: a 3-year follow-up study. ALZHEIMERS RESEARCH & THERAPY 2020; 12:147. [PMID: 33183357 PMCID: PMC7663867 DOI: 10.1186/s13195-020-00704-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Background Plasma neurofilament light (NFL) and total Tau (t-Tau) proteins are candidate biomarkers for early stages of Alzheimer’s disease (AD). The impact of biological factors on their plasma concentrations in individuals with subjective memory complaints (SMC) has been poorly explored. We longitudinally investigate the effect of sex, age, APOE ε4 allele, comorbidities, brain amyloid-β (Aβ) burden, and cognitive scores on plasma NFL and t-Tau concentrations in cognitively healthy individuals with SMC, a condition associated with AD development. Methods Three hundred sixteen and 79 individuals, respectively, have baseline and three-time point assessments (at baseline, 1-year, and 3-year follow-up) of the two biomarkers. Plasma biomarkers were measured with an ultrasensitive assay in a mono-center cohort (INSIGHT-preAD study). Results We show an effect of age on plasma NFL, with women having a higher increase of plasma t-Tau concentrations compared to men, over time. The APOE ε4 allele does not affect the biomarker concentrations while plasma vitamin B12 deficiency is associated with higher plasma t-Tau concentrations. Both biomarkers are correlated and increase over time. Baseline NFL is related to the rate of Aβ deposition at 2-year follow-up in the left-posterior cingulate and the inferior parietal gyri. Baseline plasma NFL and the rate of change of plasma t-Tau are inversely associated with cognitive score. Conclusion We find that plasma NFL and t-Tau longitudinal trajectories are affected by age and female sex, respectively, in SMC individuals. Exploring the influence of biological variables on AD biomarkers is crucial for their clinical validation in blood.
Collapse
Affiliation(s)
- Filippo Baldacci
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France. .,Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56125, Pisa, Italy.
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Maria Laura Manca
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56125, Pisa, Italy.,Department of Mathematics, University of Pisa, Pisa, Italy
| | - Patrizia A Chiesa
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Enrica Cavedo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France.,Qynapse, Paris, France
| | - Pablo Lemercier
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marie-Odile Habert
- Laboratoire d'Imagerie Biomédicale, Sorbonne University, CNRS, INSERM, F-75013, Paris, France.,Centre pour l'Acquisition et le Traitement des Images (www.cati-neuroimaging.com), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Département de Médecine Nucléaire, F-75013, Paris, France
| | - Marie Claude Potier
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, F-75013, Paris, France
| | - Bruno Dubois
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France
| | | | | |
Collapse
|
20
|
Zhao Y, Jaber V, Alexandrov PN, Vergallo A, Lista S, Hampel H, Lukiw WJ. microRNA-Based Biomarkers in Alzheimer's Disease (AD). Front Neurosci 2020; 14:585432. [PMID: 33192270 PMCID: PMC7664832 DOI: 10.3389/fnins.2020.585432] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, age-related neurological disease characterized by complex pathophysiological dynamics taking place at multiple biological levels, including molecular, genetic, epigenetic, cellular and large-scale brain networks. These alterations account for multiple pathophysiological mechanisms such as brain protein accumulation, neuroinflammatory/neuro-immune processes, synaptic dysfunction, and neurodegeneration that eventually lead to cognitive and behavioral decline. Alterations in microRNA (miRNA) signaling have been implicated in the epigenetics and molecular genetics of all neurobiological processes associated with AD pathophysiology. These changes encompass altered miRNA abundance, speciation and complexity in anatomical regions of the CNS targeted by the disease, including modified miRNA expression patterns in brain tissues, the systemic circulation, the extracellular fluid (ECF) and the cerebrospinal fluid (CSF). miRNAs have been investigated as candidate biomarkers for AD diagnosis, disease prediction, prognosis and therapeutic purposes because of their involvement in multiple brain signaling pathways in both health and disease. In this review we will: (i) highlight the significantly heterogeneous nature of miRNA expression and complexity in AD tissues and biofluids; (ii) address how information may be extracted from these data to be used as a diagnostic, prognostic and/or screening tools across the entire continuum of AD, from the preclinical stage, through the prodromal, i.e., mild cognitive impairment (MCI) phase all the way to clinically overt dementia; and (iii) consider how specific miRNA expression patterns could be categorized using miRNA reporters that span AD pathophysiological initiation and disease progression.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | | | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’Hôpital, Paris, France
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, Paris, France
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Russian Academy of Medical Sciences, Moscow, Russia
- Department of Ophthalmology, LSU Neuroscience Center Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Neurology, LSU Neuroscience Center Louisiana State University Health Science Center, New Orleans, LA, United States
| |
Collapse
|
21
|
Baker E, Escott-Price V. Polygenic Risk Scores in Alzheimer's Disease: Current Applications and Future Directions. Front Digit Health 2020; 2:14. [PMID: 34713027 PMCID: PMC8521998 DOI: 10.3389/fdgth.2020.00014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/07/2020] [Indexed: 12/23/2022] Open
Abstract
Genome-wide association studies have identified nearly 40 genome-wide significant single nucleotide polymorphisms (SNPs) which are associated with Alzheimer's Disease (AD). Due to the polygenicity of AD, polygenic risk scores (PRS) have shown high potential for AD risk prediction. PRSs have been shown to successfully discriminate between AD cases and controls achieving a prediction accuracy of up to 84% based on area under the receiver operating curve. The prediction accuracy in AD is higher compared with other complex genetic disorders. PRS can be restricted to SNPs which reside in biologically relevant gene-sets; the predictive value of these gene-sets in the general population is not as high as genome-wide PRS, but they may play an important role to identify mechanisms of disease development and inform biological experiments. Multiple methods are available to derive PRSs, such as selecting SNPs based on statistical evidence of association with the disease or using prior evidence for SNP selection. All methods have advantages, but PRS produced using different methodologies are often not comparable, and results should be interpreted with care. Similarly, this is true when PRS is based on different background populations. With the exponential growth in development of digital electronic devices it is easy to calculate an individual's disease risk using public databases. A major limitation for the utility of PRSs is that the risk score is sample and method dependent. Therefore, replicability and interpretability of PRS is an important issue. PRS can be used to determine the probability of developing disease which incorporates information about disease risk in the general population or in a specific AD risk group. It is essential to consult with genetic counselors to ensure genetic risk is communicated appropriately.
