1
|
Yang X, He D, Li Y, Li C, Wang X, Zhu X, Sun H, Xu Y. Deep learning-based vessel extraction in 3D confocal microscope images of cleared human glioma tissues. BIOMEDICAL OPTICS EXPRESS 2024; 15:2498-2516. [PMID: 38633068 PMCID: PMC11019690 DOI: 10.1364/boe.516541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024]
Abstract
Comprehensive visualization and accurate extraction of tumor vasculature are essential to study the nature of glioma. Nowadays, tissue clearing technology enables 3D visualization of human glioma vasculature at micron resolution, but current vessel extraction schemes cannot well cope with the extraction of complex tumor vessels with high disruption and irregularity under realistic conditions. Here, we developed a framework, FineVess, based on deep learning to automatically extract glioma vessels in confocal microscope images of cleared human tumor tissues. In the framework, a customized deep learning network, named 3D ResCBAM nnU-Net, was designed to segment the vessels, and a novel pipeline based on preprocessing and post-processing was developed to refine the segmentation results automatically. On the basis of its application to a practical dataset, we showed that the FineVess enabled extraction of variable and incomplete vessels with high accuracy in challenging 3D images, better than other traditional and state-of-the-art schemes. For the extracted vessels, we calculated vascular morphological features including fractal dimension and vascular wall integrity of different tumor grades, and verified the vascular heterogeneity through quantitative analysis.
Collapse
Affiliation(s)
- Xiaodu Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, China
| | - Dian He
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, China
| | - Chenyang Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyue Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xingzheng Zhu
- Institute of Applied Artificial Intelligence of the Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen Polytechnic University, Shenzhen, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Yingying Xu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, China
| |
Collapse
|
2
|
Zhu J, Liu X, Xu J, Deng Y, Wang P, Liu Z, Yang Q, Li D, Yu T, Zhu D. A versatile vessel casting method for fine mapping of vascular networks using a hydrogel-based lipophilic dye solution. CELL REPORTS METHODS 2023; 3:100407. [PMID: 36936073 PMCID: PMC10014313 DOI: 10.1016/j.crmeth.2023.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/11/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Efficient labeling of the vasculature is important for understanding the organization of vascular networks. Here, we propose VALID, a vessel-labeling method that enables visualization of vascular networks with tissue clearing and light-sheet microscopy. VALID transforms traditional lipophilic dye solution into hydrogel by introducing gelatin and restrains the dye aggregation, resulting in complete and uniform vessel-labeling patterns with high signal-to-background ratios. VALID also enhances the compatibility of lipophilic dyes with solvent-based tissue-clearing protocols, which was hard to achieve previously. Using VALID, we combined lipophilic dyes with solvent-based tissue-clearing techniques to perform 3D reconstructions of vasculature within mouse brain and spinal cord. We also employed VALID for 3D visualization and quantification of microvascular damage in a middle cerebral artery occlusion mouse model. VALID should provide a simple, cost-effective vessel-labeling protocol that would significantly widen the applications of lipophilic dyes in research on cerebrovascular complications.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jianyi Xu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yating Deng
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Pingfu Wang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Zhang Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Qihang Yang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
3
|
Zhu J, Deng Y, Yu T, Liu X, Li D, Zhu D. Optimal combinations of fluorescent vessel labeling and tissue clearing methods for three-dimensional visualization of vasculature. NEUROPHOTONICS 2022; 9:045008. [PMID: 36466188 PMCID: PMC9709454 DOI: 10.1117/1.nph.9.4.045008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Visualization of intact vasculatures is crucial to understanding the pathogeneses of different neurological and vascular diseases. Although various fluorescent vessel labeling methods have been used in combination with tissue clearing for three-dimensional (3D) visualization of different vascular networks, little has been done to quantify the labeling effect of each vessel labeling routine, as well as their applicability alongside various clearing protocols, making it difficult to select an optimal combination for finely constructing different vasculatures. Therefore, it is necessary to systematically assess the overall performance of these common vessel labeling methods combined with different tissue-clearing protocols. AIM A comprehensive evaluation of the labeling quality of various vessel labeling routines in different organs, as well as their applicability alongside various clearing protocols, were performed to find the optimal combinations for 3D reconstruction of vascular networks with high quality. APPROACH Four commonly-used vessel labeling techniques and six typical tissue optical clearing approaches were selected as candidates for the systematic evaluation. RESULTS The vessel labeling efficiency, vessel labeling patterns, and compatibility of each vessel labeling method with different tissue-clearing protocols were quantitatively evaluated and compared. Based on the comprehensive evaluation results, the optimal combinations were selected for 3D reconstructions of vascular networks in several organs, including mouse brain, liver, and kidney. CONCLUSIONS This study provides valuable insight on selecting the proper pipelines for 3D visualization of vascular networks, which may facilitate understanding of the underlying mechanisms of various neurovascular diseases.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Yating Deng
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| |
Collapse
|
4
|
Xue Y, Georgakopoulou T, van der Wijk AE, Józsa TI, van Bavel E, Payne SJ. Quantification of hypoxic regions distant from occlusions in cerebral penetrating arteriole trees. PLoS Comput Biol 2022; 18:e1010166. [PMID: 35930591 PMCID: PMC9385041 DOI: 10.1371/journal.pcbi.1010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
The microvasculature plays a key role in oxygen transport in the mammalian brain. Despite the close coupling between cerebral vascular geometry and local oxygen demand, recent experiments have reported that microvascular occlusions can lead to unexpected distant tissue hypoxia and infarction. To better understand the spatial correlation between the hypoxic regions and the occlusion sites, we used both in vivo experiments and in silico simulations to investigate the effects of occlusions in cerebral penetrating arteriole trees on tissue hypoxia. In a rat model of microembolisation, 25 μm microspheres were injected through the carotid artery to occlude penetrating arterioles. In representative models of human cortical columns, the penetrating arterioles were occluded by simulating the transport of microspheres of the same size and the oxygen transport was simulated using a Green’s function method. The locations of microspheres and hypoxic regions were segmented, and two novel distance analyses were implemented to study their spatial correlation. The distant hypoxic regions were found to be present in both experiments and simulations, and mainly due to the hypoperfusion in the region downstream of the occlusion site. Furthermore, a reasonable agreement for the spatial correlation between hypoxic regions and occlusion sites is shown between experiments and simulations, which indicates the good applicability of in silico models in understanding the response of cerebral blood flow and oxygen transport to microemboli. The brain function depends on the continuous oxygen supply through the bloodstream inside the microvasculature. Occlusions in the microvascular network will disturb the oxygen delivery in the brain and result in hypoxic tissues that can lead to infarction and cognitive dysfunction. To aid in understanding the formation of hypoxic tissues caused by micro-occlusions in the penetrating arteriole trees, we use rodent experiments and simulations of human vascular networks to study the spatial correlations between the hypoxic regions and the occlusion locations. Our results suggest that hypoxic regions can form distally from the occlusion site, which agrees with the previous observations in the rat brain. These distant hypoxic regions are primarily due to the lack of blood flow in the brain tissues downstream of the occlusion. Moreover, a reasonable agreement of the spatial relationship is found between the experiments and the simulations, which indicates the applicability of in silico models to study the effects of microemboli on the brain tissue.
