1
|
Xue C, Chen Y, Bi Y, Yang X, Chen K, Tang C, Tong X, Zhao L, Wang H. Dilemmas in Elderly Diabetes and Clinical Practice Involving Traditional Chinese Medicine. Pharmaceuticals (Basel) 2024; 17:953. [PMID: 39065801 PMCID: PMC11279884 DOI: 10.3390/ph17070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes is a widespread chronic disease that occurs mainly in the elderly population. Due to the difference in pathophysiology between elderly and young patients, the current clinical practice to treat elderly patients with anti-diabetes medications still faces some challenges and dilemmas, such as the urgent need for early diagnosis and prevention, and an imbalance between restricted dietary intake and the risk of undernutrition. Traditional Chinese medicine (TCM) offers various treatment regimens that are actively utilized in the field of diabetes management. Through multiple targets and multiple pathways, TCM formulas, medicinal herbs, and active natural products enhance the efficacy of diabetes prevention and diabetes control measures, simplify complex medication management, and improve common symptoms and common diabetic complications in elderly people. Historically, natural products have played a key role in material composition analysis of TCM and mechanism interpretation to enable drug discovery. However, there have been few conclusions on this topic. This review summarizes the development of TCM for the prevention and management of diabetes in elderly people, existing evidence-based clinical practices, and prospects for future development.
Collapse
Affiliation(s)
- Chongxiang Xue
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China; (C.X.); (Y.C.); (X.Y.)
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (K.C.); (X.T.)
| | - Ying Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China; (C.X.); (Y.C.); (X.Y.)
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yuntian Bi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Xiaofei Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China; (C.X.); (Y.C.); (X.Y.)
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (K.C.); (X.T.)
| | - Cheng Tang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (K.C.); (X.T.)
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (K.C.); (X.T.)
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
2
|
Wang ZH, Wang ZJ, Liu HC, Wang CY, Wang YQ, Yue Y, Zhao C, Wang G, Wan JP. Targeting mitochondria for ovarian aging: new insights into mechanisms and therapeutic potential. Front Endocrinol (Lausanne) 2024; 15:1417007. [PMID: 38952389 PMCID: PMC11215021 DOI: 10.3389/fendo.2024.1417007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Ovarian aging is a complex process characterized by a decline in oocyte quantity and quality, directly impacting fertility and overall well-being. Recent researches have identified mitochondria as pivotal players in the aging of ovaries, influencing various hallmarks and pathways governing this intricate process. In this review, we discuss the multifaceted role of mitochondria in determining ovarian fate, and outline the pivotal mechanisms through which mitochondria contribute to ovarian aging. Specifically, we emphasize the potential of targeting mitochondrial dysfunction through innovative therapeutic approaches, including antioxidants, metabolic improvement, biogenesis promotion, mitophagy enhancement, mitochondrial transfer, and traditional Chinese medicine. These strategies hold promise as effective means to mitigate age-related fertility decline and preserve ovarian health. Drawing insights from advanced researches in the field, this review provides a deeper understanding of the intricate interplay between mitochondrial function and ovarian aging, offering valuable perspectives for the development of novel therapeutic interventions aimed at preserving fertility and enhancing overall reproductive health.