Collapse
Affiliation(s)
- Emily Baker
- UK Dementia Research Institute at Cardiff University, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Valentina Escott-Price
- UK Dementia Research Institute at Cardiff University, School of Medicine, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
22
|
Strianese O, Rizzo F, Ciccarelli M, Galasso G, D’Agostino Y, Salvati A, Del Giudice C, Tesorio P, Rusciano MR. Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease. Genes (Basel) 2020; 11:E747. [PMID: 32640513 PMCID: PMC7397223 DOI: 10.3390/genes11070747] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Life expectancy has gradually grown over the last century. This has deeply affected healthcare costs, since the growth of an aging population is correlated to the increasing burden of chronic diseases. This represents the interesting challenge of how to manage patients with chronic diseases in order to improve health care budgets. Effective primary prevention could represent a promising route. To this end, precision, together with personalized medicine, are useful instruments in order to investigate pathological processes before the appearance of clinical symptoms and to guide physicians to choose a targeted therapy to manage the patient. Cardiovascular and neurodegenerative diseases represent suitable models for taking full advantage of precision medicine technologies applied to all stages of disease development. The availability of high technology incorporating artificial intelligence and advancement progress made in the field of biomedical research have been substantial to understand how genes, epigenetic modifications, aging, nutrition, drugs, microbiome and other environmental factors can impact health and chronic disorders. The aim of the present review is to address how precision and personalized medicine can bring greater clarity to the clinical and biological complexity of these types of disorders associated with high mortality, involving tremendous health care costs, by describing in detail the methods that can be applied. This might offer precious tools for preventive strategies and possible clues on the evolution of the disease and could help in predicting morbidity, mortality and detecting chronic disease indicators much earlier in the disease course. This, of course, will have a major effect on both improving the quality of care and quality of life of the patients and reducing time efforts and healthcare costs.
Collapse
Affiliation(s)
- Oriana Strianese
- Clinical Research and Innovation, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy; (O.S.); (C.D.G.)
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (M.C.); (G.G.)
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (M.C.); (G.G.)
| | - Ylenia D’Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Carmine Del Giudice
- Clinical Research and Innovation, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy; (O.S.); (C.D.G.)
| | - Paola Tesorio
- Unit of Cardiology, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy;
| | - Maria Rosaria Rusciano
- Clinical Research and Innovation, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy; (O.S.); (C.D.G.)
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (M.C.); (G.G.)
| |
Collapse
|
23
|
Hampel H, Vergallo A, Afshar M, Akman-Anderson L, Arenas J, Benda N, Batrla R, Broich K, Caraci F, Cuello AC, Emanuele E, Haberkamp M, Kiddle SJ, Lucía A, Mapstone M, Verdooner SR, Woodcock J, Lista S. Blood-based systems biology biomarkers for next-generation clinical trials in Alzheimer's disease
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020. [PMID: 31636492 PMCID: PMC6787542 DOI: 10.31887/dcns.2019.21.2/hhampel] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD)-a complex disease showing multiple pathomechanistic alterations-is triggered by nonlinear dynamic interactions of genetic/epigenetic and environmental risk factors, which, ultimately, converge into a biologically heterogeneous disease. To tackle the burden of AD during early preclinical stages, accessible blood-based biomarkers are currently being developed. Specifically, next-generation clinical trials are expected to integrate positive and negative predictive blood-based biomarkers into study designs to evaluate, at the individual level, target druggability and potential drug resistance mechanisms. In this scenario, systems biology holds promise to accelerate validation and qualification for clinical trial contexts of use-including proof-of-mechanism, patient selection, assessment of treatment efficacy and safety rates, and prognostic evaluation. Albeit in their infancy, systems biology-based approaches are poised to identify relevant AD "signatures" through multifactorial and interindividual variability, allowing us to decipher disease pathophysiology and etiology. Hopefully, innovative biomarker-drug codevelopment strategies will be the road ahead towards effective disease-modifying drugs.
.
Collapse
Affiliation(s)
- Harald Hampel
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Andrea Vergallo
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Mohammad Afshar
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Leyla Akman-Anderson
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Joaquín Arenas
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Norbert Benda
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Richard Batrla
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Karl Broich
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Filippo Caraci
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - A Claudio Cuello
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Enzo Emanuele
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Marion Haberkamp
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Steven J Kiddle
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Alejandro Lucía
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Mark Mapstone
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Steven R Verdooner
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Janet Woodcock
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Simone Lista
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| |
Collapse
|
24
|
Hampel H, Caraci F, Cuello AC, Caruso G, Nisticò R, Corbo M, Baldacci F, Toschi N, Garaci F, Chiesa PA, Verdooner SR, Akman-Anderson L, Hernández F, Ávila J, Emanuele E, Valenzuela PL, Lucía A, Watling M, Imbimbo BP, Vergallo A, Lista S. A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer's Disease. Front Immunol 2020; 11:456. [PMID: 32296418 PMCID: PMC7137904 DOI: 10.3389/fimmu.2020.00456] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation commences decades before Alzheimer's disease (AD) clinical onset and represents one of the earliest pathomechanistic alterations throughout the AD continuum. Large-scale genome-wide association studies point out several genetic variants—TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, and HLA-DRB5-HLA-DRB1—potentially linked to neuroinflammation. Most of these genes are involved in proinflammatory intracellular signaling, cytokines/interleukins/cell turnover, synaptic activity, lipid metabolism, and vesicle trafficking. Proteomic studies indicate that a plethora of interconnected aberrant molecular pathways, set off and perpetuated by TNF-α, TGF-β, IL-1β, and the receptor protein TREM2, are involved in neuroinflammation. Microglia and astrocytes are key cellular drivers and regulators of neuroinflammation. Under physiological conditions, they are important for neurotransmission and synaptic homeostasis. In AD, there is a turning point throughout its pathophysiological evolution where glial cells sustain an overexpressed inflammatory response that synergizes with amyloid-β and tau accumulation, and drives synaptotoxicity and neurodegeneration in a self-reinforcing manner. Despite a strong therapeutic rationale, previous clinical trials investigating compounds with anti-inflammatory properties, including non-steroidal anti-inflammatory drugs (NSAIDs), did not achieve primary efficacy endpoints. It is conceivable that study design issues, including the lack of diagnostic accuracy and biomarkers for target population identification and proof of mechanism, may partially explain the negative outcomes. However, a recent meta-analysis indicates a potential biological effect of NSAIDs. In this regard, candidate fluid biomarkers of neuroinflammation are under analytical/clinical validation, i.e., TREM2, IL-1β, MCP-1, IL-6, TNF-α receptor complexes, TGF-β, and YKL-40. PET radio-ligands are investigated to accomplish in vivo and longitudinal regional exploration of neuroinflammation. Biomarkers tracking different molecular pathways (body fluid matrixes) along with brain neuroinflammatory endophenotypes (neuroimaging markers), can untangle temporal–spatial dynamics between neuroinflammation and other AD pathophysiological mechanisms. Robust biomarker–drug codevelopment pipelines are expected to enrich large-scale clinical trials testing new-generation compounds active, directly or indirectly, on neuroinflammatory targets and displaying putative disease-modifying effects: novel NSAIDs, AL002 (anti-TREM2 antibody), anti-Aβ protofibrils (BAN2401), and AL003 (anti-CD33 antibody). As a next step, taking advantage of breakthrough and multimodal techniques coupled with a systems biology approach is the path to pursue for developing individualized therapeutic strategies targeting neuroinflammation under the framework of precision medicine.
