1
|
Dakik P, Rodriguez MEL, Junio JAB, Mitrofanova D, Medkour Y, Tafakori T, Taifour T, Lutchman V, Samson E, Arlia-Ciommo A, Rukundo B, Simard É, Titorenko VI. Discovery of fifteen new geroprotective plant extracts and identification of cellular processes they affect to prolong the chronological lifespan of budding yeast. Oncotarget 2020; 11:2182-2203. [PMID: 32577164 PMCID: PMC7289529 DOI: 10.18632/oncotarget.27615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/14/2020] [Indexed: 11/25/2022] Open
Abstract
In a quest for previously unknown geroprotective natural chemicals, we used a robust cell viability assay to search for commercially available plant extracts that can substantially prolong the chronological lifespan of budding yeast. Many of these plant extracts have been used in traditional Chinese and other herbal medicines or the Mediterranean and other customary diets. Our search led to a discovery of fifteen plant extracts that significantly extend the longevity of chronologically aging yeast not limited in calorie supply. We show that each of these longevity-extending plant extracts is a geroprotector that decreases the rate of yeast chronological aging and promotes a hormetic stress response. We also show that each of the fifteen geroprotective plant extracts mimics the longevity-extending, stress-protecting, metabolic and physiological effects of a caloric restriction diet but if added to yeast cultured under non-caloric restriction conditions. We provide evidence that the fifteen geroprotective plant extracts exhibit partially overlapping effects on a distinct set of longevity-defining cellular processes. These effects include a rise in coupled mitochondrial respiration, an altered age-related chronology of changes in reactive oxygen species abundance, protection of cellular macromolecules from oxidative damage, and an age-related increase in the resistance to long-term oxidative and thermal stresses.
Collapse
Affiliation(s)
- Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tala Tafakori
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tarek Taifour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Eugenie Samson
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | - Belise Rukundo
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec J7A 4A5, Canada
| | | |
Collapse
|
2
|
Retinol-Binding Protein 4 Accelerates Metastatic Spread and Increases Impairment of Blood Flow in Mouse Mammary Gland Tumors. Cancers (Basel) 2020; 12:cancers12030623. [PMID: 32156052 PMCID: PMC7139568 DOI: 10.3390/cancers12030623] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Retinol-binding protein 4 (RBP4) is proposed as an adipokine that links obesity and cancer. We analyzed the role of RBP4 in metastasis of breast cancer in patients and in mice bearing metastatic 4T1 and nonmetastatic 67NR mammary gland cancer. We compared the metastatic and angiogenic potential of these cells transduced with Rbp4 (4T1/RBP4 and 67NR/RBP4 cell lines). Higher plasma levels of RBP4 were observed in breast cancer patients with metastatic tumors than in healthy donors and patients with nonmetastatic cancer. Increased levels of RBP4 were observed in plasma, tumor tissue, liver, and abdominal fat. Moreover, the blood vessel network was highly impaired in mice bearing 4T1 as compared to 67NR tumors. RBP4 transductants showed further impairment of blood flow and increased metastatic potential. Exogenous RBP4 increased lung settlement by 67NR and 4T1 cells. In vitro studies showed increased invasive and clonogenic potential of cancer cells treated with or overexpressing RBP4. This effect is not dependent on STAT3 phosphorylation. RBP4 enhances the metastatic potential of breast cancer tumors through a direct effect on cancer cells and through increased endothelial dysfunction and impairment of blood vessels within the tumor.
Collapse
|
3
|
Tai L, Huang CJ, Choo KB, Cheong SK, Kamarul T. Oxidative Stress Down-Regulates MiR-20b-5p, MiR-106a-5p and E2F1 Expression to Suppress the G1/S Transition of the Cell Cycle in Multipotent Stromal Cells. Int J Med Sci 2020; 17:457-470. [PMID: 32174776 PMCID: PMC7053300 DOI: 10.7150/ijms.38832] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress has been linked to senescence and tumorigenesis via modulation of the cell cycle. Using a hydrogen peroxide (H2O2)-induced oxidative stress-induced premature senescence (OSIPS) model previously reported by our group, this study aimed to investigate the effects of oxidative stress on microRNA (miRNA) expression in relation to the G1-to-S-phase (G1/S) transition of the cell cycle and cell proliferation. On global miRNA analysis of the OSIPS cells, twelve significantly up- or down-regulated miRNAs were identified, the target genes of which are frequently associated with cancers. Four down-regulated miR-17 family miRNAs are predicted to target key pro- and anti-proliferative proteins of the p21/cyclin D-dependent kinase (CDK)/E2F1 pathway to modulate G1/S transition. Two miR-17 miRNAs, miR-20-5p and miR-106-5p, were confirmed to be rapidly and stably down-regulated under oxidative stress. While H2O2 treatment hampered G1/S transition and suppressed DNA synthesis, miR-20b-5p/miR-106a-5p over-expression rescued cells from growth arrest in promoting G1/S transition and DNA synthesis. Direct miR-20b-5p/miR-106a-5p regulation of p21, CCND1 and E2F1 was demonstrated by an inverse expression relationship in miRNA mimic-transfected cells. However, under oxidative stress, E2F1 expression was down-regulated, consistent with hampered G1/S transition and suppressed DNA synthesis and cell proliferation. To explain the observed E2F1 down-regulation under oxidative stress, a scheme is proposed which includes miR-20b-5p/miR-106a-5p-dependent regulation, miRNA-E2F1 autoregulatory feedback and E2F1 response to repair oxidative stress-induced DNA damages. The oxidative stress-modulated expression of miR-17 miRNAs and E2F1 may be used to develop strategies to retard or reverse MSC senescence in culture, or senescence in general.