Collapse
Affiliation(s)
- Yidan Xue
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Theodosia Georgakopoulou
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Eva van der Wijk
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamás I. Józsa
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Ed van Bavel
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephen J. Payne
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
5
|
Bennett HC, Kim Y. Advances in studying whole mouse brain vasculature using high-resolution 3D light microscopy imaging. NEUROPHOTONICS 2022; 9:021902. [PMID: 35402638 PMCID: PMC8983067 DOI: 10.1117/1.nph.9.2.021902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Significance: The cerebrovasculature has become increasingly recognized as a major player in overall brain health and many brain disorders. Although there have been several landmark studies to understand details of these crucially important structures in an anatomically defined area, brain-wide examination of the whole cerebrovasculature, including microvessels, has been challenging. However, emerging techniques, including tissue processing and three-dimensional (3D) microscopy imaging, enable neuroscientists to examine the total vasculature in the entire mouse brain. Aim: Here, we aim to highlight advances in these high-resolution 3D mapping methods including block-face imaging and light sheet fluorescent microscopy. Approach: We summarize latest mapping tools to understand detailed anatomical arrangement of the cerebrovascular network and the organizing principles of the neurovascular unit (NVU) as a whole. Results: We discuss biological insights gained from studies using these imaging methods and how these tools can be used to advance our understanding of the cerebrovascular network and related cell types in the entire brain. Conclusions: This review article will help to understand recent advance in high-resolution NVU mapping in mice and provide perspective on future studies.
Collapse
Affiliation(s)
- Hannah C. Bennett
- The Pennsylvania State University, Department of Neural and Behavioral Sciences, Hershey, Pennsylvania, United States
| | - Yongsoo Kim
- The Pennsylvania State University, Department of Neural and Behavioral Sciences, Hershey, Pennsylvania, United States
| |
Collapse
|
6
|
Zeng C, Chen Z, Yang H, Fan Y, Fei L, Chen X, Zhang M. Advanced high resolution three-dimensional imaging to visualize the cerebral neurovascular network in stroke. Int J Biol Sci 2022; 18:552-571. [PMID: 35002509 PMCID: PMC8741851 DOI: 10.7150/ijbs.64373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/28/2021] [Indexed: 11/05/2022] Open
Abstract
As an important method to accurately and timely diagnose stroke and study physiological characteristics and pathological mechanism in it, imaging technology has gone through more than a century of iteration. The interaction of cells densely packed in the brain is three-dimensional (3D), but the flat images brought by traditional visualization methods show only a few cells and ignore connections outside the slices. The increased resolution allows for a more microscopic and underlying view. Today's intuitive 3D imagings of micron or even nanometer scale are showing its essentiality in stroke. In recent years, 3D imaging technology has gained rapid development. With the overhaul of imaging mediums and the innovation of imaging mode, the resolution has been significantly improved, endowing researchers with the capability of holistic observation of a large volume, real-time monitoring of tiny voxels, and quantitative measurement of spatial parameters. In this review, we will summarize the current methods of high-resolution 3D imaging applied in stroke.
Collapse
Affiliation(s)
- Chudai Zeng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Lujing Fei
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Xinghang Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| |
Collapse
|
7
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|
8
|
Chourrout M, Rositi H, Ong E, Hubert V, Paccalet A, Foucault L, Autret A, Fayard B, Olivier C, Bolbos R, Peyrin F, Crola-da-Silva C, Meyronet D, Raineteau O, Elleaume H, Brun E, Chauveau F, Wiart M. Brain virtual histology with X-ray phase-contrast tomography Part I: whole-brain myelin mapping in white-matter injury models. BIOMEDICAL OPTICS EXPRESS 2022; 13:1620-1639. [PMID: 35415001 PMCID: PMC8973191 DOI: 10.1364/boe.438832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
White-matter injury leads to severe functional loss in many neurological diseases. Myelin staining on histological samples is the most common technique to investigate white-matter fibers. However, tissue processing and sectioning may affect the reliability of 3D volumetric assessments. The purpose of this study was to propose an approach that enables myelin fibers to be mapped in the whole rodent brain with microscopic resolution and without the need for strenuous staining. With this aim, we coupled in-line (propagation-based) X-ray phase-contrast tomography (XPCT) to ethanol-induced brain sample dehydration. We here provide the proof-of-concept that this approach enhances myelinated axons in rodent and human brain tissue. In addition, we demonstrated that white-matter injuries could be detected and quantified with this approach, using three animal models: ischemic stroke, premature birth and multiple sclerosis. Furthermore, in analogy to diffusion tensor imaging (DTI), we retrieved fiber directions and DTI-like diffusion metrics from our XPCT data to quantitatively characterize white-matter microstructure. Finally, we showed that this non-destructive approach was compatible with subsequent complementary brain sample analysis by conventional histology. In-line XPCT might thus become a novel gold-standard for investigating white-matter injury in the intact brain. This is Part I of a series of two articles reporting the value of in-line XPCT for virtual histology of the brain; Part II shows how in-line XPCT enables the whole-brain 3D morphometric analysis of amyloid- β (A β ) plaques.