Collapse
Affiliation(s)
- Zi-Han Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen-Jing Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Huai-Chao Liu
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen-Yu Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu-Qi Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yang Yue
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guoyun Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ji-Peng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Ho TJ, Tsai BCK, Debakshee G, Shibu MA, Kuo CH, Lin CH, Lin PY, Lin SZ, Kuo WW, Huang CY. Ohwia caudata aqueous extract attenuates senescence in aging adipose-derived mesenchymal stem cells. Heliyon 2024; 10:e29729. [PMID: 38698985 PMCID: PMC11064092 DOI: 10.1016/j.heliyon.2024.e29729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Stem cells exhibit pluripotency and self-renewal abilities. Adipose-derived mesenchymal stem cells can potentially be used to reconstruct various tissues. They possess significant versatility and alleviate various aging-related diseases. Unfortunately, aging leads to senescence, apoptosis, and a decline in regenerative capacity in adipose-derived mesenchymal stem cells. These changes necessitate a strategy to mitigate the effects of aging on stem cells. Ohwia caudata (O. caudata) has therapeutic effects against several illnesses. However, studies on whether O. caudata has therapeutic effects against aging are lacking. In this study, we aimed to identify potential therapeutic anti-aging effects in the crude aqueous extract of O. caudata on adipose-derived mesenchymal stem cells. Using 0.1 μM doxorubicin, we induced aging in human adipose-derived mesenchymal stem cells (hADMSCs) and evaluated whether various concentrations of O. caudata aqueous extract exhibit anti-aging effects on them. The O. caudata extract exhibited significant antioxidant effects on hADMSCs without any toxicity. Furthermore, after treatment with the O. caudata aqueous extract, the levels of mitochondrial superoxide, DNA double-strand breaks, and telomere shortening were reduced in the hADMSCs subjected to doxorubicin-induced aging. The extract also suppressed doxorubicin-induced aging by upregulating klotho and downregulating p21 in hADMSCs. These findings indicated that the O. caudata extract exhibited anti-aging properties that modulated hADMSC homeostasis. Therefore, it could be a potential candidate for restoring the self-renewal ability and multipotency of aging hADMSCs.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Goswami Debakshee
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
- Laboratory of Exercise Biochemistry, University of Taipei, Tianmu Campus, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Chih-Hsueh Lin
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
4
|
Ahn JS, Mahbub NU, Kim S, Kim HB, Choi JS, Chung HJ, Hong ST. Nectandrin B significantly increases the lifespan of Drosophila - Nectandrin B for longevity. Aging (Albany NY) 2023; 15:12749-12762. [PMID: 37983180 DOI: 10.18632/aging.205234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Phytochemicals are increasingly recognized in the field of healthy aging as potential therapeutics against various aging-related diseases. Nutmeg, derived from the Myristica fragrans tree, is an example. Nutmeg has been extensively studied and proven to possess antioxidant properties that protect against aging and alleviate serious diseases such as cancer, heart disease, and liver disease. However, the specific active ingredient in nutmeg responsible for these health benefits has not been identified thus far. In this study, we present evidence that Nectandrin B (NecB), a bioactive lignan compound isolated from nutmeg, significantly extended the lifespan of the fruit fly Drosophila melanogaster by as much as 42.6% compared to the control group. NecB also improved age-related symptoms including locomotive deterioration, body weight gain, eye degeneration, and neurodegeneration in aging D. melanogaster. This result represents the most substantial improvement in lifespan observed in animal experiments to date, suggesting that NecB may hold promise as a potential therapeutic agent for promoting longevity and addressing age-related degeneration.
Collapse
Affiliation(s)
- Ji-Seon Ahn
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Sura Kim
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Han-Byeol Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Jong-Soon Choi
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
- College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| |
Collapse
|
5
|
Knufinke M, MacArthur MR, Ewald CY, Mitchell SJ. Sex differences in pharmacological interventions and their effects on lifespan and healthspan outcomes: a systematic review. FRONTIERS IN AGING 2023; 4:1172789. [PMID: 37305228 PMCID: PMC10249017 DOI: 10.3389/fragi.2023.1172789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
With an increasing aging population, the burden of age-related diseases magnifies. To alleviate this burden, geroprotection has been an area of intense research focus with the development of pharmacological interventions that target lifespan and/or healthspan. However, there are often sex differences, with compounds mostly tested in male animals. Given the importance of considering both sexes in preclinical research, this neglects potential benefits for the female population, as interventions tested in both sexes often show clear sexual dimorphisms in their biological responses. To further understand the prevalence of sex differences in pharmacological geroprotective intervention studies, we performed a systematic review of the literature according to the PRISMA guidelines. Seventy-two studies met our inclusion criteria and were classified into one of five subclasses: FDA-repurposed drugs, novel small molecules, probiotics, traditional Chinese medicine, and antioxidants, vitamins, or other dietary supplements. Interventions were analyzed for their effects on median and maximal lifespan and healthspan markers, including frailty, muscle function and coordination, cognitive function and learning, metabolism, and cancer. With our systematic review, we found that twenty-two out of sixty-four compounds tested were able to prolong both lifespan and healthspan measures. Focusing on the use of female and male mice, and on comparing their outcomes, we found that 40% of studies only used male mice or did not clarify the sex. Notably, of the 36% of pharmacologic interventions that did use both male and female mice, 73% of these studies showed sex-specific outcomes on healthspan and/or lifespan. These data highlight the importance of studying both sexes in the search for geroprotectors, as the biology of aging is not the same in male and female mice. Systematic Review Registration: [website], identifier [registration number].
