1
|
Liang W, Sun W, Li C, Zhou J, Long C, Li H, Xu D, Xu H. Glymphatic system dysfunction and cerebrospinal fluid retention in gliomas: evidence from perivascular space diffusion and volumetric analysis. Cancer Imaging 2025; 25:51. [PMID: 40197529 PMCID: PMC11974089 DOI: 10.1186/s40644-025-00868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Gliomas may impair glymphatic function and alter cerebrospinal fluid (CSF) dynamics through structural brain changes, potentially affecting peritumoral brain edema (PTBE) and fluid clearance. This study investigated the impact of gliomas on glymphatic system function and CSF volume via diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) and volumetric magnetic resonance imaging (MRI), which clarified the relationships between tumor characteristics and glymphatic system disruption. METHODS In this prospective study, 112 glioma patients and 56 healthy controls underwent MRI to calculate DTI-ALPS indices and perform volumetric analyses of CSF, tumor, and PTBE. Statistical analyses were used to assess the relationships between the DTI-ALPS index, tumor volume, PTBE volume, and clinical characteristics. RESULTS Glioma patients had significantly lower DTI-ALPS indices (1.266 ± 0.258 vs. 1.395 ± 0.174, p < 0.001) and greater CSF volumes (174.53 ± 34.89 cm³ vs. 154.25 ± 20.89 cm³, p < 0.001) than controls did. The DTI-ALPS index was inversely correlated with tumor volume (r = -0.353, p < 0.001) and PTBE volume (r = -0.266, p = 0.015). High-grade gliomas were associated with lower DTI-ALPS indices and larger PTBE volumes (all p < 0.001). Tumor grade emerged as an independent predictor of the DTI-ALPS index in multivariate analysis (β = -0.244, p = 0.011). CONCLUSION Gliomas are associated with significant glymphatic dysfunction, as evidenced by reduced DTI-ALPS indices and increased CSF and PTBE volumes. The DTI-ALPS index serves as a potential biomarker of glymphatic disruption in glioma patients, offering insights into tumor-related fluid changes and the pathophysiology of brain-tumor interactions.
Collapse
Affiliation(s)
- Weiqiang Liang
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China
| | - Chunyan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China
| | - Jie Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China
| | - Changyou Long
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China
| | - Huan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China.
| |
Collapse
|
2
|
Mei T, Chen Y, Gao Y, Zhao H, Lyu X, Lin J, Niu T, Han H, Tong Z. Formaldehyde initiates memory and motor impairments under weightlessness condition. NPJ Microgravity 2024; 10:100. [PMID: 39468074 PMCID: PMC11519943 DOI: 10.1038/s41526-024-00441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
During space flight, prolonged weightlessness stress exerts a range of detrimental impacts on the physiology and psychology of astronauts. These manifestations encompass depressive symptoms, anxiety, and impairments in both short-term memory and motor functions, albeit the precise underlying mechanisms remain elusive. Recent studies have revealed that hindlimb unloading (HU) animal models, which simulate space weightlessness, exhibited a disorder in memory and motor function associated with endogenous formaldehyde (FA) accumulation in the hippocampus and cerebellum, disruption of brain extracellular space (ECS), and blockage of interstitial fluid (ISF) drainage. Notably, the impairment of the blood-brain barrier (BBB) caused by space weightlessness elicits the infiltration of albumin and hemoglobin from the blood vessels into the brain ECS. However, excessive FA has the potential to form cross-links between these two proteins and amyloid-beta (Aβ), thereby obstructing ECS and inducing neuron death. Moreover, FA can inhibit N-methyl-D-aspartate (NMDA) currents by crosslinking NR1 and NR2B subunits, thus impairing memory. Additionally, FA has the ability to modulate the levels of certain microRNAs (miRNAs) such as miRNA-29b, which can affect the expression of aquaporin-4 (AQP4) so as to regulate ECS structure and ISF drainage. Especially, the accumulation of FA may inactivate the ataxia telangiectasia-mutated (ATM) protein kinase by forming cross-linking, a process that is associated with ataxia. Hence, this review presents that weightlessness stress-derived FA may potentially serve as a crucial catalyst in the deterioration of memory and motor abilities in the context of microgravity.
Collapse
Affiliation(s)
- Tianhao Mei
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hang Zhao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingzhou Lyu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Lin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, China.
- University of Science and Technology of China, Anhui, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Sriram S, Carstens K, Dewing W, Fiacco TA. Astrocyte regulation of extracellular space parameters across the sleep-wake cycle. Front Cell Neurosci 2024; 18:1401698. [PMID: 38988660 PMCID: PMC11233815 DOI: 10.3389/fncel.2024.1401698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Multiple subfields of neuroscience research are beginning to incorporate astrocytes into current frameworks of understanding overall brain physiology, neuronal circuitry, and disease etiology that underlie sleep and sleep-related disorders. Astrocytes have emerged as a dynamic regulator of neuronal activity through control of extracellular space (ECS) volume and composition, both of which can vary dramatically during different levels of sleep and arousal. Astrocytes are also an attractive target of sleep research due to their prominent role in the glymphatic system, a method by which toxic metabolites generated during wakefulness are cleared away. In this review we assess the literature surrounding glial influences on fluctuations in ECS volume and composition across the sleep-wake cycle. We also examine mechanisms of astrocyte volume regulation in glymphatic solute clearance and their role in sleep and wake states. Overall, findings highlight the importance of astrocytes in sleep and sleep research.
Collapse
Affiliation(s)
- Sandhya Sriram
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Kaira Carstens
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Wayne Dewing
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, CA, United States
| | - Todd A Fiacco
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
4
|
龙 仁, 毛 鑫, 高 天, 解 倩, 谈 瀚, 李 子, 韩 鸿, 袁 兰. [Ursolic acid improved demyelination and interstitial fluid drainage disorders in schizophrenia mice]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:487-494. [PMID: 38864135 PMCID: PMC11167553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To unveil the pathological changes associated with demyelination in schizophrenia (SZ) and its consequential impact on interstitial fluid (ISF) drainage, and to investigate the therapeutic efficacy of ursolic acid (UA) in treating demyelination and the ensuing abnormalities in ISF drainage in SZ. METHODS Female C57BL/6J mice, aged 6-8 weeks and weighing (20±2) g, were randomly divided into three groups: control, SZ model, and UA treatment. The control group received intraperitoneal injection (ip) of physiological saline and intragastric administration (ig) of 1% carboxymethylcellulose sodium (CMC-Na). The SZ model group was subjected to ip injection of 2 mg/kg dizocilpine maleate (MK-801) and ig administration of 1% CMC-Na. The UA treatment group underwent ig administration of 25 mg/kg UA and ip injection of 2 mg/kg MK-801. The treatment group received UA pretreatment via ig administration for one week, followed by a two-week drug intervention for all the three groups. Behavioral assessments, including the open field test and prepulse inhibition experiment, were conducted post-modeling. Subsequently, changes in the ISF partition drainage were investigated through fluorescent tracer injection into specific brain regions. Immunofluorescence analysis was employed to examine alterations in aquaporin 4 (AQP4) polarity distribution in the brain and changes in protein expression. Myelin reflex imaging using Laser Scanning Confocal Microscopy (LSCM) was utilized to study modifications in myelin within the mouse brain. Quantitative data underwent one-way ANOVA, followed by TukeyHSD for post hoc pairwise comparisons between the groups. RESULTS The open field test revealed a significantly longer total distance [(7 949.39±1 140.55) cm vs. (2 831.01±1 212.72) cm, P < 0.001] and increased central area duration [(88.43±22.06) s vs. (56.85±18.58) s, P=0.011] for the SZ model group compared with the controls. The UA treatment group exhibited signifi-cantly reduced total distance [(2 415.80±646.95) cm vs. (7 949.39±1 140.55) cm, P < 0.001] and increased central area duration [(54.78±11.66) s vs. (88.43±22.06) s, P=0.007] compared with the model group. Prepulse inhibition test results demonstrated a markedly lower inhibition rate of the startle reflex in the model group relative to the controls (P < 0.001 for both), with the treatment group displaying significant improvement (P < 0.001 for both). Myelin sheath analysis indicated significant demyelination in the model group, while UA treatment reversed this effect. Fluorescence tracing exhibited a significantly larger tracer diffusion area towards the rostral cortex and reflux area towards the caudal thalamus in the model group relative to the controls [(13.93±3.35) mm2 vs. (2.79±0.94) mm2, P < 0.001 for diffusion area; (2.48±0.38) mm2 vs. (0.05±0.12) mm2, P < 0.001 for reflux area], with significant impairment of drainage in brain regions. The treatment group demonstrated significantly reduced tracer diffusion and reflux areas [(7.93±2.48) mm2 vs. (13.93±3.35) mm2, P < 0.001 for diffusion area; (0.50±0.30) mm2 vs. (2.48±0.38) mm2, P < 0.001 for reflux area]. Immunofluorescence staining revealed disrupted AQP4 polarity distribution and reduced AQP4 protein expression in the model group compared with the controls [(3 663.88±733.77) μm2 vs. (13 354.92±4 054.05) μm2, P < 0.001]. The treatment group exhibited restored AQP4 polarity distribution and elevated AQP4 protein expression [(11 104.68±3 200.04) μm2 vs. (3 663.88±733.77) μm2, P < 0.001]. CONCLUSION UA intervention ameliorates behavioral performance in SZ mice, Thus alleviating hyperactivity and anxiety symptoms and restoring sensorimotor gating function. The underlying mechanism may involve the improvement of demyelination and ISF drainage dysregulation in SZ mice.