Collapse
Affiliation(s)
- Matthieu Chourrout
- Univ-Lyon, Lyon Neuroscience
Research Center, CNRS UMR5292, Inserm U1028,
Université Claude Bernard Lyon 1, Lyon, France
- Co-first authors
| | - Hugo Rositi
- Univ-Clermont Auvergne; CNRS;
SIGMA Clermont; Institut Pascal,
Clermont-Ferrand, France
- Co-first authors
| | - Elodie Ong
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
- Univ-Lyon, Hospices Civils de
Lyon, Lyon, France
| | - Violaine Hubert
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
| | - Alexandre Paccalet
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
| | - Louis Foucault
- Univ-Lyon, Université
Claude Bernard Lyon 1, Inserm, Stem Cell and Brain
Research Institute U1208, 69500 Bron, France
| | | | | | - Cécile Olivier
- Univ-Lyon, INSA-Lyon,
Université Claude Bernard Lyon 1,
CNRS, Inserm, CREATIS UMR5220, U1206, F-69621, France
| | | | - Françoise Peyrin
- Univ-Lyon, INSA-Lyon,
Université Claude Bernard Lyon 1,
CNRS, Inserm, CREATIS UMR5220, U1206, F-69621, France
| | - Claire Crola-da-Silva
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
| | | | - Olivier Raineteau
- Univ-Lyon, Université
Claude Bernard Lyon 1, Inserm, Stem Cell and Brain
Research Institute U1208, 69500 Bron, France
| | - Héléne Elleaume
- Université Grenoble
Alpes, Inserm UA7 Strobe, Grenoble, France
| | - Emmanuel Brun
- Université Grenoble
Alpes, Inserm UA7 Strobe, Grenoble, France
| | - Fabien Chauveau
- Univ-Lyon, Lyon Neuroscience
Research Center, CNRS UMR5292, Inserm U1028,
Université Claude Bernard Lyon 1, Lyon, France
- CNRS, Lyon,
France
- Co-last authors
| | - Marlene Wiart
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
- CNRS, Lyon,
France
- Co-last authors
| |
Collapse
|
9
|
Georgakopoulou T, van der Wijk AE, Bakker ENTP, vanBavel E. Quantitative 3D analysis of tissue damage in a rat model of microembolization. J Biomech 2021; 128:110723. [PMID: 34509910 DOI: 10.1016/j.jbiomech.2021.110723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/16/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
There is a discrepancy between successful recanalization and good clinical outcome after endovascular treatment (EVT) in acute ischemic stroke patients. During removal of a thrombus, a shower of microemboli may release and lodge to the distal circulation. The objective of this study was to determine the extent of damage on brain tissue caused by microemboli. In a rat model of microembolization, a mixture of microsphere (MS) sizes (15, 25 and 50 µm diameter) was injected via the left internal carotid artery. A 3D image of the left hemisphere was reconstructed and a point-pattern spatial analysis was applied based on G- and K-functions to unravel the spatial correlation between MS and the induced hypoxia or infarction. We show a spatial correlation between MS and hypoxia or infarction spreading up to a distance of 1000-1500 µm. These results imply that microemboli, which individually may not always be harmful, can interact and result in local areas of hypoxia or even infarction when lodged in large numbers.
Collapse
Affiliation(s)
- Theodosia Georgakopoulou
- Amsterdam University Medical Centers, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, The Netherlands
| | - Anne-Eva van der Wijk
- Amsterdam University Medical Centers, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, The Netherlands
| | - Erik N T P Bakker
- Amsterdam University Medical Centers, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ed vanBavel
- Amsterdam University Medical Centers, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, The Netherlands.
| | | |
Collapse
|
10
|
Zhu J, Liu X, Deng Y, Li D, Yu T, Zhu D. Tissue optical clearing for 3D visualization of vascular networks: A review. Vascul Pharmacol 2021; 141:106905. [PMID: 34506969 DOI: 10.1016/j.vph.2021.106905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Reconstruction of the vasculature of intact tissues/organs down to the capillary level is essential for understanding the development and remodeling of vascular networks under physiological and pathological conditions. Optical imaging techniques can provide sufficient resolution to distinguish small vessels with several microns, but the imaging depth is somewhat limited due to the high light scattering of opaque tissue. Recently, various tissue optical clearing methods have been developed to overcome light attenuation and improve the imaging depth both for ex-vivo and in-vivo visualizations. Tissue clearing combined with vessel labeling techniques and advanced optical tomography enables successful mapping of the vasculature of different tissues/organs, as well as dynamically monitoring vessel function under normal and pathological conditions. Here, we briefly introduce the commonly-used labeling strategies for entire vascular networks, the current tissue optical clearing techniques available for various tissues, as well as the advanced optical imaging techniques for fast, high-resolution structural and functional imaging for blood vessels. We also discuss the applications of these techniques in the 3D visualization of vascular networks in normal tissues, and the vascular remodeling in several typical pathological models in clinical research. This review is expected to provide valuable insights for researchers to study the potential mechanisms of various vessel-associated diseases using tissue optical clearing pipeline.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yating Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
11
|
Yoo S, Stremlau M, Pinto A, Woo H, Curtis O, van Praag H. Effects of Combined Anti-Hypertensive and Statin Treatment on Memory, Fear Extinction, Adult Neurogenesis, and Angiogenesis in Adult and Middle-Aged Mice. Cells 2021; 10:1778. [PMID: 34359946 PMCID: PMC8304131 DOI: 10.3390/cells10071778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023] Open
Abstract
Hyperlipidemia and hypertension are modifiable risk factors for cognitive decline. About 25% of adults over age 65 use both antihypertensives (AHTs) and statins to treat these conditions. Recent research in humans suggests that their combined use may delay or prevent dementia onset. However, it is not clear whether and how combination treatment may benefit brain function. To begin to address this question, we examined effects of atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, and Captopril, an angiotensin-converting enzyme inhibitor (ACEI), administration on memory function, anxiety-like behavior, adult hippocampal neurogenesis and angiogenesis in adult and middle-aged male C57Bl/6J mice. In adult mice (3-months-old) combination (combo) treatment, as well as administration of each compound individually, for six weeks, accelerated memory extinction in contextual fear conditioning. However, pattern separation in the touchscreen-based location discrimination test, a behavior linked to adult hippocampal neurogenesis, was unchanged. In addition, dentate gyrus (DG) neurogenesis and vascularization were unaffected. In middle-aged mice (10-months-old) combo treatment had no effect on spatial memory in the Morris water maze, but did reduce anxiety in the open field test. A potential underlying mechanism may be the modest increase in new hippocampal neurons (~20%) in the combo as compared to the control group. DG vascularization was not altered. Overall, our findings suggest that statin and anti-hypertensive treatment may serve as a potential pharmacotherapeutic approach for anxiety, in particular for post-traumatic stress disorder (PTSD) patients who have impairments in extinction of aversive memories.