Collapse
Affiliation(s)
- Lihui Tai
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.,Postgraduate Program, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Kong Bung Choo
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.,Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Soon Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.,Dean's Office, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group, National Orthopedic Centre of Excellence for Research and Learning & Department of Orthopedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Anisiewicz A, Filip-Psurska B, Pawlik A, Nasulewicz-Goldeman A, Piasecki T, Kowalski K, Maciejewska M, Jarosz J, Banach J, Papiernik D, Mazur A, Kutner A, Maier JA, Wietrzyk J. Calcitriol Analogues Decrease Lung Metastasis but Impair Bone Metabolism in Aged Ovariectomized Mice Bearing 4T1 Mammary Gland Tumours. Aging Dis 2019; 10:977-991. [PMID: 31595196 PMCID: PMC6764735 DOI: 10.14336/ad.2018.0921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022] Open
Abstract
Calcitriol and its analogues are considered drugs supporting the anticancer treatment of breast cancer and preventing the osteoporosis that results from the development of cancer or from chemotherapy or hormone therapy. Following the orthotopic implantation of 4T1 mammary carcinoma cells into aged ovariectomized (OVX) mice, we evaluated the effects of calcitriol and its two analogues, PRI-2191 and PRI-2205, on metastatic spread and bone homeostasis. Calcitriol and its analogues temporarily inhibited the formation of metastases in the lungs. Unexpectedly, only mice treated with calcitriol analogues showed a deterioration of bone-related parameters, such as bone column density, marrow column density and the CaPO4 coefficient. These findings correlated with an increased number of active osteoclasts differentiated from bone marrow-derived macrophages in mice treated with the analogues. Interestingly, in the tumours from mice treated with PRI-2191 and PRI-2205, the expression of Tnfsf11 (RANKL) was increased. On the other hand, osteopontin (OPN) levels in plasma and tumour tissue, as well as TRAC5b levels in tumours, were diminished by calcitriol and its analogues. Despite a similar action of both analogues towards bone metabolism, their impact on vitamin D metabolism differed. In particular, PRI-2191 and calcitriol, not PRI-2205 treatment significantly diminished the levels of both 25(OH)D3 and 24,25(OH)2D3. In conclusion, though there is evident antimetastatic activity in old OVX mice, signs of increased bone metabolism and deterioration of bone mineralization during therapy with calcitriol analogues were observed.
Collapse
Affiliation(s)
- Artur Anisiewicz
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Beata Filip-Psurska
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Agata Pawlik
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Anna Nasulewicz-Goldeman
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Tomasz Piasecki
- 2Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Magdalena Maciejewska
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Joanna Jarosz
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Joanna Banach
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Diana Papiernik
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Andrzej Mazur
- 4Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| | - Andrzej Kutner
- 5Pharmaceutical Research Institute, 01-793 Warsaw, Poland
| | - Jeanette A Maier
- 6Università di Milano, Dept. Biomedical and Clinical Sciences, 20157 Milano, Italy
| | - Joanna Wietrzyk
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| |
Collapse
|
5
|
Arlia-Ciommo A, Leonov A, Mohammad K, Beach A, Richard VR, Bourque SD, Burstein MT, Goldberg AA, Kyryakov P, Gomez-Perez A, Koupaki O, Titorenko VI. Mechanisms through which lithocholic acid delays yeast chronological aging under caloric restriction conditions. Oncotarget 2018; 9:34945-34971. [PMID: 30405886 PMCID: PMC6201858 DOI: 10.18632/oncotarget.26188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
All presently known geroprotective chemical compounds of plant and microbial origin are caloric restriction mimetics because they can mimic the beneficial lifespan- and healthspan-extending effects of caloric restriction diets without the need to limit calorie supply. We have discovered a geroprotective chemical compound of mammalian origin, a bile acid called lithocholic acid, which can delay chronological aging of the budding yeast Saccharomyces cerevisiae under caloric restriction conditions. Here, we investigated mechanisms through which lithocholic acid can delay chronological aging of yeast limited in calorie supply. We provide evidence that lithocholic acid causes a stepwise development and maintenance of an aging-delaying cellular pattern throughout the entire chronological lifespan of yeast cultured under caloric restriction conditions. We show that lithocholic acid stimulates the aging-delaying cellular pattern and preserves such pattern because it specifically modulates the spatiotemporal dynamics of a complex cellular network. We demonstrate that this cellular network integrates certain pathways of lipid and carbohydrate metabolism, some intercompartmental communications, mitochondrial morphology and functionality, and liponecrotic and apoptotic modes of aging-associated cell death. Our findings indicate that lithocholic acid prolongs longevity of chronologically aging yeast because it decreases the risk of aging-associated cell death, thus increasing the chance of elderly cells to survive.