Collapse
Affiliation(s)
- Harald Hampel
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | - Robert Nisticò
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.,School of Pharmacy, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - Filippo Baldacci
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Department of Radiology, "Athinoula A. Martinos" Center for Biomedical Imaging, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Patrizia A Chiesa
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | | | | | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | | | - Alejandro Lucía
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Research Institute of the Hospital 12 de Octubre ("imas"), Madrid, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | - Bruno P Imbimbo
- Research & Development Department, Chiesi Farmaceutici, Parma, Italy
| | - Andrea Vergallo
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| |
Collapse
|
25
|
Li M, Reisman J, Morris-Eppolito B, Qian SX, Kazis LE, Wolozin B, Goldstein LE, Xia W. Beneficial association of angiotensin-converting enzyme inhibitors and statins on the occurrence of possible Alzheimer's disease after traumatic brain injury. Alzheimers Res Ther 2020; 12:33. [PMID: 32220235 PMCID: PMC7102441 DOI: 10.1186/s13195-020-00589-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pathological analysis of brain tissue from animals and humans with a history of traumatic brain injury (TBI) suggests that TBI could be one of the risk factors facilitating onset of dementia with possible Alzheimer's disease (AD), but medications to prevent or delay AD onset are not yet available. METHODS This study explores four medication classes (angiotensin-converting enzyme inhibitors (ACEI), beta blockers, metformin, and statins) approved by the Food and Drug Administration (FDA) for other indications and evaluates their influence when used in combination on the risk of possible AD development for patients with a history of TBI. We identified patients with history of TBI from an existing Department of Veterans Affairs (VA) national database. Among 1,660,151 veterans who used VA services between the ages of 50 to 89 years old, we analyzed 733,920 patients, including 15,450 patients with a history of TBI and 718,470 non-TBI patients. The TBI patients were followed for up to 18.5 years, with an average of 7.7 ± 4.7 years, and onset of dementia with possible AD was recorded based on International Statistical Classification of Diseases (ICD) 9 or 10 codes. The effect of TBI on possible AD development was evaluated by multivariable logistic regression models adjusted by age, gender, race, and other comorbidities. The association of ACEI, beta blockers, metformin, statins, and combinations of these agents over time from the first occurrence of TBI to possible AD onset was assessed using Cox proportional hazard models adjusted for demographics and comorbidities. RESULTS Veterans with at least two TBI occurrences by claims data were 25% (odds ratio (OR) = 1.25, 95% confidence intervals (CI) (1.13, 1.37)) more likely to develop dementia with possible AD, compared to those with no record of TBI. In multivariable logistic regression models (propensity score weighted or adjusted), veterans taking a combination of ACEI and statins had reduced risk in developing possible AD after suffering TBI, and use of this medication class combination was associated with a longer period between TBI occurring and dementia with possible AD onset, compared to patients who took statins alone or did not take any of the four target drugs after TBI. CONCLUSIONS The combination of ACEI and statins significantly lowered the risk of development of dementia with possible AD in a national cohort of people with a history of TBI, thus supporting a clinical approach to lowering the risk of dementia with possible AD.
Collapse
Affiliation(s)
- Mingfei Li
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Hospital, Bedford, MA USA
- Department of Mathematical Sciences, Bentley University, Waltham, MA USA
| | - Joel Reisman
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Hospital, Bedford, MA USA
| | - Benjamin Morris-Eppolito
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730 USA
| | - Shirley X. Qian
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Hospital, Bedford, MA USA
- Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, MA USA
| | - Lewis E. Kazis
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Hospital, Bedford, MA USA
- Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, MA USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA USA
| | - Lee E. Goldstein
- Departments of Radiology, Psychiatry, Neurology, and Pathology, Boston University School of Medicine, Boston, MA USA
- Departments of Biomedical, Electrical, and Computer Engineering, Boston University College of Engineering & Photonics Center, Boston, MA USA
- Boston University Alzheimer’s Disease Center, Boston, MA USA
| | - Weiming Xia
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730 USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA USA
| |
Collapse
|
26
|
Isaacson RS, Hristov H, Saif N, Hackett K, Hendrix S, Melendez J, Safdieh J, Fink M, Thambisetty M, Sadek G, Bellara S, Lee P, Berkowitz C, Rahman A, Meléndez-Cabrero J, Caesar E, Cohen R, Lu PL, Dickson SP, Hwang MJ, Scheyer O, Mureb M, Schelke MW, Niotis K, Greer CE, Attia P, Mosconi L, Krikorian R. Individualized clinical management of patients at risk for Alzheimer's dementia. Alzheimers Dement 2019; 15:1588-1602. [PMID: 31677936 PMCID: PMC6925647 DOI: 10.1016/j.jalz.2019.08.198] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Multidomain intervention for Alzheimer's disease (AD) risk reduction is an emerging therapeutic paradigm. METHODS Patients were prescribed individually tailored interventions (education/pharmacologic/nonpharmacologic) and rated on compliance. Normal cognition/subjective cognitive decline/preclinical AD was classified as Prevention. Mild cognitive impairment due to AD/mild-AD was classified as Early Treatment. Change from baseline to 18 months on the modified Alzheimer's Prevention Cognitive Composite (primary outcome) was compared against matched historical control cohorts. Cognitive aging composite (CogAging), AD/cardiovascular risk scales, and serum biomarkers were secondary outcomes. RESULTS One hundred seventy-four were assigned interventions (age 25-86). Higher-compliance Prevention improved more than both historical cohorts (P = .0012, P < .0001). Lower-compliance Prevention also improved more than both historical cohorts (P = .0088, P < .0055). Higher-compliance Early Treatment improved more than lower compliance (P = .0007). Higher-compliance Early Treatment improved more than historical cohorts (P < .0001, P = .0428). Lower-compliance Early Treatment did not differ (P = .9820, P = .1115). Similar effects occurred for CogAging. AD/cardiovascular risk scales and serum biomarkers improved. DISCUSSION Individualized multidomain interventions may improve cognition and reduce AD/cardiovascular risk scores in patients at-risk for AD dementia.