Collapse
Affiliation(s)
- Seungwoo Yoo
- Stiles-Nicholson Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA; (S.Y.); (A.P.); (H.W.); (O.C.)
| | | | - Alejandro Pinto
- Stiles-Nicholson Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA; (S.Y.); (A.P.); (H.W.); (O.C.)
| | - Hyewon Woo
- Stiles-Nicholson Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA; (S.Y.); (A.P.); (H.W.); (O.C.)
| | - Olivia Curtis
- Stiles-Nicholson Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA; (S.Y.); (A.P.); (H.W.); (O.C.)
| | - Henriette van Praag
- Stiles-Nicholson Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA; (S.Y.); (A.P.); (H.W.); (O.C.)
- National Institute on Aging (NIA), Baltimore, MD 21224, USA;
| |
Collapse
|
12
|
Ji X, Ferreira T, Friedman B, Liu R, Liechty H, Bas E, Chandrashekar J, Kleinfeld D. Brain microvasculature has a common topology with local differences in geometry that match metabolic load. Neuron 2021; 109:1168-1187.e13. [PMID: 33657412 PMCID: PMC8525211 DOI: 10.1016/j.neuron.2021.02.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/09/2020] [Accepted: 02/03/2021] [Indexed: 01/03/2023]
Abstract
The microvasculature underlies the supply networks that support neuronal activity within heterogeneous brain regions. What are common versus heterogeneous aspects of the connectivity, density, and orientation of capillary networks? To address this, we imaged, reconstructed, and analyzed the microvasculature connectome in whole adult mice brains with sub-micrometer resolution. Graph analysis revealed common network topology across the brain that leads to a shared structural robustness against the rarefaction of vessels. Geometrical analysis, based on anatomically accurate reconstructions, uncovered a scaling law that links length density, i.e., the length of vessel per volume, with tissue-to-vessel distances. We then derive a formula that connects regional differences in metabolism to differences in length density and, further, predicts a common value of maximum tissue oxygen tension across the brain. Last, the orientation of capillaries is weakly anisotropic with the exception of a few strongly anisotropic regions; this variation can impact the interpretation of fMRI data.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tiago Ferreira
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Beth Friedman
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rui Liu
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hannah Liechty
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Erhan Bas
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | | | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Xie W, Gong XT, Cheng X, Cao J, Zhao J, Zhang HL, Zhang S. LIMPID: a versatile method for visualization of brain vascular networks. Biomater Sci 2021; 9:2658-2669. [PMID: 33595547 DOI: 10.1039/d0bm01817a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visualization of cerebrovascular networks is crucial for understanding the pathogenesis of many neurological diseases. Recently developed optical clearing techniques offer opportunities in deep tissue imaging, and have been successfully applied in many research studies. The development of nanotechnology enables the labeling of brain vessels with functionalized micro/nanoparticles embedded with fluorescent dyes. We herein report an efficient method, named LIMPID (Labeled and Interlinked Micro/nanoparticles for Imaging and Delipidation), specific for the precise fluorescence imaging of vascular networks in clearing-treated tissues. This robust vessel labeling technique replaces conventional fluorescence dyes with functionalized polymer micro/nanoparticles that are able to cross-link with polyacrylamide to form dense hydrogels in vessels. LIMPID shows high-robustness during the clearing process without sacrificing fluorescence signals and clearing performance. LIMPID enables three dimension (3D) visualization of elaborate vascular networks in mouse brains and is compatible with other fluorescence-labeling techniques. We have successfully applied this method to acquire cortical vasculature images simultaneously with the neurons or microglia, as well as to evaluate vascular damage in a mouse model of stroke. The LIMPID method provides a novel tool for the precise analysis of vascular dysfunction and vascular diseases.
Collapse
Affiliation(s)
- Wenguang Xie
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Hill LK, Hoang DM, Chiriboga LA, Wisniewski T, Sadowski MJ, Wadghiri YZ. Detection of Cerebrovascular Loss in the Normal Aging C57BL/6 Mouse Brain Using in vivo Contrast-Enhanced Magnetic Resonance Angiography. Front Aging Neurosci 2020; 12:585218. [PMID: 33192479 PMCID: PMC7606987 DOI: 10.3389/fnagi.2020.585218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022] Open
Abstract
Microvascular rarefaction, or the decrease in vascular density, has been described in the cerebrovasculature of aging humans, rats, and, more recently, mice in the presence and absence of age-dependent diseases. Given the wide use of mice in modeling age-dependent human diseases of the cerebrovasculature, visualization, and quantification of the global murine cerebrovasculature is necessary for establishing the baseline changes that occur with aging. To provide in vivo whole-brain imaging of the cerebrovasculature in aging C57BL/6 mice longitudinally, contrast-enhanced magnetic resonance angiography (CE-MRA) was employed using a house-made gadolinium-bearing micellar blood pool agent. Enhancement in the vascular space permitted quantification of the detectable, or apparent, cerebral blood volume (aCBV), which was analyzed over 2 years of aging and compared to histological analysis of the cerebrovascular density. A significant loss in the aCBV was detected by CE-MRA over the aging period. Histological analysis via vessel-probing immunohistochemistry confirmed a significant loss in the cerebrovascular density over the same 2-year aging period, validating the CE-MRA findings. While these techniques use widely different methods of assessment and spatial resolutions, their comparable findings in detected vascular loss corroborate the growing body of literature describing vascular rarefaction aging. These findings suggest that such age-dependent changes can contribute to cerebrovascular and neurodegenerative diseases, which are modeled using wild-type and transgenic laboratory rodents.