Collapse
Affiliation(s)
- 仁 龙
- 北京大学医学技术研究院医学影像技术学系,北京市磁共振成像设备与技术重点实验室,北京 100191Department of Medical Imaging Technology, Institute of Medical Technology, Peking University & Beijing Key Lab of Magnetic Resonance Imaging Device and Technique, Beijing 100191, China
| | - 鑫 毛
- 北京大学第三医院放射科,北京 100191Department of Radiology, Peking Univer-sity Third Hispital, Beijing 100191, China
| | - 天姿 高
- 北京大学医学技术研究院医学影像技术学系,北京市磁共振成像设备与技术重点实验室,北京 100191Department of Medical Imaging Technology, Institute of Medical Technology, Peking University & Beijing Key Lab of Magnetic Resonance Imaging Device and Technique, Beijing 100191, China
| | - 倩 解
- 北京大学第三医院放射科,北京 100191Department of Radiology, Peking Univer-sity Third Hispital, Beijing 100191, China
| | - 瀚博 谈
- 北京大学医学技术研究院医学影像技术学系,北京市磁共振成像设备与技术重点实验室,北京 100191Department of Medical Imaging Technology, Institute of Medical Technology, Peking University & Beijing Key Lab of Magnetic Resonance Imaging Device and Technique, Beijing 100191, China
| | - 子寅 李
- 北京大学医学技术研究院医学影像技术学系,北京市磁共振成像设备与技术重点实验室,北京 100191Department of Medical Imaging Technology, Institute of Medical Technology, Peking University & Beijing Key Lab of Magnetic Resonance Imaging Device and Technique, Beijing 100191, China
| | - 鸿宾 韩
- 北京大学医学技术研究院医学影像技术学系,北京市磁共振成像设备与技术重点实验室,北京 100191Department of Medical Imaging Technology, Institute of Medical Technology, Peking University & Beijing Key Lab of Magnetic Resonance Imaging Device and Technique, Beijing 100191, China
- 北京大学第三医院放射科,北京 100191Department of Radiology, Peking Univer-sity Third Hispital, Beijing 100191, China
| | - 兰 袁
- 北京大学医学技术研究院医学影像技术学系,北京市磁共振成像设备与技术重点实验室,北京 100191Department of Medical Imaging Technology, Institute of Medical Technology, Peking University & Beijing Key Lab of Magnetic Resonance Imaging Device and Technique, Beijing 100191, China
| |
Collapse
|
5
|
Liao J, Gong L, Xu Q, Wang J, Yang Y, Zhang S, Dong J, Lin K, Liang Z, Sun Y, Mu Y, Chen Z, Lu Y, Zhang Q, Lin Z. Revolutionizing Neurocare: Biomimetic Nanodelivery Via Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402445. [PMID: 38583077 DOI: 10.1002/adma.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.
Collapse
Affiliation(s)
- Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qingqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jingya Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shiming Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Junwei Dong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Kerui Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuhan Sun
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongxu Mu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Zhengju Chen
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China
| | - Ying Lu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
6
|
Liu X, Zhang Y, Zhao Y, Zhang Q, Han F. The Neurovascular Unit Dysfunction in the Molecular Mechanisms of Epileptogenesis and Targeted Therapy. Neurosci Bull 2024; 40:621-634. [PMID: 38564049 PMCID: PMC11127907 DOI: 10.1007/s12264-024-01193-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/09/2023] [Indexed: 04/04/2024] Open
Abstract
Epilepsy is a multifaceted neurological syndrome characterized by recurrent, spontaneous, and synchronous seizures. The pathogenesis of epilepsy, known as epileptogenesis, involves intricate changes in neurons, neuroglia, and endothelium, leading to structural and functional disorders within neurovascular units and culminating in the development of spontaneous epilepsy. Although current research on epilepsy treatments primarily centers around anti-seizure drugs, it is imperative to seek effective interventions capable of disrupting epileptogenesis. To this end, a comprehensive exploration of the changes and the molecular mechanisms underlying epileptogenesis holds the promise of identifying vital biomarkers for accurate diagnosis and potential therapeutic targets. Emphasizing early diagnosis and timely intervention is paramount, as it stands to significantly improve patient prognosis and alleviate the socioeconomic burden. In this review, we highlight the changes and molecular mechanisms of the neurovascular unit in epileptogenesis and provide a theoretical basis for identifying biomarkers and drug targets.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Ying Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yanming Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Qian Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 211166, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 210019, China.
| |
Collapse
|
7
|
Avilez-Avilez JJ, Medina-Flores MF, Gómez-Gonzalez B. Sleep loss impairs blood-brain barrier function: Cellular and molecular mechanisms. VITAMINS AND HORMONES 2024; 126:77-96. [PMID: 39029977 DOI: 10.1016/bs.vh.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Sleep is a physiological process that preserves the integrity of the neuro-immune-endocrine network to maintain homeostasis. Sleep regulates the production and secretion of hormones, neurotransmitters, cytokines and other inflammatory mediators, both at the central nervous system (CNS) and at the periphery. Sleep promotes the removal of potentially toxic metabolites out of the brain through specialized systems such as the glymphatic system, as well as the expression of specific transporters in the blood-brain barrier. The blood-brain barrier maintains CNS homeostasis by selectively transporting metabolic substrates and nutrients into the brain, by regulating the efflux of metabolic waste products, and maintaining bidirectional communication between the periphery and the CNS. All those processes are disrupted during sleep loss. Brain endothelial cells express the blood-brain barrier phenotype, which arises after cell-to-cell interactions with mural cells, like pericytes, and after the release of soluble factors by astroglial endfeet. Astroglia, pericytes and brain endothelial cells respond differently to sleep loss; evidence has shown that sleep loss induces a chronic low-grade inflammatory state at the CNS, which is associated with blood-brain barrier dysfunction. In animal models, blood-brain barrier dysfunction is characterized by increased blood-brain barrier permeability, decreased tight junction protein expression and pericyte detachment from the capillary wall. Blood-brain barrier dysfunction may promote defects in brain clearance of potentially neurotoxic metabolites and byproducts of neural physiology, which may eventually contribute to neurodegenerative diseases. This chapter aims to describe the cellular and molecular mechanisms by which sleep loss modifies the function of the blood-brain barrier.
Collapse
Affiliation(s)
- Jessica Janeth Avilez-Avilez
- Graduate Program in Experimental Biology, Universidad Autónoma Metropolitana, Mexico City, Mexico; Area of Neurosciences, Department of Biology of Reproduction, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - María Fernanda Medina-Flores
- Graduate Program in Experimental Biology, Universidad Autónoma Metropolitana, Mexico City, Mexico; Area of Neurosciences, Department of Biology of Reproduction, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Beatriz Gómez-Gonzalez
- Area of Neurosciences, Department of Biology of Reproduction, Universidad Autónoma Metropolitana, Mexico City, Mexico.
| |
Collapse
|
8
|
Alghanimy A, Martin C, Gallagher L, Holmes WM. The effect of a novel AQP4 facilitator, TGN-073, on glymphatic transport captured by diffusion MRI and DCE-MRI. PLoS One 2023; 18:e0282955. [PMID: 36920936 PMCID: PMC10016657 DOI: 10.1371/journal.pone.0282955] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The glymphatic system is a low resistance pathway, by which cerebrospinal fluid enters the brain parenchyma along perivascular spaces via AQP4 channels. It is hypothesised that the resulting convective flow of the interstitial fluid provides an efficient mechanism for the removal of waste toxins from the brain. Therefore, enhancing AQP4 function might protect against neurodegenerative diseases such as Alzheimer's disease (AD), in which the accumulation of harmful proteins and solutes is a hallmark feature. Here, we test the effect of a putative AQP4 facilitator, TGN-073, on glymphatic transport in a normal rat brain by employing different MRI techniques. Surgical procedures were undertaken to catheterise the cisterna magna, thereby enabling infusion of the MRI tracer. Followed by the intraperitoneal injection of either TGN-073, or the vehicle. Using a paramagnetic contrast agent (Gd-DTPA) as the MRI tracer, dynamic 3D T1 weighted imaging of the glymphatic system was undertaken over two hours. Further, the apparent diffusion coefficient was measured in different brain regions using diffusion-weighted imaging (DWI). While physiological parameters and arterial blood gas analysis were monitored continuously. We found that rats treated with TGN-073 showed the distribution of Gd-DTPA was more extensive and parenchymal uptake was higher compared with the vehicle group. Water diffusivity was increased in the brain of TGN-073 treated group, which indicates greater water flux. Also, MRI showed the glymphatic transport and distribution in the brain is naturally heterogeneous, which is consistent with previous studies. Our results indicate that compounds such as TGN-073 can improve glymphatic function in the brain. Since glymphatic impairment due to AQP4 dysfunction is potentially associated with several neurological disorders such as AD, dementia and traumatic brain injury, enhancing AQP4 functionality might be a promising therapeutic target.