Collapse
Affiliation(s)
| | - Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Adam Beach
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Vincent R Richard
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Simon D Bourque
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | | - Pavlo Kyryakov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Olivia Koupaki
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
6
|
Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive or Commit to Regulated Liponecrosis and Die. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3074769. [PMID: 29636840 PMCID: PMC5831759 DOI: 10.1155/2018/3074769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
A disturbed homeostasis of cellular lipids and the resulting lipotoxicity are considered to be key contributors to many human pathologies, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer. The yeast Saccharomyces cerevisiae has been successfully used for uncovering molecular mechanisms through which impaired lipid metabolism causes lipotoxicity and elicits different forms of regulated cell death. Here, we discuss mechanisms of the “liponecrotic” mode of regulated cell death in S. cerevisiae. This mode of regulated cell death can be initiated in response to a brief treatment of yeast with exogenous palmitoleic acid. Such treatment prompts the incorporation of exogenously added palmitoleic acid into phospholipids and neutral lipids. This orchestrates a global remodeling of lipid metabolism and transfer in the endoplasmic reticulum, mitochondria, lipid droplets, and the plasma membrane. Certain features of such remodeling play essential roles either in committing yeast to liponecrosis or in executing this mode of regulated cell death. We also outline four processes through which yeast cells actively resist liponecrosis by adapting to the cellular stress imposed by palmitoleic acid and maintaining viability. These prosurvival cellular processes are confined in the endoplasmic reticulum, lipid droplets, peroxisomes, autophagosomes, vacuoles, and the cytosol.
Collapse
|
7
|
Lutchman V, Dakik P, McAuley M, Cortes B, Ferraye G, Gontmacher L, Graziano D, Moukhariq FZ, Simard É, Titorenko VI. Six plant extracts delay yeast chronological aging through different signaling pathways. Oncotarget 2018; 7:50845-50863. [PMID: 27447556 PMCID: PMC5239441 DOI: 10.18632/oncotarget.10689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/07/2016] [Indexed: 01/19/2023] Open
Abstract
Our recent study has revealed six plant extracts that slow yeast chronological aging more efficiently than any chemical compound yet described. The rate of aging in yeast is controlled by an evolutionarily conserved network of integrated signaling pathways and protein kinases. Here, we assessed how single-gene-deletion mutations eliminating each of these pathways and kinases affect the aging-delaying efficiencies of the six plant extracts. Our findings imply that these extracts slow aging in the following ways: 1) plant extract 4 decreases the efficiency with which the pro-aging TORC1 pathway inhibits the anti-aging SNF1 pathway; 2) plant extract 5 mitigates two different branches of the pro-aging PKA pathway; 3) plant extract 6 coordinates processes that are not assimilated into the network of presently known signaling pathways/protein kinases; 4) plant extract 8 diminishes the inhibitory action of PKA on SNF1; 5) plant extract 12 intensifies the anti-aging protein kinase Rim15; and 6) plant extract 21 inhibits a form of the pro-aging protein kinase Sch9 that is activated by the pro-aging PKH1/2 pathway.
Collapse
Affiliation(s)
- Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Berly Cortes
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - George Ferraye
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Leonid Gontmacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - David Graziano
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec, Canada
| | | |
Collapse
|
8
|
Medeiros Tavares Marques JC, Cornélio DA, Nogueira Silbiger V, Ducati Luchessi A, de Souza S, Batistuzzo de Medeiros SR. Identification of new genes associated to senescent and tumorigenic phenotypes in mesenchymal stem cells. Sci Rep 2017; 7:17837. [PMID: 29259202 PMCID: PMC5736717 DOI: 10.1038/s41598-017-16224-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
Although human mesenchymal stem cells (hMSCs) are a powerful tool for cell therapy, prolonged culture times result in replicative senescence or acquisition of tumorigenic features. To identify a molecular signature for senescence, we compared the transcriptome of senescent and young hMSCs with normal karyotype (hMSCs/n) and with a constitutional inversion of chromosome 3 (hMSC/inv). Senescent and young cells from both lineages showed differentially expressed genes (DEGs), with higher levels in senescent hMSCs/inv. Among the 30 DEGs in senescent hMSC/inv, 11 are new candidates for biomarkers of cellular senescence. The functional categories most represented in senescent hMSCs were related to cellular development, cell growth/proliferation, cell death, cell signaling/interaction, and cell movement. Mapping of DEGs onto biological networks revealed matrix metalloproteinase-1, thrombospondin 1, and epidermal growth factor acting as topological bottlenecks. In the comparison between senescent hMSCs/n and senescent hMSCs/inv, other functional annotations such as segregation of chromosomes, mitotic spindle formation, and mitosis and proliferation of tumor lines were most represented. We found that many genes categorized into functional annotations related to tumors in both comparisons, with relation to tumors being highest in senescent hMSCs/inv. The data presented here improves our understanding of the molecular mechanisms underlying the onset of cellular senescence as well as tumorigenesis.
