1
|
Yuan J, Huang R, Nao J, Dong X. The role of semaphorin 3A in the pathogenesis and progression of Alzheimer's disease and other aging-related diseases: A comprehensive review. Pharmacol Res 2025; 215:107732. [PMID: 40222695 DOI: 10.1016/j.phrs.2025.107732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Aging serves as a pivotal factor in the etiology of numerous diseases, such as Alzheimer's disease (AD), Parkinson's disease, diabetes, osteoarthritis, atherosclerosis and aging-related macular degeneration. Notably, these diseases often interact with AD through various pathways, facilitating the onset or progression of one another. Semaphorin 3 A (Sema3A), a protein that is essential for axonal guidance during neural development, has recently been identified as a novel regulator in the pathogenesis and progression of multiple aging-related diseases. This article provides a comprehensive review of the expression patterns and mechanisms of action of Sema3A in these diseases. Specifically, Sema3A influences the occurrence and development of aging-related diseases by participating in oxidative stress, inflammatory responses, apoptosis, and synaptic plasticity. Therefore, therapeutic strategies targeting Sema3A present promising avenues for delaying the progression of aging-related diseases and offer novel insights and strategies for their treatment.
Collapse
Affiliation(s)
- Jiayu Yuan
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| |
Collapse
|
2
|
Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Cerri PS, Gil CD, de Jesus Simões M. Relationship between autophagy and NLRP3 inflammasome during articular cartilage degradation in oestrogen-deficient rats with streptozotocin-induced diabetes. Ann Anat 2025; 257:152318. [PMID: 39216675 DOI: 10.1016/j.aanat.2024.152318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Estrogen deficiency and Diabetes mellitus (DM) cause joint tissue deterioration, although the mechanisms are uncertain. This study evaluated the immunoexpression of autophagy and NLRP3-inflammasome markers, in rat articular cartilage with estrogen deficiency and DM. METHODS Twenty rats were sham-operated (SHAM) or ovariectomized (OVX) and equally allocated into four groups: SHAM and OVX groups administered with vehicle solution; SHAM and OVX groups treated with 60 mg/kg/body weight of streptozotocin, intraperitoneally, to induce DM (SHAM-DM and OVX-DM groups). After seven weeks, the rats were euthanized, and their joint knees were processed for paraffin embedding. Sections were stained with haematoxylin-eosin, toluidine blue, safranin-O/fast-green or subjected to picrosirius-red-polarisation method; immunohistochemistry to detect beclin-1 and microtubule-associated protein 1B-light chain 3 (autophagy markers), NLRP3 and interleukin-1β (IL-1β) (inflammasome activation markers), along with matrix metalloproteinase-9 (MMP-9), Nuclear factor-kappa B (NFκB), and Vascular endothelial growth factor A (VEGF-A) were performed. RESULTS Deterioration of articular cartilage and subchondral bone were greater in SHAM-DM and OVX-DM groups. Higher percentages of immunolabeled chondrocytes to NLRP3, IL-1β, MMP-9, NFκB, and VEGF-A, as well as lower percentages of chondrocytes immunolabeled to autophagy markers, were noticed in estrogen-deficient and diabetic groups. These differences were greater in the OVX-DM group. Percentages of immunolabeled chondrocytes showed negative correlation between autophagy markers v.s IL-1β, NLRP-3, MMP-9, NFκB, and VEGF-A, along with positive correlation between VEGF-A vs. MMP-9, NFκB, IL-1β, and NLRP3, and MMP-9 vs. NFκB. CONCLUSIONS In conclusion, autophagy reduction and NLRP3 inflammasome activation in chondrocytes may be implicated in articular cartilage degradation, under estrogen-deficient and DM conditions. Moreover, the combination of estrogen deficiency and DM may potentiate those effects.