Collapse
Affiliation(s)
- Alaa Alghanimy
- Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Conor Martin
- Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Lindsay Gallagher
- Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - William M. Holmes
- Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Lan YL, Wang H, Chen A, Zhang J. Update on the current knowledge of lymphatic drainage system and its emerging roles in glioma management. Immunology 2023; 168:233-247. [PMID: 35719015 DOI: 10.1111/imm.13517] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
The draining of brain interstitial fluid (ISF) to cerebrospinal fluid (CSF) and the subsequent draining of CSF to meningeal lymphatics is well-known. Nonetheless, its role in the development of glioma is a remarkable finding that has to be extensively understood. The glymphatic system (GS) collects CSF from the subarachnoid space and brain ISF through aquaporin-4 (AQP4) water channels. The glial limiting membrane and the perivascular astrocyte-end-feet membrane both have elevated levels of AQP4. CSF is thought to drain through the nerve sheaths of the olfactory and other cranial nerves as well as spinal meningeal lymphatics via dorsal or basal lymphatic vessels. Meningeal lymphatic vessels (MLVs) exist below the skull in the dorsal and basal regions. In this view, MLVs offer a pathway to drain macromolecules and traffic immunological cells from the CNS into cervical lymph nodes (CLNs), and thus can be used as a candidate curing strategy against glioma and other associated complications, such as neuro-inflammation. Taken together, the lymphatic drainage system could provide a route or approach for drug targeting of glioma and other neurological conditions. Nevertheless, its pathophysiological role in glioma remains elusive, which needs extensive research. The current review aims to explore the lymphatic drainage system, its role in glioma progression, and possible therapeutic techniques that target MLVs in the CNS.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongjin Wang
- Department of Neurology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Aiqin Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Cai X, He Q, Wang W, Li C, Wang H, Yin F, Li T, Kong D, Jia Y, Li H, Yan J, Wei X, Ren Q, Gao Y, Yang S, Tong H, Peng Y, Han H. Epidural Pulsation Accelerates the Drainage of Brain Interstitial Fluid. Aging Dis 2023; 14:219-228. [PMID: 36818558 PMCID: PMC9937704 DOI: 10.14336/ad.2022.0609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/09/2022] [Indexed: 11/01/2022] Open
Abstract
Unhindered transportation of substances in the brain extracellular space (ECS) is essential for maintaining brain function. Regulation of transportation is a novel strategy for treating ECS blockage-related brain diseases, but few techniques have been developed to date. In this study, we established a novel approach for accelerating the drainage of brain interstitial fluid (ISF) in the ECS using minimally invasive surgery, in which a branch of the external carotid artery is separated and implanted epidurally (i.e., epidural arterial implantation [EAI]) to promote a pulsation effect on cerebrospinal fluid (CSF) in the frontoparietal region. Tracer-based magnetic resonance imaging was used to evaluate the changes in ISF drainage in rats 7 and 15 days post-EAI. The drainage of the traced ISF from the caudate nucleus to ipsilateral cortex was significantly accelerated by EAI. Significant increases in the volume fraction of the ECS and molecular diffusion rate were demonstrated using the DECS-mapping technique, which may account for the mechanisms underlying the changes in brain ISF. This study provides a novel perspective for encephalopathy treatment via the brain ECS.
Collapse
Affiliation(s)
- Xianjie Cai
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, China.
| | - Wei Wang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.
| | - Hui Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Feng Yin
- Department of Neurosurgery, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, China.
| | - Tong Li
- Department of Neurosurgery, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, China.
| | - Dongsheng Kong
- Department of Neurosurgery, First Medical Center, General Hospital of Chinese PLA, Beijing, China.
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Hongfeng Li
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Xunbin Wei
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Qiushi Ren
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Shuangfeng Yang
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Huaiyu Tong
- Department of Neurosurgery, First Medical Center, General Hospital of Chinese PLA, Beijing, China.,Correspondence should be addressed to: Dr. Hongbin Han, Peking University Third Hospital, Beijing, China. ; Dr. Huaiyu Tong, First Medical Center, General Hospital of Chinese PLA, Beijing, China. , Dr. Yun Peng, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China. .
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Correspondence should be addressed to: Dr. Hongbin Han, Peking University Third Hospital, Beijing, China. ; Dr. Huaiyu Tong, First Medical Center, General Hospital of Chinese PLA, Beijing, China. , Dr. Yun Peng, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China. .
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China.,Correspondence should be addressed to: Dr. Hongbin Han, Peking University Third Hospital, Beijing, China. ; Dr. Huaiyu Tong, First Medical Center, General Hospital of Chinese PLA, Beijing, China. , Dr. Yun Peng, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China. .
| |
Collapse
|
11
|
Sun Y, Liu E, Pei Y, Yao Q, Ma H, Mu Y, Wang Y, Zhang Y, Yang X, Wang X, Xue J, Zhai J, Carare RO, Qin L, Yan J. The impairment of intramural periarterial drainage in brain after subarachnoid hemorrhage. Acta Neuropathol Commun 2022; 10:187. [PMID: 36529767 PMCID: PMC9759914 DOI: 10.1186/s40478-022-01492-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Interstitial fluid (ISF) from brain drains along the basement membranes of capillaries and arteries as Intramural Periarterial Drainage (IPAD); failure of IPAD results in cerebral amyloid angiopathy (CAA). In this study, we test the hypothesis that IPAD fails after subarachnoid haemorrhage (SAH). The rat SAH model was established using endovascular perforation method. Fluorescence dyes with various molecular weights were injected into cisterna magna of rats, and the pattern of IPAD after SAH was detected using immunofluorescence staining, two-photon fluorescent microscope, transmission electron microscope and magnetic resonance imaging tracking techniques. Our results showed that fluorescence dyes entered the brain along a periarterial compartment and were cleared from brain along the basement membranes of the capillaries, with different patterns based on individual molecular weights. After SAH, there was significant impairment in the IPAD system: marked expansion of perivascular spaces, and ISF clearance rate was significantly decreased, associated with the apoptosis of endothelial cells, activation of astrocytes, over-expression of matrix metalloproteinase 9 and loss of collagen type IV. In conclusion, experimental SAH leads to a failure of IPAD, clinically significant for long term complications such as CAA, following SAH.
Collapse
Affiliation(s)
- Yanrong Sun
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - E. Liu
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.27255.370000 0004 1761 1174Department of Anatomy, School of Medicine, Shandong University, Jinan, 250012 Shandong China
| | - Yanhong Pei
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Qinhan Yao
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Haowen Ma
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Yakun Mu
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Yingjie Wang
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Yan Zhang
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Xiaomei Yang
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Xing Wang
- grid.48166.3d0000 0000 9931 8406State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Jiajia Xue
- grid.48166.3d0000 0000 9931 8406State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Jiliang Zhai
- grid.413106.10000 0000 9889 6335Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730 China
| | - Roxana O. Carare
- grid.5491.90000 0004 1936 9297Faculty of Medicine, UK Southampton General Hospital, University of Southampton, Southampton, SO16 6YD UK ,University of Medicine, Pharmacy, Science and Technology “G.E. Palade”, Targu Mures, Romania
| | - Lihua Qin
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Junhao Yan
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.411642.40000 0004 0605 3760Beijing Key Lab of Magnetic Resonance Imaging Technology, Peking University Third Hospital, Beijing, 100191 China
| |
Collapse
|
12
|
Gu Z, Chen H, Zhao H, Yang W, Song Y, Li X, Wang Y, Du D, Liao H, Pan W, Li X, Gao Y, Han H, Tong Z. New insight into brain disease therapy: nanomedicines-crossing blood-brain barrier and extracellular space for drug delivery. Expert Opin Drug Deliv 2022; 19:1618-1635. [PMID: 36285632 DOI: 10.1080/17425247.2022.2139369] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Brain diseases including brain tumor, Alzheimer's disease, Parkinson's disease, etc. are difficult to treat. The blood-brain barrier (BBB) is a major obstacle for drug delivery into the brain. Although nano-package and receptor-mediated delivery of nanomedicine markedly increases BBB penetration, it yet did not extensively improve clinical cure rate. Recently, brain extracellular space (ECS) and interstitial fluid (ISF) drainage in ECS have been found to determine whether a drug dissolved in ISF can reach its target cells. Notably, an increase in tortuosity of ECS associated with slower ISF drainage induced by the accumulated harmful substances, such as: amyloid-beta (Aβ), α-synuclein, and metabolic wastes, causes drug delivery failure. AREAS COVERED The methods of nano-package and receptor-mediated drug delivery and the penetration efficacy of nanomedicines across BBB and ECS are assessed. EXPERT OPINION Invasive delivering drug via ECS and noninvasive near-infrared photo-sensitive nanomedicines may provide a promising benefit to patients with brain disease.