Collapse
Affiliation(s)
- Richard S Isaacson
- Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, New York, NY, USA.
| | - Hollie Hristov
- Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, New York, NY, USA
| | - Nabeel Saif
- Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, New York, NY, USA
| | | | | | - Juan Melendez
- Jersey Memory Assessment Service, Health and Community Services, Jersey, United Kingdom
| | - Joseph Safdieh
- Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, New York, NY, USA
| | - Matthew Fink
- Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, New York, NY, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - George Sadek
- Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, New York, NY, USA
| | - Sonia Bellara
- Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, New York, NY, USA
| | - Paige Lee
- College of Letters and Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Cara Berkowitz
- Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, New York, NY, USA
| | - Aneela Rahman
- Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, New York, NY, USA
| | | | | | - Randy Cohen
- Department of Cardiology, Crystal Run Healthcare, Middletown, NY, USA
| | - Pei-Lin Lu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Mu Ji Hwang
- Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, New York, NY, USA
| | - Olivia Scheyer
- School of Law, University of California Los Angeles, Los Angeles, CA, USA
| | - Monica Mureb
- Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, New York, NY, USA
| | - Matthew W Schelke
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Kellyann Niotis
- Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, New York, NY, USA
| | - Christine E Greer
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, New York, NY, USA
| | - Robert Krikorian
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
27
|
O'Bryant SE, Ferman TJ, Zhang F, Hall J, Pedraza O, Wszolek ZK, Como T, Julovich D, Mattevada S, Johnson LA, Edwards M, Hall J, Graff-Radford NR. A proteomic signature for dementia with Lewy bodies. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:270-276. [PMID: 30923734 PMCID: PMC6424013 DOI: 10.1016/j.dadm.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION We sought to determine if a proteomic profile approach developed to detect Alzheimer's disease would distinguish patients with Lewy body disease from normal controls, and if it would distinguish dementia with Lewy bodies (DLB) from Parkinson's disease (PD). METHODS Stored plasma samples were obtained from 145 patients (DLB n = 57, PD without dementia n = 32, normal controls n = 56) enrolled from patients seen in the Behavioral Neurology or Movement Disorders clinics at the Mayo Clinic, Florida. Proteomic assays were conducted and analyzed as per our previously published protocols. RESULTS In the first step, the proteomic profile distinguished the DLB-PD group from controls with a diagnostic accuracy of 0.97, sensitivity of 0.91, and specificity of 0.86. In the second step, the proteomic profile distinguished the DLB from PD groups with a diagnostic accuracy of 0.92, sensitivity of 0.94, and specificity of 0.88. DISCUSSION These data provide evidence of the potential utility of a multitiered blood-based proteomic screening method for detecting DLB and distinguishing DLB from PD.
Collapse
Affiliation(s)
- Sid E. O'Bryant
- Institute for Translational Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Tanis J. Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Fan Zhang
- Vermont Genetics Network, University of Vermont, Burlington, VT, USA
| | - James Hall
- Institute for Translational Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Otto Pedraza
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Tori Como
- Institute for Translational Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - David Julovich
- Institute for Translational Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sravan Mattevada
- Institute for Translational Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Leigh A. Johnson
- Institute for Translational Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Melissa Edwards
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - James Hall
- Institute for Translational Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | |
Collapse
|
28
|
O'Bryant SE, Zhang F, Johnson LA, Hall J, Edwards M, Grammas P, Oh E, Lyketsos CG, Rissman RA. A Precision Medicine Model for Targeted NSAID Therapy in Alzheimer's Disease. J Alzheimers Dis 2019; 66:97-104. [PMID: 30198872 DOI: 10.3233/jad-180619] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND To date, the therapeutic paradigm for Alzheimer's disease (AD) has focused on a single intervention for all patients. However, a large literature in oncology supports the therapeutic benefits of a precision medicine approach to therapy. Here we test a precision-medicine approach to AD therapy. OBJECTIVE To determine if a baseline, blood-based proteomic companion diagnostic predicts response to NSAID therapy. METHODS Proteomic assays of plasma from a multicenter, randomized, double-blind, placebo-controlled, parallel group trial, with 1-year exposure to rofecoxib (25 mg once daily), naproxen (220 mg twice-daily) or placebo. RESULTS 474 participants with mild-to-moderate AD were screened with 351 enrolled into the trial. Using support vector machine (SVM) analyses, 89% of the subjects randomized to either NSAID treatment arms were correctly classified using a general NSAID companion diagnostic. Drug-specific companion diagnostics yielded 98% theragnostic accuracy in the rofecoxib arm and 97% accuracy in the naproxen arm. CONCLUSION Inflammatory-based companion diagnostics have significant potential to identify select patients with AD who have a high likelihood of responding to NSAID therapy. This work provides empirical support for a precision medicine model approach to treating AD.
Collapse
Affiliation(s)
- Sid E O'Bryant
- Department of Pharmacology & Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Fan Zhang
- Vermont Genetics Network, University of Vermont, VT, USA
| | - Leigh A Johnson
- Department of Pharmacology & Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - James Hall
- Department of Pharmacology & Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Paula Grammas
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, RI, USA
| | - Esther Oh
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | | | - Robert A Rissman
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
29
|
Cummings J, Feldman HH, Scheltens P. The "rights" of precision drug development for Alzheimer's disease. Alzheimers Res Ther 2019; 11:76. [PMID: 31470905 PMCID: PMC6717388 DOI: 10.1186/s13195-019-0529-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023]
Abstract
There is a high rate of failure in Alzheimer's disease (AD) drug development with 99% of trials showing no drug-placebo difference. This low rate of success delays new treatments for patients and discourages investment in AD drug development. Studies across drug development programs in multiple disorders have identified important strategies for decreasing the risk and increasing the likelihood of success in drug development programs. These experiences provide guidance for the optimization of AD drug development. The "rights" of AD drug development include the right target, right drug, right biomarker, right participant, and right trial. The right target identifies the appropriate biologic process for an AD therapeutic intervention. The right drug must have well-understood pharmacokinetic and pharmacodynamic features, ability to penetrate the blood-brain barrier, efficacy demonstrated in animals, maximum tolerated dose established in phase I, and acceptable toxicity. The right biomarkers include participant selection biomarkers, target engagement biomarkers, biomarkers supportive of disease modification, and biomarkers for side effect monitoring. The right participant hinges on the identification of the phase of AD (preclinical, prodromal, dementia). Severity of disease and drug mechanism both have a role in defining the right participant. The right trial is a well-conducted trial with appropriate clinical and biomarker outcomes collected over an appropriate period of time, powered to detect a clinically meaningful drug-placebo difference, and anticipating variability introduced by globalization. We lack understanding of some critical aspects of disease biology and drug action that may affect the success of development programs even when the "rights" are adhered to. Attention to disciplined drug development will increase the likelihood of success, decrease the risks associated with AD drug development, enhance the ability to attract investment, and make it more likely that new therapies will become available to those with or vulnerable to the emergence of AD.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Department of Brain Health, School of Integrated Health Sciences, UNLV and Cleveland Clinic Lou Ruvo Center for Brain Health, 888 West Bonneville Ave, Las Vegas, NV, 89106, USA.