Collapse
Affiliation(s)
- Rinaldo Florencio-Silva
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Ginecologia, São Paulo, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil.
| | - Gisela Rodrigues da Silva Sasso
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Paulo Sérgio Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Cristiane Damas Gil
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Manuel de Jesus Simões
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Ginecologia, São Paulo, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Li Z, Yin S, Zhao G, Cao X. Association between sarcopenic obesity and osteoarthritis: The potential mediating role of insulin resistance. Exp Gerontol 2024; 197:112611. [PMID: 39423937 DOI: 10.1016/j.exger.2024.112611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Sarcopenic obesity (SO) and osteoarthritis (OA) are highly prevalent musculoskeletal conditions that significantly impair health-related quality of life. AIM This study investigated the association between SO and OA, and explored the potential mediating role of insulin resistance in this relationship. We utilized data from the National Health and Nutrition Examination Survey (NHANES) 1999-2018. METHODS This cross-sectional analysis employs NHANES data collected from 1999 to 2018, including participants aged 18 years and older. SO was assessed using dual-energy X-ray absorptiometry (DXA) measurements. Insulin resistance was estimated using the triglyceride-glucose (TyG) index. OA status was based on self-reported physician diagnosis. Statistical analyses included weighted logistic regression, restricted cubic spline (RCS) interaction analysis, mediation analysis using structural equation modeling (SEM), and receiver operating characteristic (ROC) curve analysis. Subgroup analyses were conducted based on age, sex, and diabetes status. RESULTS The sarcopenic obese group demonstrated the highest prevalence of OA (23.4 %), hypertension (47.8 %), and diabetes (12.0 %). Additionally, they exhibited elevated levels of triglycerides, cholesterol, glucose, blood urea nitrogen (BUN), creatinine, and uric acid. Logistic regression revealed significant positive associations between sarcopenic obesity, the TyG index, and OA risk. RCS analysis identified significant non-linear relationships and interactions of the TyG index with age, sex, and diabetes status on OA risk. Mediation analysis indicated that the TyG index mediated approximately 4.9 % of the effect of sarcopenic obesity on OA risk. ROC curve analysis demonstrated moderate diagnostic accuracy for the TyG index (AUC = 0.65), which improved when incorporated into the multivariate model (AUC = 0.78). Subgroup analyses confirmed significant associations between the TyG index and sarcopenic obesity with OA risk across different age, sex, and diabetes status categories. CONCLUSION Our findings suggest a significant correlation between insulin resistance, as measured by the TyG index, and elevated OA risk in individuals with sarcopenic obesity. Targeting insulin resistance through future research may be a promising avenue to lower OA risk in this population.
Collapse
Affiliation(s)
- Zijian Li
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Shishu Yin
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Gang Zhao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Xianglong Cao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.
| |
Collapse
|
4
|
Halabitska I, Babinets L, Oksenych V, Kamyshnyi O. Diabetes and Osteoarthritis: Exploring the Interactions and Therapeutic Implications of Insulin, Metformin, and GLP-1-Based Interventions. Biomedicines 2024; 12:1630. [PMID: 39200096 PMCID: PMC11351146 DOI: 10.3390/biomedicines12081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Diabetes mellitus (DM) and osteoarthritis (OA) are prevalent chronic conditions with shared pathophysiological links, including inflammation and metabolic dysregulation. This study investigates the potential impact of insulin, metformin, and GLP-1-based therapies on OA progression. Methods involved a literature review of clinical trials and mechanistic studies exploring the effects of these medications on OA outcomes. Results indicate that insulin, beyond its role in glycemic control, may modulate inflammatory pathways relevant to OA, potentially influencing joint health. Metformin, recognized for its anti-inflammatory properties via AMPK activation, shows promise in mitigating OA progression by preserving cartilage integrity and reducing inflammatory markers. GLP-1-based therapies, known for enhancing insulin secretion and improving metabolic profiles in DM, also exhibit anti-inflammatory effects that may benefit OA by suppressing cytokine-mediated joint inflammation and supporting cartilage repair mechanisms. Conclusions suggest that these medications, while primarily indicated for diabetes management, hold therapeutic potential in OA by targeting common underlying mechanisms. Further clinical trials are warranted to validate these findings and explore optimal therapeutic strategies for managing both DM and OA comorbidities effectively.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Liliia Babinets
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
5
|