Collapse
Affiliation(s)
- Ziqi Gu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Haishu Chen
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Han Zhao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wanting Yang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yilan Song
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xiang Li
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Dan Du
- Department of Radiology, Peking University Third Hospital, Beijing, China.,Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China
| | - Haikang Liao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wenhao Pan
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China.,NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China.,Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Preventive effects of a standardized flavonoid extract of safflower in rotenone-induced Parkinson's disease rat model. Neuropharmacology 2022; 217:109209. [DOI: 10.1016/j.neuropharm.2022.109209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
|
14
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
15
|
Liu R, Jia W, Wang Y, Hu C, Yu W, Huang Y, Wang L, Gao H. Glymphatic System and Subsidiary Pathways Drive Nanoparticles Away from the Brain. RESEARCH 2022; 2022:9847612. [PMID: 35360646 PMCID: PMC8943630 DOI: 10.34133/2022/9847612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022]
Abstract
Although drug delivery systems (DDS) are efficient in brain delivery, they face failure in clinical settings due to their potential toxicity to the central nervous system. Little is known about where the DDS will go after brain delivery, and no specific elimination route that shares a passage with DDS has been verified. Hence, identifying harmless DDS for brain delivery and determining their fate there would strongly contribute to their clinical translation. In this study, we investigated nonreactive gold nanoclusters, which can deliver into the brain, to determine the elimination route of DDS. Subsequently, nanoclusters in the brain were systemically tracked and were found to be critically drained by the glymphatic system from the blood vessel basement membrane to periphery circulations (77.8 ± 23.2% and 43.7 ± 23.4% contribution). Furthermore, the nanoclusters could be actively transported across the blood-brain barrier (BBB) by exosomes (30.5 ± 27.3% and 29.2 ± 7.1% contribution). In addition, microglia promoted glymphatic drainage and passage across the BBB. The simultaneous work of the glymphatic system, BBB, and microglia revealed the fate of gold nanoclusters for brain delivery and provided a basis for further brain-delivery DDS.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenfeng Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yushan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chuan Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqi Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Xu D, Zhou J, Mei H, Li H, Sun W, Xu H. Impediment of Cerebrospinal Fluid Drainage Through Glymphatic System in Glioma. Front Oncol 2022; 11:790821. [PMID: 35083148 PMCID: PMC8784869 DOI: 10.3389/fonc.2021.790821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) plays an important role in maintaining tissue homeostasis in the central nervous system. In 2012, the new CSF outflow pathway, “the glymphatic system,” was discovered. The glymphatic system mediates CSF and interstitial fluid exchange through the perivascular pathway, which eliminates harmful solutes in the brain parenchyma. In recent studies, the importance of the glymphatic system has been demonstrated in healthy and neurodegenerative disease brains. However, there is limited research on the function of the CSF in brain tumors. Intracranial hypertension caused by glioma can affect CSF drainage, which impacts the delivery of chemotherapy drugs via intrathecal injection. This study focused on changes in the glymphatic system and the role of aquaporin 4 (AQP4) in glymphatic transport in glioma. Methods In glioma-bearing rats, the effect of tracer infusion on the intracranial pressure (ICP) was evaluated using an ICP microsensor. In vivo magnetic resonance imaging and ex vivo bright field were used to monitor CSF tracer distribution after cisterna magna injection. AQP4 expression was quantitatively detected, and AQP4 in the astrocytes around the vessels was observed using immunofluorescence. Results The ICP of the tumor group was higher than that of the control group and the infusion rate of 2 µl/min did not affect ICP. In vivo and ex vivo imaging showed that the circulation of CSF tracers was significantly impaired in the tumor. High-power confocal microscopy revealed that, in the tumor, the surrounding of AQP4 by Evans Blue was decreased. In both tumor and contralateral areas, data indicated that the number of cluster designation 34 (CD34+) alpha-smooth muscle actin (α-SMA−) veins were more than that of CD34+α-SMA+ arteries. Moreover, in the tumor area, AQP4 in the astrocytes around the vessels was decreased. Conclusions These findings indicate that the para-arterial influx of subarachnoid CSF is limited in glioma, especially in those with reduced levels of the fundamental protein AQP4. Our results provide evidence toward a potential new treatment method for glioma in the future.
Collapse
Affiliation(s)
- Dan Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jie Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hao Mei
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Huan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Kou Y, Zhao H, Cui D, Han H, Tong Z. Formaldehyde toxicity in age-related neurological dementia. Ageing Res Rev 2022; 73:101512. [PMID: 34798299 DOI: 10.1016/j.arr.2021.101512] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/02/2023]
Abstract
The primordial small gaseous molecules, such as: NO, CO, H2S and formaldehyde (FA) are present in the brains. Whether FA as well as the other molecules participates in brain functions is unclear. Recently, its pathophysiological functions have been investigated. Notably, under physiological conditions, learning activity induces a transient generation of hippocampal FA, which promotes memory formation by enhancing N-methyl-D-aspartate (NMDA)-currents. However, ageing leads to FA accumulation in brain for the dysregulation of FA metabolism; and excessive FA directly impairs memory by inhibiting NMDA-receptor. Especially, in Alzheimer's disease (AD), amyloid-beta (Aβ) accelerates FA accumulation by inactivating alcohol dehydrogenase-5; in turn, FA promotes Aβ oligomerization, fibrillation and tau hyperphosphorylation. Hence, there is a vicious circle encompassing Aβ assembly and FA generation. Even worse, FA induces Aβ deposition in the extracellular space (ECS), which blocks the medicines (dissolved in the interstitial fluid) flowing into the damaged neurons in the deep cortex. However, phototherapy destroys Aβ deposits in the ECS and restores ISF flow. Coenzyme Q10, which scavenges FA, was shown to ameliorate Aβ-induced AD pathological phenotypes, thus suggesting a causative relation between FA toxicity and AD. These findings suggest that the combination of these two methods is a promising strategy for treating AD.
Collapse
|
18
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
19
|
Tran AA, De Smet M, Grant GD, Khoo TK, Pountney DL. Investigating the Convergent Mechanisms between Major Depressive Disorder and Parkinson's Disease. Complex Psychiatry 2021; 6:47-61. [PMID: 34883500 DOI: 10.1159/000512657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) affects more than cognition, having a temporal relationship with neuroinflammatory pathways of Parkinson's disease (PD). Although this association is supported by epidemiological and clinical studies, the underlying mechanisms are unclear. Microglia and astrocytes play crucial roles in the pathophysiology of both MDD and PD. In PD, these cells can be activated by misfolded forms of the protein α-synuclein to release cytokines that can interact with multiple different physiological processes to produce depressive symptoms, including monoamine transport and availability, the hypothalamus-pituitary axis, and neurogenesis. In MDD, glial cell activation can be induced by peripheral inflammatory agents that cross the blood-brain barrier and/or c-Fos signalling from neurons. The resulting neuroinflammation can cause neurodegeneration due to oxidative stress and glutamate excitotoxicity, contributing to PD pathology. Astrocytes are another major link due to their recognized role in the glymphatic clearance mechanism. Research suggesting that MDD causes astrocytic destruction or structural atrophy highlights the possibility that accumulation of α-synuclein in the brain is facilitated as the brain cannot adequately clear the protein aggregates. This review examines research into the overlapping pathophysiology of MDD and PD with particular focus on the roles of glial cells and neuroinflammation.
Collapse
Affiliation(s)
- Angela A Tran
- School of Medical Science, Griffith University, Southport, Queensland, Australia.,School of Medicine, Griffith University, Southport, Queensland, Australia
| | - Myra De Smet
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Gary D Grant
- School of Pharmacy and Pharmacology, Griffith University, Southport, Queensland, Australia
| | - Tien K Khoo
- School of Medicine, Griffith University, Southport, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Dean L Pountney
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
20
|
Carlstrom LP, Eltanahy A, Perry A, Rabinstein AA, Elder BD, Morris JM, Meyer FB, Graffeo CS, Lundgaard I, Burns TC. A clinical primer for the glymphatic system. Brain 2021; 145:843-857. [PMID: 34888633 DOI: 10.1093/brain/awab428] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/14/2022] Open
Abstract
The complex and dynamic system of fluid flow through the perivascular and interstitial spaces of the central nervous system has new-found implications for neurological diseases. Cerebrospinal fluid movement throughout the CNS parenchyma is more dynamic than could be explained via passive diffusion mechanisms alone. Indeed, a semi-structured glial-lymphatic (glymphatic) system of astrocyte-supported extracellular perivascular channels serves to directionally channel extracellular fluid, clearing metabolites and peptides to optimize neurologic function. Clinical studies of the glymphatic network has to date proven challenging, with most data gleaned from rodent models and post-mortem investigations. However, increasing evidence suggests that disordered glymphatic function contributes to the pathophysiology of CNS aging, neurodegenerative disease, and CNS injuries, as well as normal pressure hydrocephalus. Unlocking such pathophysiology could provide important avenues toward novel therapeutics. We here provide a multidisciplinary overview of glymphatics and critically review accumulating evidence regarding its structure, function, and hypothesized relevance to neurological disease. We highlight emerging technologies of relevance to the longitudinal evaluation of glymphatic function in health and disease. Finally, we discuss the translational opportunities and challenges of studying glymphatic science.