| | - Howard H Feldman
- Department of Neurosciences, Alzheimer's Disease Cooperative Study, University of California San Diego, San Diego, CA, USA
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Hadar A, Gurwitz D. Peripheral transcriptomic biomarkers for early detection of sporadic Alzheimer disease? DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 30936769 PMCID: PMC6436957 DOI: 10.31887/dcns.2018.20.4/dgurwitz] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer disease (AD) is the major epidemic of the 21st century, its prevalence rising along with improved human longevity. Early AD diagnosis is key to successful treatment, as currently available therapeutics only allow small benefits for diagnosed AD patients. By contrast, future therapeutics, including those already in preclinical or clinical trials, are expected to afford neuroprotection prior to widespread brain damage and dementia. Brain imaging technologies are developing as promising tools for early AD diagnostics, yet their high cost limits their utility for screening at-risk populations. Blood or plasma transcriptomics, proteomics, and/or metabolomics may pave the way for cost-effective AD risk screening in middle-aged individuals years ahead of cognitive decline. This notion is exemplified by data mining of blood transcriptomics from a published dataset. Consortia blood sample collection and analysis from large cohorts with mild cognitive impairment followed longitudinally for their cognitive state would allow the development of a reliable and inexpensive early AD screening tool.
Collapse
Affiliation(s)
- Adva Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978 Israel
| |
Collapse
|
31
|
Solomon A, Kivipelto M, Molinuevo JL, Tom B, Ritchie CW. European Prevention of Alzheimer's Dementia Longitudinal Cohort Study (EPAD LCS): study protocol. BMJ Open 2019; 8:e021017. [PMID: 30782589 PMCID: PMC6318591 DOI: 10.1136/bmjopen-2017-021017] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION The European Prevention of Alzheimer's Dementia (EPAD) project is funded initially by the Innovative Medicines Initiative and has been established to overcome the major hurdles hampering drug development for secondary prevention of Alzheimer's dementia, by conducting the EPAD Longitudinal Cohort Study (LCS) in alignment with the Bayesian adaptive designed EPAD Proof-of-Concept (PoC) trial. METHODS AND ANALYSIS EPAD LCS is an ongoing prospective, multicentre, pan-European longitudinal cohort study. Participants are recruited mainly from existing parent cohorts across Europe to form a 'probability-spectrum' population covering the entire continuum of anticipated probability for Alzheimer's dementia development. The primary objective of the EPAD LCS is to be a readiness cohort for the EPAD PoC trial though a second major objective is to generate a comprehensive and large data set for disease modelling of preclinical and prodromal Alzheimer's disease. This characterisation of cognitive, biomarker and risk factor (genetic and environmental) status of research participants over time will provide the necessary well-phenotyped population for developing accurate longitudinal models for Alzheimer's disease covering the entire disease course and concurrently create a pool of highly characterised individuals for the EPAD PoC trial. ETHICS AND DISSEMINATION The study has received the relevant approvals from numerous Institutional Review Boards across Europe. Findings will be disseminated to several target audiences, including the scientific community, research participants, patient community, general public, industry, regulatory authorities and policy-makers. Regular and coordinated releases of EPAD LCS data will be made available for analysis to help researchers improve their understanding of early Alzheimer's disease stages and facilitate collaborations. TRIAL REGISTRATION NUMBER NCT02804789.
Collapse
Affiliation(s)
- Alina Solomon
- Division of Clinical Geriatrics, NVS, Karolinska Institutet, Solna, Sweden
- Theme Aging, Karolinska University Hospital, Solna, Sweden
- Neurology/Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Miia Kivipelto
- Division of Clinical Geriatrics, NVS, Karolinska Institutet, Solna, Sweden
- Theme Aging, Karolinska University Hospital, Solna, Sweden
- Neurology/Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - José Luis Molinuevo
- BarcelonaBeta Brain Research Center, Fundació Pasqual Maragall, Barcelona, Spain
| | - Brian Tom
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Craig W Ritchie
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
32
|
Hahn C, Lee CU. A Brief Review of Paradigm Shifts in Prevention of Alzheimer's Disease: From Cognitive Reserve to Precision Medicine. Front Psychiatry 2019; 10:786. [PMID: 31736804 PMCID: PMC6837073 DOI: 10.3389/fpsyt.2019.00786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) and related dementias can be an enormous economic burden for taxpayers, patients, their families, medical systems, and society as a whole. Since disease-modifying treatments have failed, several studies have instead focused on a paradigm shift for preventing and treating AD. A higher cognitive reserve (e.g., greater education, occupational attainment, or more leisure activities) is associated with protection against disease-related cognitive decline. Precision medicine aims to optimize the effectiveness of disease prevention and treatment by considering specific biological components of individuals. We suggest that research into cognitive reserve and precision medicine could be a key to overcoming the limitations of traditional approaches to the prevention and treatment of AD.
Collapse
Affiliation(s)
- Changtae Hahn
- Department of Psychiatry, Deajeon Saint Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul Saint Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
33
|
Hadar A. Peripheral transcriptomic biomarkers for early detection of sporadic Alzheimer disease? DIALOGUES IN CLINICAL NEUROSCIENCE 2018; 20:293-300. [PMID: 30936769 PMCID: PMC6436957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Alzheimer disease (AD) is the major epidemic of the 21st century, its prevalence rising along with improved human longevity. Early AD diagnosis is key to successful treatment, as currently available therapeutics only allow small benefits for diagnosed AD patients. By contrast, future therapeutics, including those already in preclinical or clinical trials, are expected to afford neuroprotection prior to widespread brain damage and dementia. Brain imaging technologies are developing as promising tools for early AD diagnostics, yet their high cost limits their utility for screening at-risk populations. Blood or plasma transcriptomics, proteomics, and/or metabolomics may pave the way for cost-effective AD risk screening in middle-aged individuals years ahead of cognitive decline. This notion is exemplified by data mining of blood transcriptomics from a published dataset. Consortia blood sample collection and analysis from large cohorts with mild cognitive impairment followed longitudinally for their cognitive state would allow the development of a reliable and inexpensive early AD screening tool.