Collapse
Affiliation(s)
- Lindsay K. Hill
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), NYU Grossman School of Medicine, New York, NY, United States
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Dung Minh Hoang
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), NYU Grossman School of Medicine, New York, NY, United States
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, United States
| | - Luis A. Chiriboga
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States
| | - Thomas Wisniewski
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| | - Martin J. Sadowski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - Youssef Z. Wadghiri
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), NYU Grossman School of Medicine, New York, NY, United States
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
15
|
Fleischer S, Tavakol DN, Vunjak-Novakovic G. From arteries to capillaries: approaches to engineering human vasculature. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910811. [PMID: 33708027 PMCID: PMC7942836 DOI: 10.1002/adfm.201910811] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 05/02/2023]
Abstract
From micro-scaled capillaries to millimeter-sized arteries and veins, human vasculature spans multiple scales and cell types. The convergence of bioengineering, materials science, and stem cell biology has enabled tissue engineers to recreate the structure and function of different hierarchical levels of the vascular tree. Engineering large-scale vessels has been pursued over the past thirty years to replace or bypass damaged arteries, arterioles, and venules, and their routine application in the clinic may become a reality in the near future. Strategies to engineer meso- and microvasculature have been extensively explored to generate models to study vascular biology, drug transport, and disease progression, as well as for vascularizing engineered tissues for regenerative medicine. However, bioengineering of large-scale tissues and whole organs for transplantation, have failed to result in clinical translation due to the lack of proper integrated vasculature for effective oxygen and nutrient delivery. The development of strategies to generate multi-scale vascular networks and their direct anastomosis to host vasculature would greatly benefit this formidable goal. In this review, we discuss design considerations and technologies for engineering millimeter-, meso-, and micro-scale vessels. We further provide examples of recent state-of-the-art strategies to engineer multi-scale vasculature. Finally, we identify key challenges limiting the translation of vascularized tissues and offer our perspective on future directions for exploration.
Collapse
Affiliation(s)
| | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University
- Department of Medicine, Columbia University
| |
Collapse
|
16
|
Xu J, Li S, Rajah GB, Zhao W, Ren C, Ding Y, Zhang Q, Ji X. Asymmetric lenticulostriate arteries in patients with moyamoya disease presenting with movement disorder: three new cases. Neurol Res 2020; 42:665-669. [PMID: 32586217 DOI: 10.1080/01616412.2020.1782121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Unilateral movement disorder associated with moyamoya disease is a rare finding and the mechanism remains to be fully elucidated. Theories postulated include contralateral cerebral ischemic or hemorrhagic lesions, and/or hypoperfusion. However, few studies have reported such patients without contralateral lesions nor hypoperfusion. This study aimed to explore the potential mechanism of those who had neither contralateral cerebral lesions nor hypoperfusion. METHODS Neuroradiological features of lenticulostriate arteries in three cases with unilateral movement disorder associated with moyamoya disease who had neither contralateral lesions nor hypoperfusion were mainly analyzed. RESULTS Angiography and 3 T black-blood T1-weighted intracranial vessel wall imaging both demonstrated a significant asymmetry between bilateral lenticulostriate arteries qualitatively and quantitatively on admission. After one-year follow-up, two patients' vessel wall imaging indicated that the asymmetry diminished, and the symptoms spontaneously resolved. CONCLUSION This report demonstrated that patients with moyamoya disease with unilateral movement disorder who had neither contralateral lesions nor hypoperfusion may be related to the asymmetry between bilateral lenticulostriate arteries through basal ganglia.
Collapse
Affiliation(s)
- Jiali Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Gary B Rajah
- Department of Neurosurgery, Wayne State University , Detroit, MI, USA
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University , Detroit, MI, USA
| | - Qian Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University , Beijing, China
| |
Collapse
|
17
|
Zhu J, Yu T, Li Y, Xu J, Qi Y, Yao Y, Ma Y, Wan P, Chen Z, Li X, Gong H, Luo Q, Zhu D. MACS: Rapid Aqueous Clearing System for 3D Mapping of Intact Organs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903185. [PMID: 32328422 PMCID: PMC7175264 DOI: 10.1002/advs.201903185] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/16/2020] [Indexed: 05/21/2023]
Abstract
Tissue optical clearing techniques have provided important tools for large-volume imaging. Aqueous-based clearing methods are known for good fluorescence preservation and scalable size maintenance, but are limited by long incubation time, insufficient clearing performance, or requirements for specialized devices. Additionally, few clearing methods are compatible with widely used lipophilic dyes while maintaining high clearing performance. Here, to address these issues, m-xylylenediamine (MXDA) is firstly introduced into tissue clearing and used to develop a rapid, highly efficient aqueous clearing method with robust lipophilic dyes compatibility, termed MXDA-based Aqueous Clearing System (MACS). MACS can render whole adult brains highly transparent within 2.5 days and is also applicable for other intact organs. Meanwhile, MACS possesses ideal compatibility with multiple probes, especially for lipophilic dyes. MACS achieves 3D imaging of the intact neural structures labeled by various techniques. Combining MACS with DiI labeling, MACS allows reconstruction of the detailed vascular structures of various organs and generates 3D pathology of glomeruli tufts in healthy and diabetic kidneys. Therefore, MACS provides a useful method for 3D mapping of intact tissues and is expected to facilitate morphological, physiological, and pathological studies of various organs.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Tingting Yu
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Yusha Li
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Jianyi Xu
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Yisong Qi
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Yingtao Yao
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Yilin Ma
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Peng Wan
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Zhilong Chen
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Xiangning Li
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Hui Gong
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Qingming Luo
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Dan Zhu
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
18
|
Rust R, Kirabali T, Grönnert L, Dogancay B, Limasale YDP, Meinhardt A, Werner C, Laviña B, Kulic L, Nitsch RM, Tackenberg C, Schwab ME. A Practical Guide to the Automated Analysis of Vascular Growth, Maturation and Injury in the Brain. Front Neurosci 2020; 14:244. [PMID: 32265643 PMCID: PMC7099171 DOI: 10.3389/fnins.2020.00244] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
The distinct organization of the brain's vasculature ensures the adequate delivery of oxygen and nutrients during development and adulthood. Acute and chronic pathological changes of the vascular system have been implicated in many neurological disorders including stroke and dementia. Here, we describe a fast, automated method that allows the highly reproducible, quantitative assessment of distinct vascular parameters and their changes based on the open source software Fiji (ImageJ). In particular, we developed a practical guide to reliably measure aspects of growth, repair and maturation of the brain's vasculature during development and neurovascular disease in mice and humans. The script can be used to assess the effects of different external factors including pharmacological treatments or disease states. Moreover, the procedure is expandable to blood vessels of other organs and vascular in vitro models.