Collapse
Affiliation(s)
- Lucas P Carlstrom
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Ahmed Eltanahy
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Avital Perry
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Benjamin D Elder
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Fredric B Meyer
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Iben Lundgaard
- Departments of Experimental Medical Science, Lund University, Lund 228 11 Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund 228 11 Sweden
| | - Terry C Burns
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
21
|
Cumulative Damage: Cell Death in Posthemorrhagic Hydrocephalus of Prematurity. Cells 2021; 10:cells10081911. [PMID: 34440681 PMCID: PMC8393895 DOI: 10.3390/cells10081911] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/19/2022] Open
Abstract
Globally, approximately 11% of all infants are born preterm, prior to 37 weeks’ gestation. In these high-risk neonates, encephalopathy of prematurity (EoP) is a major cause of both morbidity and mortality, especially for neonates who are born very preterm (<32 weeks gestation). EoP encompasses numerous types of preterm birth-related brain abnormalities and injuries, and can culminate in a diverse array of neurodevelopmental impairments. Of note, posthemorrhagic hydrocephalus of prematurity (PHHP) can be conceptualized as a severe manifestation of EoP. PHHP impacts the immature neonatal brain at a crucial timepoint during neurodevelopment, and can result in permanent, detrimental consequences to not only cerebrospinal fluid (CSF) dynamics, but also to white and gray matter development. In this review, the relevant literature related to the diverse mechanisms of cell death in the setting of PHHP will be thoroughly discussed. Loss of the epithelial cells of the choroid plexus, ependymal cells and their motile cilia, and cellular structures within the glymphatic system are of particular interest. Greater insights into the injuries, initiating targets, and downstream signaling pathways involved in excess cell death shed light on promising areas for therapeutic intervention. This will bolster current efforts to prevent, mitigate, and reverse the consequential brain remodeling that occurs as a result of hydrocephalus and other components of EoP.
Collapse
|
22
|
Gao Y, Han H, Du J, He Q, Jia Y, Yan J, Dai H, Cui B, Yang J, Wei X, Yang L, Wang R, Long R, Ren Q, Yang X, Lu J. Early changes to the extracellular space in the hippocampus under simulated microgravity conditions. SCIENCE CHINA-LIFE SCIENCES 2021; 65:604-617. [PMID: 34185240 DOI: 10.1007/s11427-021-1932-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023]
Abstract
The smooth transportation of substances through the brain extracellular space (ECS) is crucial to maintaining brain function; however, the way this occurs under simulated microgravity remains unclear. In this study, tracer-based magnetic resonance imaging (MRI) and DECS-mapping techniques were used to image the drainage of brain interstitial fluid (ISF) from the ECS of the hippocampus in a tail-suspended hindlimb-unloading rat model at day 3 (HU-3) and 7 (HU-7). The results indicated that drainage of the ISF was accelerated in the HU-3 group but slowed markedly in the HU-7 group. The tortuosity of the ECS decreased in the HU-3 group but increased in the HU-7 group, while the volume fraction of the ECS increased in both groups. The diffusion rate within the ECS increased in the HU-3 group and decreased in the HU-7 group. The alterations to ISF drainage and diffusion in the ECS were recoverable in the HU-3 group, but neither parameter was restored in the HU-7 group. Our findings suggest that early changes to the hippocampal ECS and ISF drainage under simulated microgravity can be detected by tracer-based MRI, providing a new perspective for studying microgravity-induced nano-scale structure abnormities and developing neuroprotective approaches involving the brain ECS.
Collapse
Affiliation(s)
- Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China. .,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China. .,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China.
| | - Jichen Du
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China.,Department of Neurology, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, 100039, China
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hui Dai
- NHC Key Laboratory of Medical Immunology, Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bin Cui
- Department of Radiology, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, 100039, China
| | - Jing Yang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, 100039, China
| | - Xunbin Wei
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Liu Yang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Rui Wang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Ren Long
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Qiushi Ren
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Xing Yang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Jiabin Lu
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| |
Collapse
|
23
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
24
|
Sun Y, Sun X. Exploring the interstitial system in the brain: the last mile of drug delivery. Rev Neurosci 2021; 32:363-377. [PMID: 33550781 DOI: 10.1515/revneuro-2020-0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/08/2020] [Indexed: 11/15/2022]
Abstract
Brain interstitial system (ISS) is a nanoscale network of continuously connected tubes and sheets surrounding each neural cell in the central nervous system. ISS usually accounts for ∼20% of the brain volume, far more than the cerebral blood vessels, which account for 3%. The neuronal function, signaling pathways, and drug delivery are all closely related to the microenvironment provided by ISS. The objective of this paper is to give the readers a clear outline of detection, anatomy, function, and applications of ISS. This review describes the techniques propelling the exploration for ISS in chronological order, physiological function and pathological dysfunction of ISS, and strategies for drug delivery based on ISS. Biophysical features are the focus of ISS research, in which the diffusion characteristics have dominated. The various techniques that explore ISS take advantage of this feature. ISS provides an essential microenvironment for the health of cells and brain homeostasis, which plays an important functional role in brain health and disease. Direct intracranial administration allows the diffusion of drugs directly through ISS to successfully bypass the blood-brain barrier that prevents most drugs from reaching the brain. With the deepening of understanding of the brain ISS, the new research model that takes into account brain cells, cerebral vessels, and ISS will provide a new perspective and direction for understanding, utilizing, and protecting the brain.
Collapse
Affiliation(s)
- Yi Sun
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Xinping Sun
- Clinical Laboratory, Peking University International Hospital, Beijing 102206, P. R. China
| |
Collapse
|
25
|
Liu E, Peng X, Ma H, Zhang Y, Yang X, Zhang Y, Sun L, Yan J. The Involvement of Aquaporin-4 in the Interstitial Fluid Drainage Impairment Following Subarachnoid Hemorrhage. Front Aging Neurosci 2021; 12:611494. [PMID: 33574749 PMCID: PMC7870692 DOI: 10.3389/fnagi.2020.611494] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanism of brain injury following subarachnoid hemorrhage (SAH) has not yet been clarified. The glymphatic system (GS), a glia-dependent waste clearance pathway, drains away soluble waste proteins and metabolic products, even some toxic factors from the brain. Aquaporin-4 (Aqp4) is highly expressed on the astrocyte foot processes and facilitates the interstitial fluid (ISF) transportation in the GS system. In this study, the role of Aqp4 in the GS injury after SAH was explored using Aqp4 gene knockout (Aqp4−/−) Sprague Dawley rats. The results of MRI, fluorescent imaging, and transmission electron microscopy (TEM) indicated that, after SAH, the inflow of cerebrospinal fluid (CSF) into the brain and the clearance of ISF from the brain were both significantly decreased. Meanwhile, the expression level of Aqp4 around the artery was markedly higher than that around the vein following SAH. Aqp4 knockout exacerbated the GS damage after SAH. In summary, after SAH, there was an apparent GS impairment, and Aqp4 played key roles in modulating the function of GS in the brain.
Collapse
Affiliation(s)
- E Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Anatomy, School of Medicine, Shandong University, Jinan, China
| | - Xianlong Peng
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Haowen Ma
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaomei Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yixuan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Linlin Sun
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China.,Beijing Key Lab of Magnetic Resonance Imaging Technology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
26
|
Zhao G, Han H, Wang W, Jia K. Propofol rather than Isoflurane Accelerates the Interstitial Fluid Drainage in the Deep Rat Brain. Int J Med Sci 2021; 18:652-659. [PMID: 33437200 PMCID: PMC7797541 DOI: 10.7150/ijms.54320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 11/15/2022] Open
Abstract
Objective: Different anesthetics have distinct effects on the interstitial fluid (ISF) drainage in the extracellular space (ECS) of the superficial rat brain, while their effects on ISF drainage in the ECS of the deep rat brain still remain unknown. Herein, we attempt to investigate and compare the effects of propofol and isoflurane on ECS structure and ISF drainage in the caudate-putamen (CPu) and thalamus (Tha) of the deep rat brain. Methods: Adult Sprague-Dawley rats were anesthetized with propofol or isoflurane, respectively. Twenty-four anesthetized rats were randomly divided into the propofol-CPu, isoflurane-CPu, propofol-Tha, and isoflurane-Tha groups. Tracer-based magnetic resonance imaging (MRI) and fluorescent-labeled tracer assay were utilized to quantify ISF drainage in the deep brain. Results: The half-life of ISF in the propofol-CPu and propofol-Tha groups was shorter than that in the isoflurane-CPu and isoflurane-Tha groups, respectively. The ECS volume fraction in the propofol-CPu and propofol-Tha groups was much higher than that in the isoflurane-CPu and isoflurane-Tha groups, respectively. However, the ECS tortuosity in the propofol-CPu and propofol-Tha groups was much smaller than that in isoflurane-CPu and isoflurane-Tha groups, respectively. Conclusions: Our results demonstrate that propofol rather than isoflurane accelerates the ISF drainage in the deep rat brain, which provides novel insights into the selective control of ISF drainage and guides selection of anesthetic agents in different clinical settings, and unravels the mechanism of how general anesthetics function.