Collapse
Affiliation(s)
- Adva Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine
| |
Collapse
|
34
|
Molinuevo JL, Ayton S, Batrla R, Bednar MM, Bittner T, Cummings J, Fagan AM, Hampel H, Mielke MM, Mikulskis A, O'Bryant S, Scheltens P, Sevigny J, Shaw LM, Soares HD, Tong G, Trojanowski JQ, Zetterberg H, Blennow K. Current state of Alzheimer's fluid biomarkers. Acta Neuropathol 2018; 136:821-853. [PMID: 30488277 PMCID: PMC6280827 DOI: 10.1007/s00401-018-1932-x] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with a complex and heterogeneous pathophysiology. The number of people living with AD is predicted to increase; however, there are no disease-modifying therapies currently available and none have been successful in late-stage clinical trials. Fluid biomarkers measured in cerebrospinal fluid (CSF) or blood hold promise for enabling more effective drug development and establishing a more personalized medicine approach for AD diagnosis and treatment. Biomarkers used in drug development programmes should be qualified for a specific context of use (COU). These COUs include, but are not limited to, subject/patient selection, assessment of disease state and/or prognosis, assessment of mechanism of action, dose optimization, drug response monitoring, efficacy maximization, and toxicity/adverse reactions identification and minimization. The core AD CSF biomarkers Aβ42, t-tau, and p-tau are recognized by research guidelines for their diagnostic utility and are being considered for qualification for subject selection in clinical trials. However, there is a need to better understand their potential for other COUs, as well as identify additional fluid biomarkers reflecting other aspects of AD pathophysiology. Several novel fluid biomarkers have been proposed, but their role in AD pathology and their use as AD biomarkers have yet to be validated. In this review, we summarize some of the pathological mechanisms implicated in the sporadic AD and highlight the data for several established and novel fluid biomarkers (including BACE1, TREM2, YKL-40, IP-10, neurogranin, SNAP-25, synaptotagmin, α-synuclein, TDP-43, ferritin, VILIP-1, and NF-L) associated with each mechanism. We discuss the potential COUs for each biomarker.
Collapse
Affiliation(s)
- José Luis Molinuevo
- BarcelonaBeta Brain Research Center, Fundació Pasqual Maragall, Universitat Pompeu Fabra, Barcelona, Spain
- Unidad de Alzheimer y otros trastornos cognitivos, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Richard Batrla
- Roche Centralised and Point of Care Solutions, Roche Diagnostics International, Rotkreuz, Switzerland
| | - Martin M Bednar
- Neuroscience Therapeutic Area Unit, Takeda Development Centre Americas Ltd, Cambridge, MA, USA
| | - Tobias Bittner
- Genentech, A Member of the Roche Group, Basel, Switzerland
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France
- Sorbonne University, GRC No 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Michelle M Mielke
- Departments of Epidemiology and Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Sid O'Bryant
- Department of Pharmacology and Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeffrey Sevigny
- Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly D Soares
- Clinical Development Neurology, AbbVie, North Chicago, IL, USA
| | | | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden.
| |
Collapse
|
35
|
Hampel H, O'Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S, Kiddle SJ, Batrla R, Blennow K. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol 2018; 14:639-652. [PMID: 30297701 PMCID: PMC6211654 DOI: 10.1038/s41582-018-0079-7] [Citation(s) in RCA: 445] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomarker discovery and development for clinical research, diagnostics and therapy monitoring in clinical trials have advanced rapidly in key areas of medicine - most notably, oncology and cardiovascular diseases - allowing rapid early detection and supporting the evolution of biomarker-guided, precision-medicine-based targeted therapies. In Alzheimer disease (AD), breakthroughs in biomarker identification and validation include cerebrospinal fluid and PET markers of amyloid-β and tau proteins, which are highly accurate in detecting the presence of AD-associated pathophysiological and neuropathological changes. However, the high cost, insufficient accessibility and/or invasiveness of these assays limit their use as viable first-line tools for detecting patterns of pathophysiology. Therefore, a multistage, tiered approach is needed, prioritizing development of an initial screen to exclude from these tests the high numbers of people with cognitive deficits who do not demonstrate evidence of underlying AD pathophysiology. This Review summarizes the efforts of an international working group that aimed to survey the current landscape of blood-based AD biomarkers and outlines operational steps for an effective academic-industry co-development pathway from identification and assay development to validation for clinical use.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France.
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.
- Brain & Spine Institute (ICM), INSERM U 1127, Paris, France.
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France.
| | - Sid E O'Bryant
- University of North Texas Health Science Center, Fort Worth, TX, USA
| | - José L Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Melbourne, Australia
| | - Simone Lista
- AXA Research Fund and Sorbonne University Chair, Paris, France
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Steven J Kiddle
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | | | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| |
Collapse
|
36
|
Hampel H, Vergallo A, Aguilar LF, Benda N, Broich K, Cuello AC, Cummings J, Dubois B, Federoff HJ, Fiandaca M, Genthon R, Haberkamp M, Karran E, Mapstone M, Perry G, Schneider LS, Welikovitch LA, Woodcock J, Baldacci F, Lista S. Precision pharmacology for Alzheimer’s disease. Pharmacol Res 2018; 130:331-365. [DOI: 10.1016/j.phrs.2018.02.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
|
37
|
Baldacci F, Lista S, O'Bryant SE, Ceravolo R, Toschi N, Hampel H. Blood-Based Biomarker Screening with Agnostic Biological Definitions for an Accurate Diagnosis Within the Dimensional Spectrum of Neurodegenerative Diseases. Methods Mol Biol 2018; 1750:139-155. [PMID: 29512070 DOI: 10.1007/978-1-4939-7704-8_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery, development, and validation of novel candidate biomarkers in Alzheimer's disease (AD) and other neurodegenerative diseases (NDs) are increasingly gaining momentum. As a result, evolving diagnostic research criteria of NDs are beginning to integrate biofluid and neuroimaging indicators of pathophysiological mechanisms. More than 10% of people aged over 65 suffer from NDs. There is an urgent need for a refined two-stage diagnostic model to first initiate an early, sensitive, and noninvasive process in primary care settings. Individuals that meet detection criteria will then be channeled to more specific, costly (positron-emission tomography), and invasive (cerebrospinal fluid) assessment methods for confirmatory biological characterization and diagnosis.A reliable and sensitive blood test for AD and other NDs is not yet established; however, it would provide the golden screening gate for an efficient primary care management. A limitation to the development of a large-scale blood-screening biomarker-based test is the traditional application of clinically descriptive criteria for the categorization of single late-stage ND constructs. These are genetically and biologically heterogeneous, reflected in multiple pathophysiological mechanisms and subsequent pathologies throughout a dimensional continuum. Evidence suggests that a shared, "open-source" integrated multilevel categorization of NDs that clusters individuals based on descriptive clinical phenotypes and pathophysiological biomarker signatures will provide the next incremental step toward an improved diagnostic process of NDs. This intermediate objective toward unbiased biomarker-guided early detection of individuals at risk for NDs is currently carried out by the international pilot Alzheimer Precision Medicine Initiative Cohort Program (APMI-CP).