Collapse
Affiliation(s)
- Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Tunahan Kirabali
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Lisa Grönnert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Berre Dogancay
- Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| | | | | | - Carsten Werner
- Leibniz Institute for Polymer Research, Dresden, Germany
| | - Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Luka Kulic
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Martin E Schwab
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| |
Collapse
|
19
|
Novel imaging and related techniques for studies of diseases of the central nervous system: a review. Cell Tissue Res 2020; 380:415-424. [PMID: 32072308 DOI: 10.1007/s00441-020-03183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Imaging technologies for the analysis of the central nervous system are rapidly developing. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging, tracer-based magnetic resonance imaging, CLARITY technology and optogenetics can be used to visualize small molecules in brain tissues, the interstitial system of the brain and neuronal circuits in whole-brain samples. These tools serve as powerful technical means to explore the mechanisms underlying disease models and to evaluate the effects of drugs. Here, we review the constituting principles of these imaging techniques and describe their applications in the field of neuroscience.
Collapse
|
20
|
Kirst C, Skriabine S, Vieites-Prado A, Topilko T, Bertin P, Gerschenfeld G, Verny F, Topilko P, Michalski N, Tessier-Lavigne M, Renier N. Mapping the Fine-Scale Organization and Plasticity of the Brain Vasculature. Cell 2020; 180:780-795.e25. [PMID: 32059781 DOI: 10.1016/j.cell.2020.01.028] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
The cerebral vasculature is a dense network of arteries, capillaries, and veins. Quantifying variations of the vascular organization across individuals, brain regions, or disease models is challenging. We used immunolabeling and tissue clearing to image the vascular network of adult mouse brains and developed a pipeline to segment terabyte-sized multichannel images from light sheet microscopy, enabling the construction, analysis, and visualization of vascular graphs composed of over 100 million vessel segments. We generated datasets from over 20 mouse brains, with labeled arteries, veins, and capillaries according to their anatomical regions. We characterized the organization of the vascular network across brain regions, highlighting local adaptations and functional correlates. We propose a classification of cortical regions based on the vascular topology. Finally, we analysed brain-wide rearrangements of the vasculature in animal models of congenital deafness and ischemic stroke, revealing that vascular plasticity and remodeling adopt diverging rules in different models.
Collapse
Affiliation(s)
- Christoph Kirst
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, 75013 Paris, France; Center for Physics and Biology and Kavli Neural Systems Insittute, The Rockefeller University, 10065 New York, NY, USA; Kavli Institute for Fundamental Neuroscience and Anatomy Department, Sandler Neuroscience Building, Suite 514G, 675 Nelson Rising Lane, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Sophie Skriabine
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Alba Vieites-Prado
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Thomas Topilko
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Paul Bertin
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | | | - Florine Verny
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Piotr Topilko
- Institut Mondor de Recherche Biomédicale, INSERM U955-Team 9, Créteil, France
| | - Nicolas Michalski
- Unité de Génétique et Physiologie de l'Audition, UMRS 1120, Institut Pasteur, INSERM, 75015 Paris, France
| | | | - Nicolas Renier
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, 75013 Paris, France.
| |
Collapse
|
21
|
Porter DDL, Morton PD. Clearing techniques for visualizing the nervous system in development, injury, and disease. J Neurosci Methods 2020; 334:108594. [PMID: 31945400 PMCID: PMC10674098 DOI: 10.1016/j.jneumeth.2020.108594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
Modern clearing techniques enable high resolution visualization and 3D reconstruction of cell populations and their structural details throughout large biological samples, including intact organs and even entire organisms. In the past decade, these methods have become more tractable and are now being utilized to provide unforeseen insights into the complexities of the nervous system. While several iterations of optical clearing techniques have been developed, some are more suitable for specific applications than others depending on the type of specimen under study. Here we review findings from select studies utilizing clearing methods to visualize the developing, injured, and diseased nervous system within numerous model systems and species. We note trends and imbalances in the types of research questions being addressed with clearing methods across these fields in neuroscience. In addition, we discuss restrictions in applying optical clearing methods for postmortem tissue from humans and large animals and emphasize the lack in continuity between studies of these species. We aim for this review to serve as a key outline of available tissue clearing methods used successfully to address issues across neuronal development, injury/repair, and aging/disease.