Collapse
Affiliation(s)
- Guomei Zhao
- Department of Geriatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing 100191, China.,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei Wang
- Research Institute for Translation Medicine on Molecular Function and Artificial Intelligence Imaging, Department of Radiology, The First People's Hospital of FoShan, Foshan 52800, China
| | - Kaiying Jia
- Department of Geriatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
27
|
Li Y, Han H, Shi K, Cui D, Yang J, Alberts IL, Yuan L, Zhao G, Wang R, Cai X, Teng Z. The Mechanism of Downregulated Interstitial Fluid Drainage Following Neuronal Excitation. Aging Dis 2020; 11:1407-1422. [PMID: 33269097 PMCID: PMC7673848 DOI: 10.14336/ad.2020.0224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
The drainage of brain interstitial fluid (ISF) has been observed to slow down following neuronal excitation, although the mechanism underlying this phenomenon is yet to be elucidated. In searching for the changes in the brain extracellular space (ECS) induced by electrical pain stimuli in the rat thalamus, significantly decreased effective diffusion coefficient (DECS) and volume fraction (α) of the brain ECS were shown, accompanied by the slowdown of ISF drainage. The morphological basis for structural changes in the brain ECS was local spatial deformation of astrocyte foot processes following neuronal excitation. We further studied aquaporin-4 gene (APQ4) knockout rats in which the changes of the brain ECS structure were reversed and found that the slowed DECS and ISF drainage persisted, confirming that the down-regulation of ISF drainage following neuronal excitation was mainly attributable to the release of neurotransmitters rather than to structural changes of the brain ECS. Meanwhile, the dynamic changes in the DECS were synchronized with the release and elimination processes of neurotransmitters following neuronal excitation. In conclusion, the downregulation of ISF drainage following neuronal excitation was found to be caused by the restricted diffusion in the brain ECS, and DECS mapping may be used to track the neuronal activity in the deep brain.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, 3010 Bern, Switzerland.
- Department of Informatics, Technical University of Munich, Garching 85748, Germany.
| | - Dehua Cui
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Jun Yang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
| | - Ian Leigh Alberts
- Department of Nuclear Medicine, University of Bern, 3010 Bern, Switzerland.
| | - Lan Yuan
- Peking University Medical and Health Analysis Center, Peking University Health Science Center, Beijing, China.
| | - Guomei Zhao
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Rui Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Xianjie Cai
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Ze Teng
- Department of Radiology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
28
|
Kaur J, Davoodi-Bojd E, Fahmy LM, Zhang L, Ding G, Hu J, Zhang Z, Chopp M, Jiang Q. Magnetic Resonance Imaging and Modeling of the Glymphatic System. Diagnostics (Basel) 2020; 10:diagnostics10060344. [PMID: 32471025 PMCID: PMC7344900 DOI: 10.3390/diagnostics10060344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The glymphatic system is a newly discovered waste drainage pathway in the brain; it plays an important role in many neurological diseases. Ongoing research utilizing various cerebrospinal fluid tracer infusions, either directly or indirectly into the brain parenchyma, is investigating clearance pathways by using distinct imaging techniques. In the present review, we discuss the role of the glymphatic system in various neurological diseases and efflux pathways of brain waste clearance based on current evidence and controversies. We mainly focus on new magnetic resonance imaging (MRI) modeling techniques, along with traditional computational modeling, for a better understanding of the glymphatic system function. Future sophisticated modeling techniques hold the potential to generate quantitative maps for glymphatic system parameters that could contribute to the diagnosis, monitoring, and prognosis of neurological diseases. The non-invasive nature of MRI may provide a safe and effective way to translate glymphatic system measurements from bench-to-bedside.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Esmaeil Davoodi-Bojd
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Radiology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Lara M Fahmy
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI 48201, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI 48201, USA;
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-313-916-8735; Fax: +1-313-916-1324
| |
Collapse
|
29
|
Debaker C, Djemai B, Ciobanu L, Tsurugizawa T, Le Bihan D. Diffusion MRI reveals in vivo and non-invasively changes in astrocyte function induced by an aquaporin-4 inhibitor. PLoS One 2020; 15:e0229702. [PMID: 32413082 PMCID: PMC7228049 DOI: 10.1371/journal.pone.0229702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
Abstract
The Glymphatic System (GS) has been proposed as a mechanism to clear brain tissue from waste. Its dysfunction might lead to several brain pathologies, including the Alzheimer’s disease. A key component of the GS and brain tissue water circulation is the astrocyte which is regulated by acquaporin-4 (AQP4), a membrane-bound water channel on the astrocytic end-feet. Here we investigated the potential of diffusion MRI to monitor astrocyte activity in a mouse brain model through the inhibition of AQP4 channels with TGN-020. Upon TGN-020 injection, we observed a significant decrease in the Sindex, a diffusion marker of tissue microstructure, and a significant increase of the water diffusion coefficient (sADC) in cerebral cortex and hippocampus compared to saline injection. These results indicate the suitability of diffusion MRI to monitor astrocytic activity in vivo and non-invasively.
Collapse
|
30
|
Dong Y, Yuan Y, Fang Y, Zheng T, Du D, Gao D, Du J, Liu L, He Q. Effect of aquaporin 4 protein overexpression in nigrostriatal system on development of Parkinson's disease. Int J Neurosci 2020; 131:666-673. [PMID: 32259464 DOI: 10.1080/00207454.2020.1753727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTS Recent studies indicated that aquaporin 4 (AQP4), as the main water channel in the central nervous system (CNS), participated in the onset and progression of Parkinson's disease (PD). But how the AQP4 influenced the exacerbation of PD has not been described in detail. In this study, the effect of the AQP4 protein overexpression in nigrostriatal system that include substantia nigra (SN) and striatum (CPu) on the development of PD was investigated. METHODS Forty male Sprague Dawley rats were equally divided into two groups at random: PD group and control group, PD group undergoing surgery and receiving 6-hydroxydopamine (6-OHDA). Using MRI tracer-based method, extracellular space (ECS) diffusion parameters of nigrostriatal system for all rats were measured, including the clearance coefficient (k') and the half-life (t1/2). Immunohistochemistry of AQP4 was performed for 20 rats. RESULTS The area of dark-stained AQP4 immunoreactivity increased markedly in SN of PD rats, there were significant differences between two groups (SN: t = 5.809, p < 0.0001; CPu: t = 5.943, p < 0.0001). And the diffusion parameters were significantly greater in PD group than that of control group, including k' (SN: t = 5.519, p < 0.0001; CPu: t = 2.149, p = 0.045) and t1/2 (SN: t = 6.131, p < 0.0001; CPu: t = 6.708, p < 0.0001). There was a significant positive correlation between the AQP4 expression level and the k' values (SN: r = 0.827, p = 0.0031; CPu: r = 0.641, p = 0.0046), and a significant negative correlation between AQP4 and the t1/2 values (SN: r=-0.654, p = 0.0403; CPu: r=-0.664, p = 0.0362). CONCLUSIONS The results indicated that AQP4 expression was increased in nigrostriatal system of PD rats, therefore, the overexpression of AQP4 led to acceleration of the diffusion and drainage process of drugs in ECS, reduced the effect of drugs for the treatment of PD, inhibited the development of PD.
Collapse
Affiliation(s)
- Yanchao Dong
- Department of Interventional Therapy, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yi Yuan
- College of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Yuan Fang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Tao Zheng
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Dan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Dawei Gao
- College of Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Juan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
31
|
Zhao G, Han H, Yang J, Sun M, Cui D, Li Y, Gao Y, Zou J. Brain interstitial fluid drainage and extracellular space affected by inhalational isoflurane: in comparison with intravenous sedative dexmedetomidine and pentobarbital sodium. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1363-1379. [PMID: 32133594 DOI: 10.1007/s11427-019-1633-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/06/2020] [Indexed: 12/09/2022]
Abstract
Brain interstitial fluid drainage and extracellular space are closely related to waste clearance from the brain. Different anesthetics may cause different changes of brain interstitial fluid drainage and extracellular space but these still remain unknown. Herein, effects of the inhalational isoflurane, intravenous sedative dexmedetomidine and pentobarbital sodium on deep brain matters' interstitial fluid drainage and extracellular space and underlying mechanisms were investigated. When compared to intravenous anesthetic dexmedetomidine or pentobarbital sodium, inhalational isoflurane induced a restricted diffusion of extracellular space, a decreased extracellular space volume fraction, and an increased norepinephrine level in the caudate nucleus or thalamus with the slowdown of brain interstitial fluid drainage. A local administration of norepinephrine receptor antagonists, propranolol, atipamezole and prazosin into extracellular space increased diffusion of extracellular space and interstitial fluid drainage whilst norepinephrine decreased diffusion of extracellular space and interstitial fluid drainage. These findings suggested that restricted diffusion in brain extracellular space can cause slowdown of interstitial fluid drainage, which may contribute to the neurotoxicity following the waste accumulation in extracellular space under inhaled anesthesia per se.