Liao FX, Yang S, Liu ZH, Bo KD, Xu PF, Chang J. Estrogen receptor is involved in the osteoarthritis mediated by Atg16L1-NLRP3 activation. Jt Dis Relat Surg 2024; 35:513-520. [PMID: 39189559 PMCID: PMC11411874 DOI: 10.52312/jdrs.2024.1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 05/14/2024] [Indexed: 08/28/2024] Open
Abstract
OBJECTIVES This study aims to explore the mechanisms of dual regulation of osteoarthritis (OA) progression by the involvement of estrogen receptor (ER) in autophagy and inflammation. MATERIALS AND METHODS Bioinformatics methods were used to explore the relationship among associated genes. Western blot assays were used to detect related protein expression of OA in C28I2 and induced OA cellular model. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis were used to detect OA related gene expression in C28I2 and induced OA cellular model. Co-immunoprecipitation (CO-IP) analysis were used to verify the direct interaction between ER and NOD-like receptor thermal protein domain associated protein 3 (NLRP3). RESULTS The C28I2 cellular model of OA was induced by interleukin-1β (IL-1β). The small interfering ribonucleic acid (SiRNA)-mediated knockdown of autophagy-related 16 like 1 (ATG16L1) in C28I2 decreased the expression of MAP1LC3B (LC3B) and NLRP3. Besides, ER-beta (ERβ) agonist changed the gene expression of NLRP3 and ATG16L1. Moreover, CO-IP analysis indicated the direct interaction between ER and NLRP3. CONCLUSION Our study results revealed that ATG16L1, NLRP3, and IL-1β interacted closely and ERβ was involved in OA process by affecting autophagy and inflammatory activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Chang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| |
Collapse
|
6
|
Al-Dhalimy AMB, Salim HM, Shather AH, Naser IH, Hizam MM, Alshujery MK. The pathological and therapeutically role of mesenchymal stem cell (MSC)-derived exosome in degenerative diseases; Particular focus on LncRNA and microRNA. Pathol Res Pract 2023; 250:154778. [PMID: 37683391 DOI: 10.1016/j.prp.2023.154778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
By releasing exosomes, which create the ideal milieu for the resolution of inflammation, mesenchymal stem cells (MSCs) enhance tissue healing and have strong immunomodulatory capabilities. MSCs-derived exosome also can affect tumor progress by a myriad of mechanisms. Exosomes function as a cell-cell communication tool to affect cellular activity in recipient cells and include an array of efficient bioactive chemicals. Understanding the fundamental biology of inflammation ablation, tissue homeostasis, and the creation of therapeutic strategies is particularly interested in the horizontal transfer of exosomal long non-coding RNAs (lncRNA) and microRNAs (miRNAs) to recipient cells, where they affect target gene expression. Herein, we propose an exosomal lncRNA and microRNA profile in neurological, renal, cardiac, lung, and liver diseases as well as skin wounds and arthritis.
Collapse
Affiliation(s)
| | - Haitham Mukhlif Salim
- Ministry of Health, Directorat of the Public Health, Health Promotion Departments, Baghdad, Iraq
| | - A H Shather
- Department of Computer Engineering Technology, Al Kitab University, Altun Kopru, Kirkuk 00964, Iraq
| | - Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University, 51001 Hillah, Babil, Iraq
| | - Manar Mohammed Hizam
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | |
Collapse
|
7
|
Singh AK, Peng BY, Chien ST, Chan CH, Deng YH, Pai HY, Wei HJ, Wang MF, Wang SH, Wu CY, Deng WP. Anti-aging biomaterial sturgeon chondroitin sulfate upregulating anti-oxidant and SIRT-1/c-fos gene expression to reprogram stem cell senescence and prolong longevity. Biomater Sci 2023. [PMID: 37158091 DOI: 10.1039/d2bm01997c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aging involves tissue and cell potential dysfunction characterized by stem cell senescence and extracellular matrix microenvironment (ECM) alteration. Chondroitin sulfate (CS), found in the ECM of normal cells and tissues, aids in maintaining tissue homeostasis. Here, CS-derived biomaterial (CSDB) from sturgeon is extracted to investigate its antiaging effect in senescence-accelerated mouse prone-8 (SAMP8) mice and elucidate the underlying mechanism of its action. Although CSDB has been widely extracted from different sources and used as a scaffold, hydrogel, or drug carrier for the treatment of various pathological diseases, CSDB has not yet been used as a biomaterial for the amelioration of senescence and aging features. In this study, the extracted sturgeon CSDB showed a low molecular weight and comprised 59% 4-sulfated CS and 23% 6-sulfated CS. In an in vitro study, sturgeon CSDB promoted cell proliferation and reduced oxidative stress to inhibit stem cell senescence. In an ex vivo study, after oral CSDB treatment of SAMP8 mice, the stem cells were extracted to analyze the p16Ink4a and p19Arf gene-related pathways, which were inhibited and then SIRT-1 gene expression was upregulated to reprogram stem cells from a senescence state for retarding aging. In an in vivo study, CSDB also restored the aging-phenotype-related bone mineral density and skin morphology to prolong longevity. Thus, sturgeon CSDB may be useful for prolonging healthy longevity as an anti-aging drug.