Collapse
Affiliation(s)
| | | | - Collin Y. Ewald
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
6
|
Zeng W, Wu AG, Zhou XG, Khan I, Zhang RL, Lo HH, Qu LQ, Song LL, Yun XY, Wang HM, Chen J, Ng JPL, Ren F, Yuan SY, Yu L, Tang Y, Huang GX, Wong VKW, Chung SK, Mok SWF, Qin DL, Sun HL, Liu L, Hsiao WLW, Law BYK. Saponins isolated from Radix polygalae extent lifespan by modulating complement C3 and gut microbiota. Pharmacol Res 2021; 170:105697. [PMID: 34062240 DOI: 10.1016/j.phrs.2021.105697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
With the increase in human lifespan, population aging is one of the major problems worldwide. Aging is an irreversible progressive process that affects humans via multiple factors including genetic, immunity, cellular oxidation and inflammation. Progressive neuroinflammation contributes to aging, cognitive malfunction, and neurodegenerative diseases. However, precise mechanisms or drugs targeting age-related neuroinflammation and cognitive impairment remain un-elucidated. Traditional herbal plants have been prescribed in many Asian countries for anti-aging and the modulation of aging-related symptoms. In general, herbal plants' efficacy is attributed to their safety and polypharmacological potency via the systemic manipulation of the body system. Radix polygalae (RP) is a herbal plant prescribed for anti-aging and the relief of age-related symptoms; however, its active components and biological functions remained un-elucidated. In this study, an active methanol fraction of RP containing 17 RP saponins (RPS), was identified. RPS attenuates the elevated C3 complement protein in aged mice to a level comparable to the young control mice. The active RPS also restates the aging gut microbiota by enhancing beneficial bacteria and suppressing harmful bacteria. In addition, RPS treatment improve spatial reference memory in aged mice, with the attenuation of multiple molecular markers related to neuroinflammation and aging. Finally, the RPS improves the behavior and extends the lifespan of C. elegans, confirming the herbal plant's anti-aging ability. In conclusion, through the mouse and C. elegas models, we have identified the beneficial RPS that can modulate the aging process, gut microbiota diversity and rectify several aging-related phenotypes.
Collapse
Affiliation(s)
- Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Department of Center for Neuro-metabolism and Regeneration Research, Bioland Laboratory, Guangzhou, China
| | - An Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Rui Long Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Li Qun Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Lin Lin Song
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Xiao Yun Yun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Hui Miao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jerome P L Ng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Si Yu Yuan
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yong Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Guo Xin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Sookja Kim Chung
- Department of Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Simon Wing Fai Mok
- Department of Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Da Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hua Lin Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
7
|
Hsu WH, Huang NK, Shiao YJ, Lu CK, Chao YM, Huang YJ, Yeh CH, Lin YL. Gastrodiae rhizoma attenuates brain aging via promoting neuritogenesis and neurodifferentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153576. [PMID: 33985879 DOI: 10.1016/j.phymed.2021.153576] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 03/23/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Gastrodiae Rhizoma (Tianma), the dried tuber of Gastrodia elata Bl. (Orchidaceae), is listed as a top-grade herbal medicine in Shen-nong Ben-ts'ao Jing and has been used for treating headaches, dizziness, vertigo and convulsion. It has a neuroprotective effect and extends the lifespan in mouse models of Huntington's disease and Niemann-Pick type C disease. However, its effect on senescence remains unknown. PURPOSE This study aimed to investigate the anti-aging effects and the underlying mechanism of Gastrodiae Rhizoma. METHODS D-galactose (D-gal)- and BeSO4-induced cellular senescence and senescence-associated β-galactosidase (SA-β-gal) activity were evaluated in SH-SY5Y and PC12 cells. D-gal-induced aging mice were used as an in vivo model. Animal behaviors including nesting and burrowing and Morris water maze were conducted. Neurogenesis in the hippocampus was assessed by immunohistochemistry and confocal microscopy, and the aging-related proteins were assessed by Western blot analysis. The potential neuritogenesis activity of the partially purified fraction of Gastrodiae Rhizoma (TM-2) and its major ingredients were investigated in PC12 cells. RESULTS TM-2 could improve D-gal-induced learning and memory impairement by inhibiting oxidative stress, increasing hippocampal neurogenesis and regulating the SH2B1-Akt pathway. Moreover, N6-(4-hydroxybenzyl)adenine riboside (T1-11) and parishins A and B, three constituents of TM-2, had anti-aging activity, as did T1-11 and parishin A induced neuritogenesis. CONCLUSION Our data suggested that TM-2 slowed down D-gal-induced cellular and mouse brain aging. These results indicate that Gastrodiae Rhizoma has a beneficial effect on senescence. It may be used for neuroprotection and promoting neurogenesis.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Nai-Kuei Huang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan; Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Yen-Ming Chao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Yi-Jeng Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Chih-Hsin Yeh
- Taoyuan District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Taoyuan 32754, Taiwan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; Department of Pharmacy, National Taiwan University, Taipei 10050, Taiwan.