Collapse
Affiliation(s)
- Joana Cristina Medeiros Tavares Marques
- Faculdade de Ciências da Saúde do Trairi (FACISA), Universidade Federal do Rio Grande do Norte (UFRN), Rua Traíri, S/N, Centro, Santa Cruz, Rio Grande do Norte (RN), 59200-000, Brazil
| | - Déborah Afonso Cornélio
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, UFRN, Campus Universitário, Avenida Senador Salgado Filho, 3000, Lagoa nova, Natal, RN, 59078-900, Brazil
| | - Vivian Nogueira Silbiger
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, CCS/UFRN, Av General Cordeiro de Farias S/N, Petropolis, Natal, 59010-115, RN, Brazil
| | - André Ducati Luchessi
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, CCS/UFRN, Av General Cordeiro de Farias S/N, Petropolis, Natal, 59010-115, RN, Brazil
| | - Sandro de Souza
- Instituto do Cérebro, Instituto de Metrópole Digital, UFRN, Av. Nascimento de Castro, 2155, UFRN, 59056-450, RN, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, UFRN, Campus Universitário, Avenida Senador Salgado Filho, 3000, Lagoa nova, Natal, RN, 59078-900, Brazil.
| |
Collapse
|
9
|
Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes. Oncotarget 2017; 7:16542-66. [PMID: 26918729 PMCID: PMC4941334 DOI: 10.18632/oncotarget.7665] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/11/2016] [Indexed: 01/19/2023] Open
Abstract
We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging.
Collapse
|
10
|
Siddiqui S, Lustig A, Carter A, Sankar M, Daimon CM, Premont RT, Etienne H, van Gastel J, Azmi A, Janssens J, Becker KG, Zhang Y, Wood W, Lehrmann E, Martin JG, Martin B, Taub DD, Maudsley S. Genomic deletion of GIT2 induces a premature age-related thymic dysfunction and systemic immune system disruption. Aging (Albany NY) 2017; 9:706-740. [PMID: 28260693 PMCID: PMC5391227 DOI: 10.18632/aging.101185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/19/2017] [Indexed: 12/12/2022]
Abstract
Recent research has proposed that GIT2 (G protein-coupled receptor kinase interacting protein 2) acts as an integrator of the aging process through regulation of 'neurometabolic' integrity. One of the commonly accepted hallmarks of the aging process is thymic involution. At a relatively young age, 12 months old, GIT2-/- mice present a prematurely distorted thymic structure and dysfunction compared to age-matched 12 month-old wild-type control (C57BL/6) mice. Disruption of thymic structure in GIT2-/- (GIT2KO) mice was associated with a significant reduction in the expression of the cortical thymic marker, Troma-I (cytokeratin 8). Double positive (CD4+CD8+) and single positive CD4+ T cells were also markedly reduced in 12 month-old GIT2KO mice compared to age-matched control wild-type mice. Coincident with this premature thymic disruption in GIT2KO mice was the unique generation of a novel cervical 'organ', i.e. 'parathymic lobes'. These novel organs did not exhibit classical peripheral lymph node-like characteristics but expressed high levels of T cell progenitors that were reflexively reduced in GIT2KO thymi. Using signaling pathway analysis of GIT2KO thymus and parathymic lobe transcriptomic data we found that the molecular signaling functions lost in the dysfunctional GIT2KO thymus were selectively reinstated in the novel parathymic lobe - suggestive of a compensatory effect for the premature thymic disruption. Broader inspection of high-dimensionality transcriptomic data from GIT2KO lymph nodes, spleen, thymus and parathymic lobes revealed a systemic alteration of multiple proteins (Dbp, Tef, Per1, Per2, Fbxl3, Ddit4, Sin3a) involved in the multidimensional control of cell cycle clock regulation, cell senescence, cellular metabolism and DNA damage. Altered cell clock regulation across both immune and non-immune tissues therefore may be responsible for the premature 'aging' phenotype of GIT2KO mice.