Collapse
Affiliation(s)
- Abhinay Kumar Singh
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| | - Bou-Yue Peng
- Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Shaw-Ting Chien
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| | - Chun-Hao Chan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| | - Yue-Hua Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| | - Hsiao-Yu Pai
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110301, Taiwan
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 433303, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Department of Research Development, Taipei Medical University, Taipei 11030, Taiwan
| | - Chia-Yu Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan.
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Taipei 242062, Taiwan
| |
Collapse
|
8
|
Xu L, Zhang F, Cheng G, Yuan X, Wu Y, Wu H, Wang Q, Chen J, Kuai J, Chang Y, Wei W, Yan S. Attenuation of experimental osteoarthritis with human adipose-derived mesenchymal stem cell therapy: inhibition of the pyroptosis in chondrocytes. Inflamm Res 2023; 72:89-105. [PMID: 36331571 DOI: 10.1007/s00011-022-01655-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
AIM To explore the role and mechanism of human adipose-derived mesenchymal stem cells (hAD-MSCs) in the treatment of osteoarthritis (OA). METHODS OA hulth model of Sprague Dawley (SD) rats and 20 ng/ml TNF-α treated chondrocytes were used as models of OA in vivo and in vitro, respectively. hAD-MSCs were administrated in the articular cavity by injection in vivo and co-cultured with chondrocytes using transwell in vitro. Haematoxylin and eosin staining and Safranin-O/Fast green staining were performed to detect tissue destruction and histopathology. Scanning electron microscopy and transmission electron microscopy were used to observe the ultrastructure of chondrocytes. The pyroptosis signaling pathway-related proteins were detected by immunohistochemistry, immunofluorescence, qRT-PCR and Western blot. And small interference technology was used to study the mechanism in depth. RESULTS hAD-MSCs could delay the development of rat OA, improve the pathological changes of joints, inhibit the expression of NLRP3, Caspase1, GSDMD and TNFR1. In vitro, the expression of pyroptosis signal proteins in chondrocytes was significantly elevated when stimulated with TNF-α, the level of inflammatory factors such as IL-1β, IL-18 was increased, and the cell morphology was significantly destroyed. While co-cultured with hAD-MSCs, these syndromes were reversed. Knockout of TNFR1 also returned the upregulation of pyroptosis signals which caused by TNF-α. CONCLUSION These results demonstrated that hAD-MSCs could inhibit pyroptosis signaling pathway of chondrocytes induced by TNF-α, which have raised our understanding of the role of hAD-MSCs as promising therapy for the management of OA.
Collapse
Affiliation(s)
- Liang Xu
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Feng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Gang Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xiaoyang Yuan
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yujiao Wu
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Jiajie Kuai
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China. .,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China. .,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China. .,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China. .,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
9
|
He W, Wu Y, Luo Z, Yang G, Ye W, Chen X, Ren J, Liang T, Liao Z, Jiang S, Wang K. Injectable Decorin/Gellan Gum Hydrogel Encapsulating Adipose-Derived Stem Cells Enhances Anti-Inflammatory Effect in Cartilage Injury via Autophagy Signaling. Cell Transplant 2023; 32:9636897231196493. [PMID: 37688441 PMCID: PMC10493051 DOI: 10.1177/09636897231196493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) are employed as a promising alternative in treating cartilage injury. Regulating the inflammatory "fingerprint" of ADSCs to improve their anti-inflammatory properties could enhance therapy efficiency. Herein, a novel injectable decorin/gellan gum hydrogel combined with ADSCs encapsulation for arthritis cartilage treatment is proposed. Decorin/gellan gum hydrogel was prepared according to the previous manufacturing protocol. The liquid-solid form transition of gellan gum hydrogel is perfectly suitable for intra-articular injection. Decorin-enriched matrix showing an immunomodulatory ability to enhance ADSCs anti-inflammatory phenotype under inflammation microenvironment by regulating autophagy signaling. This decorin/gellan gum/ADSCs hydrogel efficiently reverses interleukin-1β-induced cellular injury in chondrocytes. Through a mono-iodoacetate-induced arthritis mice model, the synergistic therapeutic effect of this ADSCs-loaded hydrogel, including inflammation attenuation and cartilage protection, is demonstrated. These results make the decorin/gellan gum hydrogel laden with ADSCs an ideal candidate for treating inflammatory joint disorders.