Collapse
Affiliation(s)
- Filippo Baldacci
- AXA Research Fund & UPMC Chair, F-75013, Paris, France.,Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France.,Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simone Lista
- AXA Research Fund & UPMC Chair, F-75013, Paris, France. .,Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France. .,Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France. .,Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France.
| | - Sid E O'Bryant
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Department of Radiology"Athinoula A. Martinos", Center for Biomedical Imaging, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, F-75013, Paris, France.,Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France.,Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | | |
Collapse
|
38
|
Kleinridders A, Ferris HA, Tovar S. Editorial: Crosstalk of Mitochondria With Brain Insulin and Leptin Signaling. Front Endocrinol (Lausanne) 2018; 9:761. [PMID: 30619091 PMCID: PMC6301996 DOI: 10.3389/fendo.2018.00761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- André Kleinridders
- Central Regulation of Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- *Correspondence: André Kleinridders
| | - Heather A. Ferris
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, United States
| | - Sulay Tovar
- Departamento de Fisioloxía, Centro de Investigación en Medicina Molecular (CIMUS), Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| |
Collapse
|
39
|
Ritchie CW, Russ TC, Banerjee S, Barber B, Boaden A, Fox NC, Holmes C, Isaacs JD, Leroi I, Lovestone S, Norton M, O'Brien J, Pearson J, Perry R, Pickett J, Waldman AD, Wong WL, Rossor MN, Burns A. The Edinburgh Consensus: preparing for the advent of disease-modifying therapies for Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2017; 9:85. [PMID: 29070066 PMCID: PMC5657110 DOI: 10.1186/s13195-017-0312-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CONTEXT This commentary discusses the implications of disease-modifying treatments for Alzheimer's disease which seem likely to appear in the next few years and results from a meeting of British experts in neurodegenerative diseases in Edinburgh. The availability of such treatments would help change public and professional attitudes and accelerate engagement with the prodromal and preclinical populations who might benefit from them. However, this would require an updated understanding of Alzheimer's disease, namely the important distinction between Alzheimer's disease and Alzheimer's dementia. CONSENSUS Since treatments are likely to be most effective in the early stages, identification of clinically relevant brain changes (for example, amyloid burden using imaging or cerebrospinal fluid biomarkers) will be crucial. While current biomarkers could be useful in identifying eligibility for new therapies, trial data are not available to aid decisions about stopping or continuing treatment in clinical practice. Therefore, effective monitoring of safety and effectiveness when these treatments are introduced into clinical practice will be necessary to inform wide-scale use. Equity of access is key but there is a tension between universal access for everyone with a diagnosis of Alzheimer's disease and specifying an eligible population most likely to respond. We propose the resources necessary for an optimal care pathway as well as the necessary education and training for primary and secondary care. CONCLUSION The majority of current services in the UK and elsewhere would not be able to accommodate the specialist investigations required to select patients and prescribe these therapies. Therefore, a stepped approach would be necessary: from innovating sentinel clinical-academic centres that already have capacity to deliver the necessary phase IV trials, through early adoption in a hub and spoke model, to nationwide adoption for true equity of access. The optimism generated by recent and anticipated developments in the understanding and treatment of Alzheimer's disease presents a great opportunity to innovate and adapt our services to incorporate the next exciting development in the field of dementia.
Collapse
Affiliation(s)
- Craig W Ritchie
- Centre for Dementia Prevention, University of Edinburgh, 9a Edinburgh BioQuarter, 9 Little France Road, Edinburgh, EH16 4UX, UK. .,Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Tom C Russ
- Centre for Dementia Prevention, University of Edinburgh, 9a Edinburgh BioQuarter, 9 Little France Road, Edinburgh, EH16 4UX, UK.,Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing & Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Sube Banerjee
- Centre for Dementia Studies, Brighton and Sussex Medical School, Brighton, UK
| | - Bob Barber
- Old Age Faculty, Royal College of Psychiatrists, London, UK
| | | | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL, London, UK
| | - Clive Holmes
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jeremy D Isaacs
- St George's University Hospitals NHS Foundation Trust, London, UK
| | - Ira Leroi
- Division of Neuroscience & Experimental Psychology, University of Manchester, Manchester, UK
| | | | | | - John O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | | | | | - Adam D Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Wai Lup Wong
- East and North Hertfordshire NHS Trust, Stevenage, UK
| | - Martin N Rossor
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL, London, UK
| | - Alistair Burns
- Division of Neuroscience & Experimental Psychology, University of Manchester, Manchester, UK
| |
Collapse
|
40
|
Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discov 2017; 16:863-883. [DOI: 10.1038/nrd.2017.155] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Chiesa PA, Cavedo E, Lista S, Thompson PM, Hampel H. Revolution of Resting-State Functional Neuroimaging Genetics in Alzheimer's Disease. Trends Neurosci 2017; 40:469-480. [PMID: 28684173 PMCID: PMC5798613 DOI: 10.1016/j.tins.2017.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022]
Abstract
The quest to comprehend genetic, biological, and symptomatic heterogeneity underlying Alzheimer's disease (AD) requires a deep understanding of mechanisms affecting complex brain systems. Neuroimaging genetics is an emerging field that provides a powerful way to analyze and characterize intermediate biological phenotypes of AD. Here, we describe recent studies showing the differential effect of genetic risk factors for AD on brain functional connectivity in cognitively normal, preclinical, prodromal, and AD dementia individuals. Functional neuroimaging genetics holds particular promise for the characterization of preclinical populations; target populations for disease prevention and modification trials. To this end, we emphasize the need for a paradigm shift towards integrative disease modeling and neuroimaging biomarker-guided precision medicine for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Patrizia A Chiesa
- AXA Research Fund & UPMC Chair, Paris, France; Sorbonne Universities, Pierre and Marie Curie University, Paris 06, Institute of Memory and Alzheimer's Disease (IM2A) & Brain and Spine Institute (ICM) UMR S 1127, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France.
| | - Enrica Cavedo
- AXA Research Fund & UPMC Chair, Paris, France; Sorbonne Universities, Pierre and Marie Curie University, Paris 06, Institute of Memory and Alzheimer's Disease (IM2A) & Brain and Spine Institute (ICM) UMR S 1127, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France; Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Simone Lista
- AXA Research Fund & UPMC Chair, Paris, France; Sorbonne Universities, Pierre and Marie Curie University, Paris 06, Institute of Memory and Alzheimer's Disease (IM2A) & Brain and Spine Institute (ICM) UMR S 1127, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90232, USA
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, Paris, France; Sorbonne Universities, Pierre and Marie Curie University, Paris 06, Institute of Memory and Alzheimer's Disease (IM2A) & Brain and Spine Institute (ICM) UMR S 1127, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France.