Collapse
Affiliation(s)
- Sana Siddiqui
- Receptor Pharmacology Unit, Laboratory of Neurosciences, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Ana Lustig
- Laboratory of Molecular Biology and Immunology, NIA, NIH, Baltimore, MD 21224, USA
| | - Arnell Carter
- Laboratory of Molecular Biology and Immunology, NIA, NIH, Baltimore, MD 21224, USA
| | - Mathavi Sankar
- Metabolism Unit, Laboratory of Clinical Investigation, NIA, NIH, Baltimore, MD 21224, USA
| | - Caitlin M Daimon
- Metabolism Unit, Laboratory of Clinical Investigation, NIA, NIH, Baltimore, MD 21224, USA
| | | | - Harmonie Etienne
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Jaana van Gastel
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Abdelkrim Azmi
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Jonathan Janssens
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Kevin G Becker
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - William Wood
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - James G Martin
- Research Institute of the MUHC, Centre for Translational Biology (CTB), Meakins-Christie Laboratories, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Bronwen Martin
- Metabolism Unit, Laboratory of Clinical Investigation, NIA, NIH, Baltimore, MD 21224, USA
| | - Dennis D Taub
- Laboratory of Molecular Biology and Immunology, NIA, NIH, Baltimore, MD 21224, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, Laboratory of Neurosciences, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA.,Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| |
Collapse
|
11
|
Rocha TAH, Thomaz EBAF, da Silva NC, de Sousa Queiroz RC, de Souza MR, Barbosa ACQ, Thumé E, Rocha JVM, Alvares V, de Almeida DG, Vissoci JRN, Staton CA, Facchini LA. Oral primary care: an analysis of its impact on the incidence and mortality rates of oral cancer. BMC Cancer 2017; 17:706. [PMID: 29084516 PMCID: PMC5661925 DOI: 10.1186/s12885-017-3700-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/22/2017] [Indexed: 02/07/2023] Open
Abstract
Background Oral cancer is a potentially fatal disease, especially when diagnosed in advanced stages. In Brazil, the primary health care (PHC) system is responsible for promoting oral health in order to prevent oral diseases. However, there is insufficient evidence to assess whether actions of the PHC system have some effect on the morbidity and mortality from oral cancer. The purpose of this study was to analyze the effect of PHC structure and work processes on the incidence and mortality rates of oral cancer after adjusting for contextual variables. Methods An ecological, longitudinal and analytical study was carried out. Data were obtained from different secondary data sources, including three surveys that were nationally representative of Brazilian PHC and carried out over the course of 10 years (2002–2012). Data were aggregated at the state level at different times. Oral cancer incidence and mortality rates, standardized by age and gender, served as the dependent variables. Covariables (sociodemographic, structure of basic health units, and work process in oral health) were entered in the regression models using a hierarchical approach based on a theoretical model. Analysis of mixed effects with random intercept model was also conducted (alpha = 5%). Results The oral cancer incidence rate was positively association with the proportion of of adults over 60 years (β = 0.59; p = 0.010) and adult smokers (β = 0.29; p = 0.010). The oral cancer related mortality rate was positively associated with the proportion of of adults over 60 years (β = 0.24; p < 0.001) and the performance of preventative and diagnostic actions for oral cancer (β = 0.02; p = 0.002). Mortality was inversely associated with the coverage of primary care teams (β = −0.01; p < 0.006) and PHC financing (β = −0.52−9; p = 0.014). Conclusions In Brazil, the PHC structure and work processes have been shown to help reduce the mortality rate of oral cancer, but not the incidence rate of the disease. We recommend expanding investments in PHC in order to prevent oral cancer related deaths. Electronic supplementary material The online version of this article (10.1186/s12885-017-3700-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thiago Augusto Hernandes Rocha
- Federal University of Minas Gerais, School of Economics, Center of post-graduate and Research in Administration, Belo Horizonte, Minas Gerais, Brazil. .,Business Administration Department - Observatory of human resources for health, Universidade Federal de Minas Gerais, Antonio Carlos, avenue, 6627, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | | | | | - Allan Claudius Queiroz Barbosa
- Faculty of Economics, Department of Administrative Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Thumé
- Faculty of Nursing, Department of Collective Health, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Viviane Alvares
- National School of Public Health, Nova University of Lisbon, Lisboa, Portugal
| | | | - João Ricardo Nickenig Vissoci
- Duke Division of Emergency Medicine, Duke University Health System, Duke Global Health Institute, Duke University, Durham, USA
| | - Catherine Ann Staton
- Duke Division of Emergency Medicine, Duke University Health System, Duke Global Health Institute, Duke University, Durham, USA
| | - Luiz Augusto Facchini
- Faculty of Medicine, Department of Social Medicine, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
de la Torre AN, Contractor S, Castaneda I, Cathcart CS, Razdan D, Klyde D, Kisza P, Gonzales SF, Salazar AM. A Phase I trial using local regional treatment, nonlethal irradiation, intratumoral and systemic polyinosinic-polycytidylic acid polylysine carboxymethylcellulose to treat liver cancer: in search of the abscopal effect. J Hepatocell Carcinoma 2017; 4:111-121. [PMID: 28848723 PMCID: PMC5557908 DOI: 10.2147/jhc.s136652] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose To determine the safety of an approach to immunologically enhance local treatment of hepatocellular cancer (HCC) by combining nonlethal radiation, local regional therapy with intratumoral injection, and systemic administration of a potent Toll-like receptor (TLR) immune adjuvant. Methods Patients with HCC not eligible for liver transplant or surgery were subject to: 1) 3 fractions of 2-Gy focal nonlethal radiation to increase tumor antigen expression, 2) intra-/peri-tumoral (IT) injection of the TLR3 agonist, polyinosinic-polycytidylic acid polylysine carboxymethylcellulose (poly-ICLC), to induce an immunologic “danger” response in the tumor microenvironment with local regional therapy, and 3) systemic boosting of immunity with intramuscular poly-ICLC. Primary end points were safety and tolerability; secondary end points were progression-free survival (PFS) and overall survival (OS) at 6 months, 1 year, and 2 years. Results Eighteen patients with HCC not eligible for surgery or liver transplant were treated. Aside from 1 embolization-related severe adverse event, all events were ≤grade II. PFS was 66% at 6 months, 39% at 12 months, and 28% at 24 months. Overall 1-year survival was 69%, and 2-year survival 38%. In patients <60 years old, 2-year survival was 62.5% vs. 11.1% in patients aged >60 years (P<0.05). Several patients had prolonged PFS and OS. Conclusion Intra-tumoral injection of the TLR3 agonist poly-ICLC in patients with HCC is safe and tolerable when combined with local nonlethal radiation and local regional treatment. Further work is in progress to evaluate if this approach improves survival compared to local regional treatment alone and characterize changes in anticancer immunity.