Collapse
Affiliation(s)
- Weiping He
- Department of Orthopedic Surgery, Dongguan Hospital of Integrated Traditional Chinese and Western Medicine, Dongguan, China
| | - Yu Wu
- Department of Plastic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhihong Luo
- Department of Orthopedic Surgery, Dongguan Hospital of Integrated Traditional Chinese and Western Medicine, Dongguan, China
| | - Genghua Yang
- Department of Orthopedic Surgery, Dongguan Hospital of Integrated Traditional Chinese and Western Medicine, Dongguan, China
| | - Woquan Ye
- Department of Orthopedic Surgery, Dongguan Hospital of Integrated Traditional Chinese and Western Medicine, Dongguan, China
| | - Xi Chen
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianhua Ren
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tangzhao Liang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhiqiang Liao
- Department of Orthopedic Surgery, Dongguan Hospital of Integrated Traditional Chinese and Western Medicine, Dongguan, China
| | - Shihai Jiang
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Kun Wang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Perucca Orfei C, Boffa A, Sourugeon Y, Laver L, Magalon J, Sánchez M, Tischer T, Filardo G, de Girolamo L. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models. A systematic review by the ESSKA Orthobiologic Initiative. Part 1: adipose tissue-derived cell-based injectable therapies. Knee Surg Sports Traumatol Arthrosc 2023; 31:641-655. [PMID: 36104484 PMCID: PMC9898370 DOI: 10.1007/s00167-022-07063-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this systematic review was to determine if adipose tissue-derived cell-based injectable therapies can induce disease-modifying effects in joints affected by osteoarthritis (OA). METHODS A systematic review was performed on three electronic databases (PubMed, Web of Science, Embase) according to PRISMA guidelines. A synthesis of the results was performed investigating disease-modifying effects in preclinical studies comparing injectable adipose-derived products with OA controls or other products, different formulations or injection intervals, and the combination with other products. The risk of bias was assessed according to the SYRCLE's tool. RESULTS Seventy-one studies were included (2,086 animals) with an increasing publication trend over time. Expanded cells were used in 65 studies, 3 studies applied point of care products, and 3 studies investigated both approaches. Overall, 48 out of 51 studies (94%) reported better results with adipose-derived products compared to OA controls, with positive findings in 17 out of 20 studies (85%) in macroscopic, in 37 out of 40 studies (93%) in histological, and in 22 out of 23 studies (96%) in immunohistochemical evaluations. Clinical and biomarker evaluations showed positive results in 14 studies out of 18 (78%) and 12 studies out of 14 (86%), while only 9 studies out of 17 (53%) of the imaging evaluations were able to detect differences versus controls. The risk of bias was low in 38% of items, unclear in 51%, and high in (11%). CONCLUSION The current preclinical models document consistent evidence of disease-modifying effects of adipose-derived cell-based therapies for the treatment of OA. The high heterogeneity of the published studies highlights the need for further targeted research to provide recommendations on the optimal methodologies for a more effective application of these injective therapies for the treatment of OA in clinical practice. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Carlotta Perucca Orfei
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Milan, Italy
| | - Angelo Boffa
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Yosef Sourugeon
- grid.413731.30000 0000 9950 8111Rambam Health Care Campus, Haifa, Israel
| | - Lior Laver
- grid.414084.d0000 0004 0470 6828Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel ,Arthrosport Clinic, Tel-Aviv, Israel ,grid.6451.60000000121102151Technion University Hospital (Israel Institute of Technology) - Rappaport Faculty of Medicine, Haifa, Israel
| | - Jérémy Magalon
- grid.414336.70000 0001 0407 1584Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France ,grid.5399.60000 0001 2176 4817INSERM, NRA, C2VN, Aix Marseille Univ, Marseille, France ,SAS Remedex, Marseille, France
| | - Mikel Sánchez
- grid.473696.9Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain ,Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Thomas Tischer
- grid.10493.3f0000000121858338Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
| | - Giuseppe Filardo
- grid.419038.70000 0001 2154 6641Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy ,grid.469433.f0000 0004 0514 7845Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland ,grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Laura de Girolamo