Collapse
Affiliation(s)
- Demisha D L Porter
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
22
|
Zhang LY, Pan J, Mamtilahun M, Zhu Y, Wang L, Venkatesh A, Shi R, Tu X, Jin K, Wang Y, Zhang Z, Yang GY. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics 2020; 10:74-90. [PMID: 31903107 PMCID: PMC6929610 DOI: 10.7150/thno.35841] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/08/2019] [Indexed: 12/22/2022] Open
Abstract
Microglial activation participates in white matter injury after cerebral hypoperfusion. However, the underlying mechanism is unclear. Here, we explore whether activated microglia aggravate white matter injury via complement C3-C3aR pathway after chronic cerebral hypoperfusion. Methods: Adult male Sprague-Dawley rats (n = 80) underwent bilateral common carotid artery occlusion for 7, 14, and 28 days. Cerebral vessel density and blood flow were examined by synchrotron radiation angiography and three-dimensional arterial spin labeling. Neurobehavioral assessments, CLARITY imaging, and immunohistochemistry were performed to evaluate activation of microglia and C3-C3aR pathway. Furthermore, C3aR knockout mice were used to establish the causal relationship of C3-C3aR signaling on microglia activation and white matter injury after hypoperfusion. Results: Cerebral vessel density and blood flow were reduced after hypoperfusion (p<0.05). Spatial learning and memory deficits and white matter injury were shown (p<0.05). These impairments were correlated with aberrant microglia activation and an increase in the number of reactive microglia adhering to and phagocytosed myelin in the hypoperfusion group (p<0.05), which were accompanied by the up-regulation of complement C3 and its receptors C3aR (p<0.05). Genetic deletion of C3ar1 significantly inhibited aberrant microglial activation and reversed white matter injury after hypoperfusion (p<0.05). Furthermore, the C3aR antagonist SB290157 decreased the number of microglia adhering to myelin (p<0.05), attenuated white matter injury and cognitive deficits in chronic hypoperfusion rats (p<0.05). Conclusions: Our results demonstrated that aberrant activated microglia aggravate white matter injury via C3-C3aR pathway during chronic hypoperfusion. These findings indicate C3aR plays a critical role in mediating neuroinflammation and white matter injury through aberrant microglia activation, which provides a novel therapeutic target for the small vessel disease and vascular dementia.
Collapse
|
23
|
Quintana DD, Lewis SE, Anantula Y, Garcia JA, Sarkar SN, Cavendish JZ, Brown CM, Simpkins JW. The cerebral angiome: High resolution MicroCT imaging of the whole brain cerebrovasculature in female and male mice. Neuroimage 2019; 202:116109. [PMID: 31446129 PMCID: PMC6942880 DOI: 10.1016/j.neuroimage.2019.116109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 01/09/2023] Open
Abstract
The cerebrovascular system provides crucial functions that maintain metabolic and homeostatic states of the brain. Despite its integral role of supporting cerebral viability, the topological organization of these networks remains largely uncharacterized. This void in our knowledge surmises entirely from current technological limitations that prevent the capturing of data through the entire depth of the brain. We report high-resolution reconstruction and analysis of the complete vascular network of the entire brain at the capillary level in adult female and male mice using a vascular corrosion cast procedure. Vascular network analysis of the whole brain revealed sex-related differences of vessel hierarchy. In addition, region-specific network analysis demonstrated different patterns of angioarchitecture between brain subregions and sex. Furthermore, our group is the first to provide a three-dimensional analysis of the angioarchitecture and network organization in a single reconstructed tomographic data set that encompasses all hierarchy of vessels in the brain of the adult mouse.
Collapse
Affiliation(s)
- D D Quintana
- Department of Physiology and Pharmacology, Center for Basic Translational and Stroke Research, West Virginia University, Morgantown, WV, 26506, USA
| | - S E Lewis
- Department of Physiology and Pharmacology, Center for Basic Translational and Stroke Research, West Virginia University, Morgantown, WV, 26506, USA
| | - Y Anantula
- Department of Neuroscience, Center for Basic Translational and Stroke Research, West Virginia University, Morgantown, WV, 26506, USA
| | - J A Garcia
- Department of Neuroscience, Center for Basic Translational and Stroke Research, West Virginia University, Morgantown, WV, 26506, USA
| | - S N Sarkar
- Department of Physiology and Pharmacology, Center for Basic Translational and Stroke Research, West Virginia University, Morgantown, WV, 26506, USA
| | - J Z Cavendish
- Department of Physiology and Pharmacology, Center for Basic Translational and Stroke Research, West Virginia University, Morgantown, WV, 26506, USA
| | - C M Brown
- Department of Neuroscience, Center for Basic Translational and Stroke Research, West Virginia University, Morgantown, WV, 26506, USA
| | - J W Simpkins
- Department of Physiology and Pharmacology, Center for Basic Translational and Stroke Research, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
24
|
On the existence of mechanoreceptors within the neurovascular unit of the mammalian brain. Brain Struct Funct 2019; 224:2247-2267. [PMID: 31190162 DOI: 10.1007/s00429-019-01863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/16/2019] [Indexed: 10/26/2022]
Abstract
We describe a set of perivascular interneurons (PINs) with series of fibro-vesicular complexes (FVCs) throughout the gray matter of the adult rabbit and rat brains. PIN-FVCs are ubiquitous throughout the brain vasculature as detected in Golgi-impregnated specimens. Most PINs are small, aspiny cells with short or long (> 1 mm) axons that split and travel along arterial blood vessels. Upon ramification, axons form FVCs around the arising vascular branches; then, paired axons run parallel to the vessel wall until another ramification ensues, and a new FVC is formed. Cytologically, FVCs consist of clusters of perivascular bulbs (PVBs) encircling the precapillary and capillary wall surrounded by end-feet and the extracellular matrix of endothelial cells and pericytes. A PVB contains mitochondria, multivesicular bodies, and granules with a membranous core, similar to Meissner corpuscles and other mechanoreceptors. Some PVBs form asymmetrical, axo-spinous synapses with presumptive adjacent neurons. PINs appear to correspond to the type 1 nNOS-positive neurons whose FVCs co-label with markers of sensory fiber-terminals surrounded by astrocytic end-feet. The PIN is conserved in adult cats and rhesus monkey specimens. The location, ubiquity throughout the vasculature of the mammalian brain, and cytological organization of the PIN-FVCs suggests that it is a sensory receptor intrinsic to the mammalian neurovascular unit that corresponds to an afferent limb of the sensorimotor feed-back mechanism controlling local blood flow.