Collapse
Affiliation(s)
- Andrew N de la Torre
- Department of Surgery, St Joseph's Regional Medical Center, Paterson.,Department of Surgery, Rutgers New Jersey Medical School-University Hospital
| | - Sohail Contractor
- Department of Interventional Radiology, Rutgers New Jersey Medical School-University Hospital
| | - Ismael Castaneda
- Department of Surgery, St Joseph's Regional Medical Center, Paterson
| | | | - Dolly Razdan
- Department of Radiation Oncology, Clara Maas Hospital, Belleville, NJ
| | - David Klyde
- Department of Interventional Radiology, Rutgers New Jersey Medical School-University Hospital
| | - Piotr Kisza
- Department of Interventional Radiology, Rutgers New Jersey Medical School-University Hospital
| | - Sharon F Gonzales
- Department of Interventional Radiology, Rutgers New Jersey Medical School-University Hospital
| | | |
Collapse
|
13
|
Arlia-Ciommo A, Svistkova V, Mohtashami S, Titorenko VI. A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis. Oncotarget 2017; 7:5204-25. [PMID: 26636650 PMCID: PMC4868681 DOI: 10.18632/oncotarget.6440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/21/2015] [Indexed: 02/04/2023] Open
Abstract
A recently conducted chemical genetic screen for pharmaceuticals that can extend longevity of the yeast Saccharomyces cerevisiae has identified lithocholic acid as a potent anti-aging molecule. It was found that this hydrophobic bile acid is also a selective anti-tumor chemical compound; it kills different types of cultured cancer cells if used at concentrations that do not compromise the viability of non-cancerous cells. These studies have revealed that yeast can be successfully used as a model organism for high-throughput screens aimed at the discovery of selectively acting anti-tumor small molecules. Two metabolic traits of rapidly proliferating fermenting yeast, namely aerobic glycolysis and lipogenesis, are known to be similar to those of cancer cells. The mechanisms underlying these key metabolic features of cancer cells and fermenting yeast have been established; such mechanisms are discussed in this review. We also suggest how a yeast-based chemical genetic screen can be used for the high-throughput development of selective anti-tumor pharmaceuticals that kill only cancer cells. This screen consists of searching for chemical compounds capable of increasing the abundance of membrane lipids enriched in unsaturated fatty acids that would therefore be toxic only to rapidly proliferating cells, such as cancer cells and fermenting yeast.
Collapse
Affiliation(s)
| | | | - Sadaf Mohtashami
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
14
|
Verlingue L, Dugourd A, Stoll G, Barillot E, Calzone L, Londoño‐Vallejo A. A comprehensive approach to the molecular determinants of lifespan using a Boolean model of geroconversion. Aging Cell 2016; 15:1018-1026. [PMID: 27613445 PMCID: PMC6398530 DOI: 10.1111/acel.12504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2016] [Indexed: 12/11/2022] Open
Abstract
Altered molecular responses to insulin and growth factors (GF) are responsible for late‐life shortening diseases such as type‐2 diabetes mellitus (T2DM) and cancers. We have built a network of the signaling pathways that control S‐phase entry and a specific type of senescence called geroconversion. We have translated this network into a Boolean model to study possible cell phenotype outcomes under diverse molecular signaling conditions. In the context of insulin resistance, the model was able to reproduce the variations of the senescence level observed in tissues related to T2DM's main morbidity and mortality. Furthermore, by calibrating the pharmacodynamics of mTOR inhibitors, we have been able to reproduce the dose‐dependent effect of rapamycin on liver degeneration and lifespan expansion in wild‐type and HER2–neu mice. Using the model, we have finally performed an in silico prospective screen of the risk–benefit ratio of rapamycin dosage for healthy lifespan expansion strategies. We present here a comprehensive prognostic and predictive systems biology tool for human aging.