Collapse
Affiliation(s)
- Guomei Zhao
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China. .,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China. .,Institute of Medical Technology, Peking University, Beijing, 100191, China.
| | - Jun Yang
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China. .,Department of Neurosurgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Min Sun
- Department of Cardiology, Peking University Shougang Hospital, Beijing, 100144, China
| | - Dehua Cui
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Yuanyuan Li
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Jing Zou
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| |
Collapse
|
32
|
Chatterjee K, Carman-Esparza CM, Munson JM. Methods to measure, model and manipulate fluid flow in brain. J Neurosci Methods 2020; 333:108541. [PMID: 31838183 PMCID: PMC7607555 DOI: 10.1016/j.jneumeth.2019.108541] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 01/15/2023]
Abstract
The brain consists of a complex network of cells and matrix that is cushioned and nourished by multiple types of fluids: cerebrospinal fluid, blood, and interstitial fluid. The movement of these fluids through the tissues has recently gained more attention due to implications in Alzheimer's Disease and glioblastoma. Therefore, methods to study these fluid flows are necessary and timely for the current study of neuroscience. Imaging modalities such as magnetic resonance imaging have been used clinically and pre-clinically to image flows in healthy and diseased brains. These measurements have been used to both parameterize and validate models of fluid flow both computational and in vitro. Both of these models can elucidate the changes to fluid flow that occur during disease and can assist in linking the compartments of fluid flow with one another, a difficult challenge experimentally. In vitro models, though in limited use with fluid flow, allow the examination of cellular responses to physiological flow. To determine causation, in vivo methods have been developed to manipulate flow, including both physical and pharmacological manipulations, at each point of fluid movement of origination resulting in exciting findings in the preclinical setting. With new targets, such as the brain-draining lymphatics and glymphatic system, fluid flow and tissue drainage within the brain is an exciting and growing research area. In this review, we discuss the methods that currently exist to examine and test hypotheses related to fluid flow in the brain as we attempt to determine its impact on neural function.
Collapse
Affiliation(s)
- Krishnashis Chatterjee
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Cora M Carman-Esparza
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jennifer M Munson
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
33
|
Shetty AK, Zanirati G. The Interstitial System of the Brain in Health and Disease. Aging Dis 2020; 11:200-211. [PMID: 32010493 PMCID: PMC6961771 DOI: 10.14336/ad.2020.0103] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
The brain interstitial fluid (ISF) and the cerebrospinal fluid (CSF) cushion and support the brain cells. The ISF occupies the brain interstitial system (ISS), whereas the CSF fills the brain ventricles and the subarachnoid space. The brain ISS is an asymmetrical, tortuous, and exceptionally confined space between neural cells and the brain microvasculature. Recently, with a newly developed in vivo measuring technique, a series of discoveries have been made in the brain ISS and the drainage of ISF. The goal of this review is to confer recent advances in our understanding of the brain ISS, including its structure, function, and the various processes mediating or disrupting ISF drainage in physiological and pathological conditions. The brain ISF in the deep brain regions has recently been demonstrated to drain in a compartmentalized ISS instead of a highly connected system, together with the drainage of ISF into the cerebrospinal fluid (CSF) at the surface of the cerebral cortex and the transportation from CSF into cervical lymph nodes. Besides, accumulation of tau in the brain ISS in conditions such as Alzheimer’s disease and its link to the sleep-wake cycle and sleep deprivation, clearance of ISF in a deep sleep via increased CSF flow, novel approaches to remove beta-amyloid from the brain ISS, and obstruction to the ISF drainage in neurological conditions are deliberated. Moreover, the role of ISS in the passage of extracellular vesicles (EVs) released from neural cells and the rapid targeting of therapeutic EVs into neural cells in the entire brain following an intranasal administration, and the promise and limitations of ISS based drug delivery approaches are discussed
Collapse
Affiliation(s)
- Ashok K Shetty
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX 77843, USA
| | - Gabriele Zanirati
- 2Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
34
|
Wang A, Wang R, Cui D, Huang X, Yuan L, Liu H, Fu Y, Liang L, Wang W, He Q, Shi C, Guan X, Teng Z, Zhao G, Li Y, Gao Y, Han H. The Drainage of Interstitial Fluid in the Deep Brain is Controlled by the Integrity of Myelination. Aging Dis 2019; 10:937-948. [PMID: 31595193 PMCID: PMC6764732 DOI: 10.14336/ad.2018.1206] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
In searching for the drainage route of the interstitial fluid (ISF) in the deep brain, we discovered a regionalized ISF drainage system as well as a new function of myelin in regulating the drainage. The traced ISF from the caudate nucleus drained to the ipsilateral cortex along myelin fiber tracts, while in the opposite direction, its movement to the adjacent thalamus was completely impeded by a barrier structure, which was identified as the converged, compact myelin fascicle. The regulating and the barrier effects of myelin were unchanged in AQP4-knockout rats but were impaired as the integrity of boundary structure of drainage system was destroyed in a demyelinated rat model. We thus proposed that the brain homeostasis was maintained within each ISF drainage division locally, rather than across the brain as a whole. A new brain division system and a new pathogenic mechanism of demyelination are therefore proposed.
Collapse
Affiliation(s)
- Aibo Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Rui Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Dehua Cui
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Xinrui Huang
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Lan Yuan
- Peking University Medical and Health Analysis Center, Peking University Health Science Center, Beijing, China.
| | - Huipo Liu
- Institute of Applied Physics and Computational Mathematics, Beijing, China.
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing, China.
| | - Lei Liang
- Department of Medical Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Wei Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Chunyan Shi
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Xiangping Guan
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Ze Teng
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Guomei Zhao
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Yuanyuan Li
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Yajuan Gao
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| |
Collapse
|
35
|
Han HB. [Discovery of a new division system in brain and the regionalized drainage route of brain interstitial fluid]. JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:397-401. [PMID: 31209408 DOI: 10.19723/j.issn.1671-167x.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain extracellular space (ECS) is a narrow, irregular space, which provides immediate living environment for neural cells and accounts for approximately 15%-20% of the total volume of living brain. Twenty-five years ago, as an interventional radiologist, the author was engaged in investigating early diagnosis and treatment of cerebral ischemic stroke, and the parameters of brain ECS was firstly derived and demonstrated during the study of the permeability of blood-brain barrier (BBB) and its diffusion changes in the cerebral ischemic tissue. Since then, the author and his team had been working on developing a novel measuring method of ECS: tracer-based magnetic resonance imaging (MRI), which could measure brain ECS parameters in the whole brain scale and make the dynamic drainage process of the labelled brain interstitial fluid (ISF) visualized. By using the new method, the team made a series of new findings about the brain ECS and ISF, including the discovery of a new division system in the brain, named regionalized ISF drainage system. We found that the ISF drainage in the deep brain was regionalized and the structural and functional parameters in different interstitial system (ISS) divisions were disparate. The ISF in the caudate nucleus could be drained to ipsilateral cortex and finally into the subarachnoid space, which maintained the pathway of ISF-cerebrospinal fluid (CSF) exchange. However, the ISF in the thalamus was eliminated locally in its anatomical division. After verifying the nature of the barrier structure between different drainage divisions, the author proposed the hypothesis of "regionalized brain homeostasis". Thus, we demonstrated that the brain was protected not only by the BBB, which avoided potential exogenous damage through the vascular system, but was also protected by an internal ISF drainage barrier to avoid potentially harmful interference from other ECS divisions in the deep brain. With the new findings and the proposed hypothesis, an innovative therapeutic method for the treatment of encephalopathy with local drug delivery via the brain ECS pathway was established. By using this new administration method, the drug was achieved directly to the space around neurons or target regions, overwhelming the impendence from the blood-brain barrier, thus solved the obstacles of low efficiency in traditional drug investigation. At present, new methods and discoveries developed by the author and his team have been widely applied in several frontier fields including neuroscience, new drug research and development, neurodevelopment aerospace medicine, clinical encephalopathy treatment,new neural network modeling and so on.