| |
Collapse
|
42
|
Le Page A, Garneau H, Dupuis G, Frost EH, Larbi A, Witkowski JM, Pawelec G, Fülöp T. Differential Phenotypes of Myeloid-Derived Suppressor and T Regulatory Cells and Cytokine Levels in Amnestic Mild Cognitive Impairment Subjects Compared to Mild Alzheimer Diseased Patients. Front Immunol 2017; 8:783. [PMID: 28736551 PMCID: PMC5500623 DOI: 10.3389/fimmu.2017.00783] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022] Open
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia although the underlying cause(s) remains unknown at this time. However, neuroinflammation is believed to play an important role and suspected contributing immune parameters can be revealed in studies comparing patients at the stage of amnestic mild cognitive impairment (aMCI) to healthy age-matched individuals. A network of immune regulatory cells including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) maintains immune homeostasis but there are very few data on the role of these cells in AD. Here, we investigated the presence of these cells in the blood of subjects with aMCI and mild AD (mAD) in comparison with healthy age-matched controls. We also quantitated several pro- and anti-inflammatory cytokines in sera which can influence the development and activation of these cells. We found significantly higher levels of MDSCs and Tregs in aMCI but not in mAD patients, as well as higher serum IL-1β levels. Stratifying the subjects based on CMV serostatus that is known to influence multiple immune parameters showed an absence of differences between aMCI subjects compared to mAD patients and healthy controls. We suggest that the increase in MDSCs and Tregs number in aMCI subjects may have a beneficial role in modulating inflammatory processes. However, this protective mechanism may have failed in mAD patients, allowing progression of the disease. This working hypothesis obviously requires testing in future studies.
Collapse
Affiliation(s)
- Aurélie Le Page
- Faculty of Medicine and Health Sciences, Research Center on Aging, Graduate Program in Immunology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Garneau
- Faculty of Medicine and Health Sciences, Research Center on Aging, Graduate Program in Immunology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Gilles Dupuis
- Faculty of Medicine and Health Sciences, Department of Biochemistry, Graduate Program in Immunology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H Frost
- Faculty of Medicine and Health Sciences, Department of Infectious Diseases and Microbiology, Graduate Program in Immunology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Anis Larbi
- ASTAR, Singapore Immunology Network, Singapore, Singapore
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Graham Pawelec
- Department of Internal Medicine II, Center for Medical Research University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Tamàs Fülöp
- Faculty of Medicine and Health Sciences, Research Center on Aging, Graduate Program in Immunology, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
43
|
Baldacci F, Lista S, Cavedo E, Bonuccelli U, Hampel H. Diagnostic function of the neuroinflammatory biomarker YKL-40 in Alzheimer’s disease and other neurodegenerative diseases. Expert Rev Proteomics 2017; 14:285-299. [DOI: 10.1080/14789450.2017.1304217] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- AXA Research Fund UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| | - Simone Lista
- AXA Research Fund UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| | - Enrica Cavedo
- AXA Research Fund UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
- IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- AXA Research Fund UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| |
Collapse
|
44
|
O'Bryant SE, Mielke MM, Rissman RA, Lista S, Vanderstichele H, Zetterberg H, Lewczuk P, Posner H, Hall J, Johnson L, Fong YL, Luthman J, Jeromin A, Batrla-Utermann R, Villarreal A, Britton G, Snyder PJ, Henriksen K, Grammas P, Gupta V, Martins R, Hampel H. Blood-based biomarkers in Alzheimer disease: Current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimers Dement 2017; 13:45-58. [PMID: 27870940 PMCID: PMC5218961 DOI: 10.1016/j.jalz.2016.09.014] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 11/25/2022]
Abstract
The last decade has seen a substantial increase in research focused on the identification of blood-based biomarkers that have utility in Alzheimer's disease (AD). Blood-based biomarkers have significant advantages of being time- and cost-efficient as well as reduced invasiveness and increased patient acceptance. Despite these advantages and increased research efforts, the field has been hampered by lack of reproducibility and an unclear path for moving basic discovery toward clinical utilization. Here we reviewed the recent literature on blood-based biomarkers in AD to provide a current state of the art. In addition, a collaborative model is proposed that leverages academic and industry strengths to facilitate the field in moving past discovery only work and toward clinical use. Key resources are provided. This new public-private partnership model is intended to circumvent the traditional handoff model and provide a clear and useful paradigm for the advancement of biomarker science in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Sid E O'Bryant
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Michelle M Mielke
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Robert A Rissman
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, USA
| | - Simone Lista
- AXA Research Fund and UPMC Chair, Paris, France; Department de Neurologie, Institut de la Memorie et de la Maladie d'Alzheimer (IM2A) et Institut du Cerveau et du la Moelle epiniere (ICM), Hospital de la Pitie-Salpetriere, Sorbonne Universites, Universite Pierre et Marie Curie, Paris, France
| | | | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gotenburg, Molndal, Sweden; UCL Institute of Neurology, London, UK
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | | | - James Hall
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Leigh Johnson
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Yiu-Lian Fong
- Johnson & Johnson, London Innovation Center, London, UK
| | - Johan Luthman
- Neuroscience Clinical Development, Clinical Neuroscience Eisai, Woodcliff Lake, NJ, USA
| | | | | | - Alcibiades Villarreal
- Centro de Neurociencias y Unidad de Investigacion Clinica, Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia (INDICASAT AIP), Ciudad del Saber, Panama, Panama
| | - Gabrielle Britton
- Centro de Neurociencias y Unidad de Investigacion Clinica, Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia (INDICASAT AIP), Ciudad del Saber, Panama, Panama
| | - Peter J Snyder
- Department of Neurology, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Kim Henriksen
- Neurodegenerative Diseases, Nordic Bioscience Biomarkers and Research, Herlev, Denmark
| | - Paula Grammas
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, RI, USA
| | - Veer Gupta
- Faculty of Health, Engineering and Sciences, Center of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ralph Martins
- Faculty of Health, Engineering and Sciences, Center of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Harald Hampel
- AXA Research Fund and UPMC Chair, Paris, France; Department de Neurologie, Institut de la Memorie et de la Maladie d'Alzheimer (IM2A) et Institut du Cerveau et du la Moelle epiniere (ICM), Hospital de la Pitie-Salpetriere, Sorbonne Universites, Universite Pierre et Marie Curie, Paris, France
| |
Collapse
|