| |
Collapse
|
8
|
Ny V, Houška M, Pavela R, Tříska J. Potential benefits of incorporating Astragalus membranaceus into the diet of people undergoing disease treatment: An overview. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
9
|
Hsu WH, Lin BZ, Leu JD, Lo PH, Yu HY, Chen CT, Tu YH, Lin YL, Lee YJ. Involvement of 8-O-acetylharpagide for Ajuga taiwanensis mediated suppression of senescent phenotypes in human dermal fibroblasts. Sci Rep 2020; 10:19731. [PMID: 33184359 PMCID: PMC7661503 DOI: 10.1038/s41598-020-76797-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
Herbal medicines are attractive agents for human care. In this study, we found that the alcohol extract of Ajuga taiwanensis (ATE) screened from a chemical bank exhibited potent capacity for suppressing senescence associated biomarkers, including SA-β-gal and up-regulated p53 in old human dermal fibroblasts (HDFs) without induction of significant cytotoxicity up to 100 µg/ml. Concomitantly, cells re-entered the cell cycle by reducing G1 phase arrest and increasing cell growth rate. The ATE was further partitioned to obtain the sub-fractions of n-butanol (BuOH), ethyl acetate (EA) and water. The BuOH and water sub-fractions exhibited less effects on prohibition of cell growth than the EA sub-fraction. All of these sub-fractions exhibited the ability on suppressing SA-β-gal and p53 of old HDFs as low as 5-10 µg/ml. Under the activity guided fractionation and isolation, a major active constituent named AT-1 was isolated. The AT-1 was further identified as 8-O-acetylharpagide by structural analysis, and it could suppress SA-β-gal and p53 of old HDFs below 10 µM. In addition, the intracellular reactive oxygen species (ROS) levels of old HDFs were suppressed by ATE, the sub-fractions of BuOH and water, and AT-1. However, the EA sub-fraction showed little ability on suppression of ROS. Furthermore, we performed an in vivo study using aging mice to be fed with ATE and the sub-fractions followed by immunohistochemical (IHC) staining. The expression of p53 and SA-β-gal was significantly reduced in several tissue sections, including skin, liver, kidney, and spleen. Taken together, current data demonstrated that A. taiwanensis could suppress cellular senescence in HDFs, and might be used for health care.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Bing-Ze Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong St. Beitou District, Taipei, 11221, Taiwan, ROC
| | - Jyh-Der Leu
- Division of Radiation Oncology, Taipei City Hospital RenAi Branch, Taipei, 106, Taiwan, ROC
- Institute of Neuroscience, National Chengchi University, Taipei, 116, Taiwan, ROC
| | - Pin-Ho Lo
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong St. Beitou District, Taipei, 11221, Taiwan, ROC
| | - Hsueh-Yen Yu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong St. Beitou District, Taipei, 11221, Taiwan, ROC
| | - Chao-Tsung Chen
- Department of Traditional Chinese Medicine, Taipei City Hospital RenAi Branch, Taipei, 106, Taiwan, ROC
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, 11221, Taiwan, ROC
- General Education Center, University of Taipei, Taipei, 11153, Taiwan, ROC
| | - Yuan-Heng Tu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong St. Beitou District, Taipei, 11221, Taiwan, ROC
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan, ROC.
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong St. Beitou District, Taipei, 11221, Taiwan, ROC.
- Cancer Progression Research Center, National Yang-Ming University, Taipei, 11221, Taiwan, ROC.
| |
Collapse
|
10
|
Abruzzo PM, Canaider S, Pizzuti V, Pampanella L, Casadei R, Facchin F, Ventura C. Herb-Derived Products: Natural Tools to Delay and Counteract Stem Cell Senescence. Stem Cells Int 2020; 2020:8827038. [PMID: 33101419 PMCID: PMC7568162 DOI: 10.1155/2020/8827038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular senescence plays a very important role in organismal aging increasing with age and in age-related diseases (ARDs). This process involves physiological, structural, biochemical, and molecular changes of cells, leading to a characteristic trait referred to "senescence-associated secretory phenotype (SASP)." In particular, with aging, stem cells (SCs) in situ exhibit a diminished capacity of self-renewal and show a decline in their functionality. The identification of interventions able to prevent the accumulation of senescent SCs in the organism or to pretreat cultured multipotent mesenchymal stromal cells (MSCs) prior to employing them for cell therapy is a main purpose of medical research. Many approaches have been investigated and resulted effective to prevent or counteract SC senescence in humans, as well as other animal models. In this work, we have reviewed the chance of using a number of herb-derived products as novel tools in the treatment of cell senescence, highlighting the efficacy of these agents, often still far from being clearly understood.