Collapse
Affiliation(s)
- H B Han
- Department of Radiology, Peking University Third Hospital; Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing 100191, China
| |
Collapse
|
36
|
Mamtilahun M, Tang G, Zhang Z, Wang Y, Tang Y, Yang GY. Targeting Water in the Brain: Role of Aquaporin-4 in Ischemic Brain Edema. Curr Drug Targets 2019; 20:748-755. [DOI: 10.2174/1389450120666190214115309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 01/21/2023]
Abstract
Brain edema primarily occurs as a consequence of various cerebral injuries including
ischemic stroke. Excessive accumulation of brain water content causes a gradual expansion of brain
parenchyma, decreased blood flow and increased intracranial pressure and, ultimately, cerebral herniation
and death. Current clinical treatment for ischemic edema is very limited, therefore, it is urgent to
develop novel treatment strategies. Mounting evidence has demonstrated that AQP4, a water channel
protein, is closely correlated with brain edema and could be an optimal therapeutic target for the reduction
of ischemic brain edema. AQP4 is prevalently distributed in the central nervous system, and
mainly regulates water flux in brain cells under normal and pathological conditions. This review focuses
on the underlying mechanisms of AQP4 related to its dual role in edema formation and elimination.
Collapse
Affiliation(s)
- Muyassar Mamtilahun
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guanghui Tang
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
37
|
Yue X, Mei Y, Zhang Y, Tong Z, Cui D, Yang J, Wang A, Wang R, Fei X, Ai L, Di Y, Luo H, Li H, Luo W, Lu Y, Li R, Duan C, Gao G, Yang H, Sun B, He R, Song W, Han H, Tong Z. New insight into Alzheimer's disease: Light reverses Aβ-obstructed interstitial fluid flow and ameliorates memory decline in APP/PS1 mice. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2019; 5:671-684. [PMID: 31720368 PMCID: PMC6838540 DOI: 10.1016/j.trci.2019.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Pharmacological therapies to treat Alzheimer's disease (AD) targeting "Aβ" have failed for over 100 years. Low levels of laser light can disassemble Aβ. In this study, we investigated the mechanisms that Aβ-blocked extracellular space (ECS) induces memory disorders in APP/PS1 transgenic mice and addressed whether red light (RL) at 630 nm rescues cognitive decline by reducing Aβ-disturbed flow of interstitial fluid (ISF). METHODS We compared the heating effects on the brains of rats illuminated with laser light at 630, 680, and 810 nm for 40 minutes, respectively. Then, a light-emitting diode with red light at 630 nm (LED-RL) was selected to illuminate AD mice. The changes in the structure of ECS in the cortex were examined by fluorescent double labeling. The volumes of ECS and flow speed of ISF were quantified by magnetic resonance imaging. Spatial memory behaviors in mice were evaluated by the Morris water maze. Then, the brains were sampled for biochemical analysis. RESULTS RL at 630 nm had the least heating effects than other wavelengths associated with ~49% penetration ratio into the brains. For the molecular mechanisms, Aβ could induce formaldehyde (FA) accumulation by inactivating FA dehydrogenase. Unexpectedly, in turn, FA accelerated Aβ deposition in the ECS. However, LED-RL treatment not only directly destroyed Aβ assembly in vitro and in vivo but also activated FA dehydrogenase to degrade FA and attenuated FA-facilitated Aβ aggregation. Subsequently, LED-RL markedly smashed Aβ deposition in the ECS, recovered the flow of ISF, and rescued cognitive functions in AD mice. DISCUSSION Aβ-obstructed ISF flow is the direct reason for the failure of the developed medicine delivery from superficial into the deep brain in the treatment of AD. The phototherapy of LED-RL improves memory by reducing Aβ-blocked ECS and suggests that it is a promising noninvasive approach to treat AD.
Collapse
Affiliation(s)
- Xiangpei Yue
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yufei Mei
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Yun Zhang
- Department of Psychiatry, Townsend Family Laboratories, The University of British Columbia, Vancouver, Canada
| | - Zheng Tong
- School of Engineering, Mechanical Engineering with Renewable Energy. Old College, The University of Edinburgh, Edinburgh, United Kingdom
- Nanjing University of Aeronautics and Astronautics, Institute of Aeronautics and Astronautics, Aircraft Design and Engineering, Nanjing, China
| | - Dehua Cui
- Department of Radiology, Peking University Third Hospital, Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
| | - Jun Yang
- Department of Radiology, Peking University Third Hospital, Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
| | - Aibo Wang
- Department of Radiology, Peking University Third Hospital, Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
| | - Rui Wang
- Department of Radiology, Peking University Third Hospital, Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
| | - Xuechao Fei
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Li Ai
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yalan Di
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hongjun Luo
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Hui Li
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Wenhong Luo
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Yu Lu
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Rui Li
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Chunli Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ge Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hui Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Binggui Sun
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Rongqiao He
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- State Key Laboratory of Brain & Cognitive Science, Institute of Biophysics, CAS Key Laboratory of Mental Health, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Weihong Song
- Department of Psychiatry, Townsend Family Laboratories, The University of British Columbia, Vancouver, Canada
- Corresponding author. Tel: 604-822-8019; Fax: 604-822-7981.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
- Corresponding author. Tel: +86-010-82266972; Fax: +86-010-82265962.
| | - Zhiqian Tong
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Corresponding author. Tel: +86-010-83950362; Fax: +86-010-83950363.
| |
Collapse
|
38
|
Mestre H, Hablitz LM, Xavier AL, Feng W, Zou W, Pu T, Monai H, Murlidharan G, Castellanos Rivera RM, Simon MJ, Pike MM, Plá V, Du T, Kress BT, Wang X, Plog BA, Thrane AS, Lundgaard I, Abe Y, Yasui M, Thomas JH, Xiao M, Hirase H, Asokan A, Iliff JJ, Nedergaard M. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife 2018; 7:40070. [PMID: 30561329 PMCID: PMC6307855 DOI: 10.7554/elife.40070] [Citation(s) in RCA: 416] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
The glymphatic system is a brain-wide clearance pathway; its impairment contributes to the accumulation of amyloid-β. Influx of cerebrospinal fluid (CSF) depends upon the expression and perivascular localization of the astroglial water channel aquaporin-4 (AQP4). Prompted by a recent failure to find an effect of Aqp4 knock-out (KO) on CSF and interstitial fluid (ISF) tracer transport, five groups re-examined the importance of AQP4 in glymphatic transport. We concur that CSF influx is higher in wild-type mice than in four different Aqp4 KO lines and in one line that lacks perivascular AQP4 (Snta1 KO). Meta-analysis of all studies demonstrated a significant decrease in tracer transport in KO mice and rats compared to controls. Meta-regression indicated that anesthesia, age, and tracer delivery explain the opposing results. We also report that intrastriatal injections suppress glymphatic function. This validates the role of AQP4 and shows that glymphatic studies must avoid the use of invasive procedures.
Collapse
Affiliation(s)
- Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | - Anna Lr Xavier
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Weixi Feng
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Wenyan Zou
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Tinglin Pu
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Hiromu Monai
- RIKEN Center for Brain Science, Wako, Japan.,Ochanomizu University, Tokyo, Japan
| | - Giridhar Murlidharan
- Gene Therapy Center, The University of North Carolina, Chapel Hill, United States
| | | | - Matthew J Simon
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, United States
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, United States
| | - Virginia Plá
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | - Ting Du
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | - Benjamin T Kress
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | | | - Benjamin A Plog
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | - Alexander S Thrane
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| | - Iben Lundgaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States.,Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Yoichiro Abe
- Department of Pharmacology,School of Medicine, Keio University, Tokyo, Japan
| | - Masato Yasui
- Department of Pharmacology,School of Medicine, Keio University, Tokyo, Japan
| | - John H Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, United States.,Department of Physics and Astronomy, University of Rochester, Rochester, United States
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Hajime Hirase
- RIKEN Center for Brain Science, Wako, Japan.,Brain and Body System Science Institute, Saitama University, Saitama, Japan
| | - Aravind Asokan
- Gene Therapy Center, The University of North Carolina, Chapel Hill, United States.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, North Carolina, United States.,Department of Surgery, Duke University School of Medicine, Durham, United States
| | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, United States.,Knight Cardiovascular Institute, Oregon Health and Science University, Portland, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States.,Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J. The Glymphatic System and Waste Clearance with Brain Aging: A Review. Gerontology 2018; 65:106-119. [PMID: 29996134 DOI: 10.1159/000490349] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
The glymphatic system is a glial-dependent waste clearance pathway in the brain, in place of lymphatic vessels, dedicated to drain away soluble waste proteins and metabolic products. Specifically, the glymphatic network serves as a "front end" for waste clearance, and is connected downstream to an authentic lymphatic network, associated with dura covering the brain as well as cranial nerves and large vessels at the skull exits. The anatomical and functional interconnections between these two networks are not completely understood. Several key physiological processes have been identified that control glymphatic transport function and waste clearance from brain. In this review, we aim to provide an overview and discussion of the concept behind the glymphatic system, current evidence, and controversies, while specifically focusing on the consequences of aging and evidence of its existence in human brain. Discovering novel strategies for optimizing and maintaining efficient brain waste clearance across the lifespan may in the future prove to be important for preventing cognitive decline and sustaining healthy aging.
Collapse
Affiliation(s)
- Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut,
| | - Xiaodan Liu
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA.,Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Simon Sanggaard
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Joanna Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|