Collapse
Affiliation(s)
- Loic Verlingue
- Institut Curie CNRS, UMR3244 Telomere and Cancer Laboratory PSL Research University 75005 Paris France
- Department of Medical Oncology Institut Curie 75005 Paris France
| | - Aurélien Dugourd
- Institut Curie Mines Paris Tech, Inserm, U900 PSL Research University F‐75005 Paris France
| | - Gautier Stoll
- Sorbonne Paris Cité Université Paris Descartes 12 Rue de l'École de Médecine 75006 Paris France
- Equipe 11 labellisée Ligue contre le Cancer INSERM U 1138 Centre de Recherche des Cordeliers 15 rue de l'Ecole de Médecine 75006 Paris France
- Université Pierre et Marie Curie 4 Place Jussieu 75005 Paris France
| | - Emmanuel Barillot
- Institut Curie Mines Paris Tech, Inserm, U900 PSL Research University F‐75005 Paris France
| | - Laurence Calzone
- Institut Curie Mines Paris Tech, Inserm, U900 PSL Research University F‐75005 Paris France
| | - Arturo Londoño‐Vallejo
- Institut Curie CNRS, UMR3244 Telomere and Cancer Laboratory PSL Research University 75005 Paris France
- UPMC Univ Paris 06 CNRS, UMR3244 Sorbonne Universités 75005 Paris France
| |
Collapse
|
15
|
Westhoff E, Maria de Oliveira-Neumayer J, Aben KK, Vrieling A, Kiemeney LA. Low awareness of risk factors among bladder cancer survivors: New evidence and a literature overview. Eur J Cancer 2016; 60:136-45. [DOI: 10.1016/j.ejca.2016.03.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 10/21/2022]
|
16
|
Lowenstine LJ, McManamon R, Terio KA. Comparative Pathology of Aging Great Apes: Bonobos, Chimpanzees, Gorillas, and Orangutans. Vet Pathol 2015; 53:250-76. [PMID: 26721908 DOI: 10.1177/0300985815612154] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The great apes (chimpanzees, bonobos, gorillas, and orangutans) are our closest relatives. Despite the many similarities, there are significant differences in aging among apes, including the human ape. Common to all are dental attrition, periodontitis, tooth loss, osteopenia, and arthritis, although gout is uniquely human and spondyloarthropathy is more prevalent in apes than humans. Humans are more prone to frailty, sarcopenia, osteoporosis, longevity past reproductive senescence, loss of brain volume, and Alzheimer dementia. Cerebral vascular disease occurs in both humans and apes. Cardiovascular disease mortality increases in aging humans and apes, but coronary atherosclerosis is the most significant type in humans. In captive apes, idiopathic myocardial fibrosis and cardiomyopathy predominate, with arteriosclerosis of intramural coronary arteries. Similar cardiac lesions are occasionally seen in wild apes. Vascular changes in heart and kidneys and aortic dissections in gorillas and bonobos suggest that hypertension may be involved in pathogenesis. Chronic kidney disease is common in elderly humans and some aging apes and is linked with cardiovascular disease in orangutans. Neoplasms common to aging humans and apes include uterine leiomyomas in chimpanzees, but other tumors of elderly humans, such as breast, prostate, lung, and colorectal cancers, are uncommon in apes. Among the apes, chimpanzees have been best studied in laboratory settings, and more comparative research is needed into the pathology of geriatric zoo-housed and wild apes. Increasing longevity of humans and apes makes understanding aging processes and diseases imperative for optimizing quality of life in all the ape species.
Collapse
Affiliation(s)
- L J Lowenstine
- Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA Mountain Gorilla Veterinary Project-Gorilla Doctors, Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - R McManamon
- Zoo and Exotic Animal Pathology Service, Infectious Diseases Laboratory, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - K A Terio
- Zoological Pathology Program, University of Illinois College of Veterinary Medicine, Maywood, IL, USA
| |
Collapse
|
17
|
Cătană CS, Calin GA, Berindan-Neagoe I. Inflamma-miRs in Aging and Breast Cancer: Are They Reliable Players? Front Med (Lausanne) 2015; 2:85. [PMID: 26697428 PMCID: PMC4678211 DOI: 10.3389/fmed.2015.00085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022] Open
Abstract
Human aging is characterized by chronic low-grade inflammation known as “inflammaging.” Persistent low-level inflammation also plays a key role in all stages of breast cancer since “inflammaging” is the potential link between cancer and aging through NF-kB pathways highly influenced by specific miRs. Micro-RNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at a posttranscriptional level. Inflamma-miRs have been implicated in the regulation of immune and inflammatory responses. Their abnormal expression contributes to the chronic pro-inflammatory status documented in normal aging and major age-related diseases (ARDs), inflammaging being a significant mortality risk factor in both cases. Nevertheless, the correct diagnosis of inflammaging is difficult to make and its hidden contribution to negative health outcomes remains unknown. This methodological work flow was aimed at defining crucial unanswered questions about inflammaging that can be used to clarify aging-related miRNAs in serum and cell lines as well as their targets, thus confirming their role in aging and breast cancer tumorigenesis. Moreover, we aim to highlight the links between the pro-inflammatory mechanism underlying the cancer and aging processes and the precise function of certain miRNAs in cellular senescence (CS). In addition, miRNAs and cancer genes represent the basis for new therapeutic findings indicating that both cancer and ARDs genes are possible candidates involved in CS and vice versa. Our goal is to obtain a focused review that could facilitate future approaches in the investigation of the mechanisms by which miRNAs control the aging process by acting as efficient ARDs inflammatory biomarkers. An understanding of the sources and modulation of inflamma-miRs along with the identification of their specific target genes could enhance their therapeutic potential.