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Milan, Italy
| |
Collapse
|
11
|
Rios‐Arce ND, Hum NR, Loots GG. Interactions between diabetes mellitus and osteoarthritis; from animal studies to clinical data. JBMR Plus 2022; 6:e10626. [PMID: 35509632 PMCID: PMC9059469 DOI: 10.1002/jbm4.10626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 01/15/2023] Open
Abstract
Diabetes mellitus (DM) and osteoarthritis (OA) are commonly known metabolic diseases that affect a large segment of the world population. These two conditions share several risk factors such as obesity and aging; however, there is still no consensus regarding the direct role of DM on OA development and progression. Interestingly, both animal and human studies have yielded conflicting results, with some showing a significant role for DM in promoting OA, while others found no significant interactions between these conditions. In this review, we will discuss preclinical and clinical data that assessed the interaction between DM and OA. We will also discuss possible mechanisms associated with the effect of high glucose on the articular cartilage and chondrocytes. An emerging theme dominates the breath of published work in this area: most of the studies discussed in this review do not take into consideration the role of other factors such as the type of diabetes, age, biological sex, type of animal model, body mass index, and the use of pain medications when analyzing and interpreting data. Therefore, future studies should be more rigorous when designing experiments looking at DM and its effects on OA and should carefully account for these confounding factors, so that better approaches can be developed for monitoring and treating patients at risk of OA and DM. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Naiomy D. Rios‐Arce
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
| | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
- Molecular and Cell Biology, School of Natural Sciences University of California Merced Merced CA USA
| |
Collapse
|
12
|
Rios‐Arce ND, Murugesh DK, Hum NR, Sebastian A, Jbeily EH, Christiansen BA, Loots GG. Pre‐existing Type 1 Diabetes Mellitus Blunts the Development of
Post‐Traumatic
Osteoarthritis. JBMR Plus 2022; 6:e10625. [PMID: 35509635 PMCID: PMC9059474 DOI: 10.1002/jbm4.10625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Naiomy D. Rios‐Arce
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
| | - Deepa K. Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
| | - Elias H. Jbeily
- Department of Orthopedic Surgery UC Davis Medical Center Sacramento CA USA
| | | | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
- Molecular and Cell Biology School of Natural Sciences, UC Merced Merced CA USA
| |
Collapse
|
13
|
Zaki S, Blaker CL, Little CB. OA foundations - experimental models of osteoarthritis. Osteoarthritis Cartilage 2022; 30:357-380. [PMID: 34536528 DOI: 10.1016/j.joca.2021.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is increasingly recognised as a disease of diverse phenotypes with variable clinical presentation, progression, and response to therapeutic intervention. This same diversity is readily apparent in the many animal models of OA. However, model selection, study design, and interpretation of resultant findings, are not routinely done in the context of the target human (or veterinary) patient OA sub-population or phenotype. This review discusses the selection and use of animal models of OA in discovery and therapeutic-development research. Beyond evaluation of the different animal models on offer, this review suggests focussing the approach to OA-animal model selection on study objective(s), alignment of available models with OA-patient sub-types, and the resources available to achieve valid and translatable results. How this approach impacts model selection is discussed and an experimental design checklist for selecting the optimal model(s) is proposed. This approach should act as a guide to new researchers and a reminder to those already in the field, as to issues that need to be considered before embarking on in vivo pre-clinical research. The ultimate purpose of using an OA animal model is to provide the best possible evidence if, how, when and where a molecule, pathway, cell or process is important in clinical disease. By definition this requires both model and study outcomes to align with and be predictive of outcomes in patients. Keeping this at the forefront of research using pre-clinical OA models, will go a long way to improving the quality of evidence and its translational value.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Australia.
| | - C L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Australia; Murray Maxwell Biomechanics Laboratory, The Kolling Institute, University of Sydney Faculty of Medicine and Health, At Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Australia.