Collapse
Affiliation(s)
- Provvidenza M. Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering-Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Valeria Pizzuti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Luca Pampanella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D'Augusto 237, 47921 Rimini, Italy
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering-Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering-Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
11
|
Song J, Chen M, Li Z, Zhang J, Hu H, Tong X, Dai F. Astragalus Polysaccharide Extends Lifespan via Mitigating Endoplasmic Reticulum Stress in the Silkworm, Bombyx mori. Aging Dis 2019; 10:1187-1198. [PMID: 31788331 PMCID: PMC6844597 DOI: 10.14336/ad.2019.0515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022] Open
Abstract
The traditional Chinese medicine Astragalus polysaccharide (APS) has been widely used to improve glucose homeostasis and immunoregulator properties. In recent years, it has also been shown to extend the lifespan of Caenorhabditis elegans; however, the underlying molecular mechanisms are not fully understood. Here, our study shows that APS could significantly extend adult stage, mean, and maximum lifespan of the silkworm, Bombyx mori and increase body weight without affecting food intake and fecundity. Meanwhile, the activities of glutathione S-transferase and superoxide dismutase are significantly enhanced, and the reaction oxygen species content is reduced concomitantly. Moreover, the activity of lysozyme is increased dramatically. In addition, APS rescues the shortened lifespan by Bacillus thuringiensis infection in silkworm. Furthermore, the transcription of the crucial genes involved in endoplasmic reticulum stress is upregulated upon the endoplasmic reticulum stress stimulation. APS also significantly ameliorates endoplasmic reticulum stress in silkworm cell line and in vivo. Together, the results of this study indicate that APS can prolong the silkworm lifespan by mitigating endoplasmic reticulum stress. This study improves our understanding of the molecular mechanism of APS-induced lifespan extension and highlights the importance of the silkworm as an experimental animal for evaluating the effects and revealing the mechanisms in lifespan extension of traditional Chinese medicine.
Collapse
Affiliation(s)
| | | | - Zhiquan Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Jianfei Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| |
Collapse
|
12
|
Shetty AK, Kodali M, Upadhya R, Madhu LN. Emerging Anti-Aging Strategies - Scientific Basis and Efficacy. Aging Dis 2018; 9:1165-1184. [PMID: 30574426 PMCID: PMC6284760 DOI: 10.14336/ad.2018.1026] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
The prevalence of age-related diseases is in an upward trend due to increased life expectancy in humans. Age-related conditions are among the leading causes of morbidity and death worldwide currently. Therefore, there is an urgent need to find apt interventions that slow down aging and reduce or postpone the incidence of debilitating age-related diseases. This review discusses the efficacy of emerging anti-aging approaches for maintaining better health in old age. There are many anti-aging strategies in development, which include procedures such as augmentation of autophagy, elimination of senescent cells, transfusion of plasma from young blood, intermittent fasting, enhancement of adult neurogenesis, physical exercise, antioxidant intake, and stem cell therapy. Multiple pre-clinical studies suggest that administration of autophagy enhancers, senolytic drugs, plasma from young blood, drugs that enhance neurogenesis and BDNF are promising approaches to sustain normal health during aging and also to postpone age-related neurodegenerative diseases such as Alzheimer's disease. Stem cell therapy has also shown promise for improving regeneration and function of the aged or Alzheimer's disease brain. Several of these approaches are awaiting critical appraisal in clinical trials to determine their long-term efficacy and possible adverse effects. On the other hand, procedures such as intermittent fasting, physical exercise, intake of antioxidants such as resveratrol and curcumin have shown considerable promise for improving function in aging, some of which are ready for large-scale clinical trials, as they are non-invasive, and seem to have minimal side effects. In summary, several approaches are at the forefront of becoming mainstream therapies for combating aging and postponing age-related diseases in the coming years.
Collapse
Affiliation(s)
- Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
| |
Collapse
|