Collapse
Affiliation(s)
- Cristina Sorina Cătană
- Department of Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - George A Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas , Houston, TX , USA ; Non-Coding RNA Center, MD Anderson Cancer Center, University of Texas , Houston, TX , USA
| | - Ioana Berindan-Neagoe
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas , Houston, TX , USA ; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania ; Department of Experimental Pathology, Ion Chiricuta Institute of Oncology , Cluj Napoca , Romania
| |
Collapse
|
18
|
Multifactorial processes to slowing the biological clock: Insights from a comparative approach. Exp Gerontol 2015; 71:27-37. [DOI: 10.1016/j.exger.2015.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/20/2015] [Accepted: 08/29/2015] [Indexed: 02/07/2023]
|
19
|
Medkour Y, Svistkova V, Titorenko VI. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:259-97. [PMID: 26811290 DOI: 10.1016/bs.ircmb.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
20
|
Fernández Larrosa PN, Ruíz Grecco M, Mengual Gómez D, Alvarado CV, Panelo LC, Rubio MF, Alonso DF, Gómez DE, Costas MA. RAC3 more than a nuclear receptor coactivator: a key inhibitor of senescence that is downregulated in aging. Cell Death Dis 2015; 6:e1902. [PMID: 26469953 PMCID: PMC4632280 DOI: 10.1038/cddis.2015.218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 11/10/2022]
Abstract
Receptor-associated coactivator 3 (RAC3) is a nuclear receptor coactivator usually overexpressed in tumors that exerts oncogenic functions in the cytoplasm and the nucleus. Although as part of its oncogenic actions it was previously identified as an inhibitor of apoptosis and autophagy, its expression is required in order to preserve the pluripotency and embryonic stem cell self-renewal. In this work we investigated its role in cellular senescence. We found that RAC3 overexpression in the nontumoral HEK293 cells inhibits the premature senescence induced by hydrogen peroxide or rapamycin. The mechanism involves not only the inhibition of autophagy early induced by these stimuli in the pathway to senescence, but also the increase in levels and nuclear localization of both the cell cycle suppressors p53/p21 and the longevity promoters FOXO1A, FOXO3A and SIRT1. Furthermore, we found that RAC3 overexpression is required in order to maintain the telomerase activity. In tumoral HeLa cells its activity was inhibited by depletion of RAC3 inducing replicative senescence. Moreover, we demonstrated that in vivo, levels of RAC3 are downregulated in the liver from aged as compared with young rats, whereas the levels of p21 are increased, correlating with the expected senescent cell contents in aged tissues. A similar downregulation of RAC3 was observed in the premature and replicative senescence of human fetal WI-38 cells and premature senescence of hepatocyte HepG2 cell line. Taken together, all these results demonstrate that RAC3 is an inhibitor of senescence whose downregulation in aged individuals could be probably a tumor suppressor mechanism, avoiding the clonal expansion of risky old cells having damaged DNA.
Collapse
Affiliation(s)
- P N Fernández Larrosa
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - M Ruíz Grecco
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - D Mengual Gómez
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, Buenos Aires B1876BXD Argentina
| | - C V Alvarado
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - L C Panelo
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - M F Rubio
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - D F Alonso
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, Buenos Aires B1876BXD Argentina
| | - D E Gómez
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, Buenos Aires B1876BXD Argentina
| | - M A Costas
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| |
Collapse
|
21
|
Longevity extension by phytochemicals. Molecules 2015; 20:6544-72. [PMID: 25871373 PMCID: PMC6272139 DOI: 10.3390/molecules20046544] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
Phytochemicals are structurally diverse secondary metabolites synthesized by plants and also by non-pathogenic endophytic microorganisms living within plants. Phytochemicals help plants to survive environmental stresses, protect plants from microbial infections and environmental pollutants, provide them with a defense from herbivorous organisms and attract natural predators of such organisms, as well as lure pollinators and other symbiotes of these plants. In addition, many phytochemicals can extend longevity in heterotrophic organisms across phyla via evolutionarily conserved mechanisms. In this review, we discuss such mechanisms. We outline how structurally diverse phytochemicals modulate a complex network of signaling pathways that orchestrate a distinct set of longevity-defining cellular processes. This review also reflects on how the release of phytochemicals by plants into a natural ecosystem may create selective forces that drive the evolution of longevity regulation mechanisms in heterotrophic organisms inhabiting this ecosystem. We outline the most important unanswered questions and directions for future research in this vibrant and rapidly evolving field.
Collapse
|
22
|
Mechanisms underlying the anti-aging and anti-tumor effects of lithocholic bile acid. Int J Mol Sci 2014; 15:16522-43. [PMID: 25238416 PMCID: PMC4200844 DOI: 10.3390/ijms150916522] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/21/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022] Open
Abstract
Bile acids are cholesterol-derived bioactive lipids that play essential roles in the maintenance of a heathy lifespan. These amphipathic molecules with detergent-like properties display numerous beneficial effects on various longevity- and healthspan-promoting processes in evolutionarily distant organisms. Recent studies revealed that lithocholic bile acid not only causes a considerable lifespan extension in yeast, but also exhibits a substantial cytotoxic effect in cultured cancer cells derived from different tissues and organisms. The molecular and cellular mechanisms underlying the robust anti-aging and anti-tumor effects of lithocholic acid have emerged. This review summarizes the current knowledge of these mechanisms, outlines the most important unanswered questions and suggests directions for future research.
Collapse
|