Collapse
|
25
|
Rust R, Grönnert L, Dogançay B, Schwab ME. A Revised View on Growth and Remodeling in the Retinal Vasculature. Sci Rep 2019; 9:3263. [PMID: 30824785 PMCID: PMC6397250 DOI: 10.1038/s41598-019-40135-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
The mouse retina provides an excellent model for studying angiogenesis. Recent advancements in high-throughput microscopy and image analysis provide great tools to visualize and describe the complexity of the retinal vascular architecture in a detailed and comprehensive way. Most developmental studies have focused on only a few parameters mostly in the inner-most layers that do not describe the entirety of the three-dimensional vascular network. Here, we analyzed the entire three-dimensional retinal vascular architecture and its growth and remodeling starting from the age of postnatal day 3 to 4 months in mice. We show plexus specific characteristics of the vasculature in terms of vascular tissue fraction, branching and length of the blood vessels, and distance and distribution between single capillaries. Such detailed knowledge is of particular interest, as it has become apparent that disease-specific mechanisms and treatments affect the retinal vasculature often in a plexus specific way.
Collapse
Affiliation(s)
- Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland. .,Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
| | - Lisa Grönnert
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland
| | - Berre Dogançay
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Martin E Schwab
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
26
|
Hess A, Hinz R, Keliris GA, Boehm-Sturm P. On the Usage of Brain Atlases in Neuroimaging Research. Mol Imaging Biol 2019; 20:742-749. [PMID: 30094652 DOI: 10.1007/s11307-018-1259-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Brain atlases play a key role in modern neuroimaging analysis of brain structure and function. We review available atlas databases for humans and animals and illustrate common state-of-the-art workflows in neuroimaging research based on image registration. Advances in noninvasive imaging methods, 3D ex vivo microscopy, and image processing are summarized which will eventually close the current resolution gap between brain atlases based on conventional 2D histology and those based on 3D in vivo imaging.
Collapse
Affiliation(s)
- Andreas Hess
- Institute for Experimental Pharmacology, Friedrich Alexander University Erlangen Nuremberg, Fahrstraße 17, 91054, Erlangen, Germany.
| | - Rukun Hinz
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | | | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany. .,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
27
|
Khoradmehr A, Mazaheri F, Anvari M, Tamadon A. A Simple Technique for Three-Dimensional Imaging and Segmentation of Brain Vasculature U sing Fast Free-of-Acrylamide Clearing Tissue in Murine. CELL JOURNAL 2018; 21:49-56. [PMID: 30507088 PMCID: PMC6275429 DOI: 10.22074/cellj.2019.5684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/30/2018] [Indexed: 12/26/2022]
Abstract
Objective Fast Free-of-Acrylamide Clearing Tissue (FACT) is a recently developed protocol for the whole tissue
three-dimensional (3D) imaging. The FACT protocol clears lipids using sodium dodecyl sulfate (SDS) to increase the
penetration of light and reflection of fluorescent signals from the depth of cleared tissue. The aim of the present study
was using FACT protocol in combination with imaging of auto-fluorescency of red blood cells in vessels to image the
vasculature of a translucent mouse tissues.
Materials and Methods In this experimental study, brain and other tissues of adult female mice or rats were dissected
out without the perfusion. Mice brains were sliced for vasculature imaging before the clearing. Brain slices and other
whole tissues of rodent were cleared by the FACT protocol and their clearing times were measured. After 1 mm of the
brain slice clearing, the blood vessels containing auto-fluorescent red blood cells were imaged by a z-stack motorized
epifluorescent microscope. The 3D structures of the brain vessels were reconstructed by Imaris software.
Results Auto-fluorescent blood vessels were 3D imaged by the FACT in mouse brain cortex. Clearing tissues of
mice and rats were carried out by the FACT on the brain slices, spinal cord, heart, lung, adrenal gland, pancreas, liver,
esophagus, duodenum, jejunum, ileum, skeletal muscle, bladder, ovary, and uterus.
Conclusion The FACT protocol can be used for the murine whole tissue clearing. We highlighted that the 3D imaging
of cortex vasculature can be done without antibody staining of non-perfused brain tissue, rather by a simple auto-
fluorescence.
Collapse
Affiliation(s)
- Arezoo Khoradmehr
- Research and Clinical Center for Infertility, Yazd Reproduction Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fahime Mazaheri
- Research and Clinical Center for Infertility, Yazd Reproduction Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Morteza Anvari
- Research and Clinical Center for Infertility, Yazd Reproduction Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Electronic Address:
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran. Electronic Address:
| |
Collapse
|
28
|
Salehi A, Jullienne A, Wendel KM, Hamer M, Tang J, Zhang JH, Pearce WJ, DeFazio RA, Vexler ZS, Obenaus A. A Novel Technique for Visualizing and Analyzing the Cerebral Vasculature in Rodents. Transl Stroke Res 2018; 10:10.1007/s12975-018-0632-0. [PMID: 29766452 DOI: 10.1007/s12975-018-0632-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/27/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
We introduce a novel protocol to stain, visualize, and analyze blood vessels from the rat and mouse cerebrum. This technique utilizes the fluorescent dye, DiI, to label the lumen of the vasculature followed by perfusion fixation. Following brain extraction, the labeled vasculature is then imaged using wide-field fluorescence microscopy for axial and coronal images and can be followed by regional confocal microscopy. Axial and coronal images can be analyzed using classical angiographic methods for vessel density, length, and other features. We also have developed a novel fractal analysis to assess vascular complexity. Our protocol has been optimized for adult rat, adult mouse, and neonatal mouse studies. The protocol is efficient, can be rapidly completed, stains cerebral vessels with a bright fluorescence, and provides valuable quantitative data. This method has a broad range of applications, and we demonstrate its use to study the vasculature in assorted models of acquired brain injury.
Collapse
Affiliation(s)
- Arjang Salehi
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, 1140 Bachelor Hall, Riverside, CA, 92521, USA
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Amandine Jullienne
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Kara M Wendel
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697-4475, USA
| | - Mary Hamer
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, 92697-4475, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - William J Pearce
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
- Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Richard A DeFazio
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48101, USA
| | - Zinaida S Vexler
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Andre Obenaus
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, 1140 Bachelor Hall, Riverside, CA, 92521, USA.
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA.
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697-4475, USA.
- Department of Pediatrics, University of California, Irvine, Irvine, CA, 92697-4475, USA.
| |
Collapse
|