| |
Collapse
|
14
|
Lo WC, Dubey NK, Tsai FC, Lu JH, Peng BY, Chiang PC, Singh AK, Wu CY, Cheng HC, Deng WP. Amelioration of Nicotine-Induced Osteoarthritis by Platelet-Derived Biomaterials Through Modulating IGF-1/AKT/IRS-1 Signaling Axis. Cell Transplant 2021; 29:963689720947348. [PMID: 32757664 PMCID: PMC7563024 DOI: 10.1177/0963689720947348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Besides inhalation, a few studies have indicated that the uptake of nicotine
through air or clothing may be a significant pathway of its exposure among
passive smokers. Nicotine is well known to exert various physiological impacts,
including stimulating sympathetic nervous system, causing vascular disturbances,
and inducing cell death. Therefore, we aimed to establish whether exposure of
nicotine could induce articular cartilage degeneration in a mouse model of
osteoarthritis (OA). We specifically assessed dose-dependent effect of nicotine
in vitro to mimic its accumulation. Further, during the
in vivo studies, mice subcutaneously administered with
nicotine was examined for OA-associated pathologic changes. We found that
nicotine significantly suppressed chondrocytes and chondrogenic markers (Sox,
Col II, and aggrecan). Nicotine-treated mice also showed altered knee joint
ultrastructure with reduced Col II and proteoglycans. After corroborating
nicotine-induced OA characteristics, we treated this pathologic condition
through employing platelet-derived biomaterial (PDB)-based regenerative therapy.
The PDB significantly suppressed OA-like pathophysiological characteristics by 4
weeks. The mechanistic insight underlying this therapy demonstrated that PDB
significantly restored levels of insulin-like growth factor 1 (IGF-1) signaling
pathway proteins, especially pIGF-1 R, pAKT, and IRS-1, regulating extracellular
matrix synthesis by chondrocytes. Taken together, the PDB exerts regenerative
and reparative activities in nicotine-mediated initiation and progression of OA,
through modulating IGF-1/AKT/IRS-1 signaling axis.
Collapse
Affiliation(s)
- Wen-Cheng Lo
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Navneet Kumar Dubey
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Feng-Chou Tsai
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Plastic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Jui-Hua Lu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Pao-Chang Chiang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Dental Department, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Abhinay Kumar Singh
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yu Wu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Basic Medicine, Fu Jen Catholic University, Taipei, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan
| |
Collapse
|
15
|
Jiang P, Mao L, Qiao L, Lei X, Zheng Q, Li D. Efficacy and safety of mesenchymal stem cell injections for patients with osteoarthritis: a meta-analysis and review of RCTs. Arch Orthop Trauma Surg 2021; 141:1241-1251. [PMID: 33507375 DOI: 10.1007/s00402-020-03703-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Osteoarthritis (OA), which has a high incidence in the elderly, brings a huge economic burden to society. MSCs (Mesenchymal Stem Cells) have shown great multidirectional differentiation potential which are expected to treat OA, and numerous clinical trials have been conducted. However, the efficacy and safety of the MSCs still need to be further integrated and analyzed. MATERIALS AND METHODS We searched several databases (PubMed, EMBASE, Scopus, Web of Science, Cochrane Library, Ovid, and ScienceDirect) for assessing eligible trials that randomized controlled trials, hyaluronic acid as control, and MSCs injection to treat OA. Vitro studies and animal studies were excluded. Search terms were: "cartilage," "clinical trial," "mesenchymal," "stromal" and "stem cell", "osteoarthritis". The preliminary guidelines and study protocol were published online at PROSPERO. RESULTS Many assessment scales could not be improved significantly after 6 months. However, most of the scales were significantly improved after 12 months, indicating that compared with hyaluronic acid, stem cells could relieve OA symptoms significantly. No serious adverse effect was found. CONCLUSION There are significant therapeutic effects on joint function, symptoms, and no permanent adverse effect has been found after stem cell treatment. It is promising to apply intro-articular injection of stem cells for OA to clinical application. More researches are needed to supplement present deficiencies.
Collapse
Affiliation(s)
- Pan Jiang
- Affiliated Hospital of Jiangsu University, No.438, Jiefang road, Zhenjiang, 212000, China
| | - Lianghao Mao
- Affiliated Hospital of Jiangsu University, No.438, Jiefang road, Zhenjiang, 212000, China
| | - Longwei Qiao
- The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Lei
- Affiliated Hospital of Jiangsu University, No.438, Jiefang road, Zhenjiang, 212000, China
| | - Qiping Zheng
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Dapeng Li
- Affiliated Hospital of Jiangsu University, No.438, Jiefang road, Zhenjiang, 212000, China.
| |
Collapse
|
16
|
Zha K, Li X, Yang Z, Tian G, Sun Z, Sui X, Dai Y, Liu S, Guo Q. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med 2021; 6:14. [PMID: 33741999 PMCID: PMC7979687 DOI: 10.1038/s41536-021-00122-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.
Collapse
Affiliation(s)
- Kangkang Zha
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Yang
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guangzhao Tian
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Sun
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Yongjing Dai
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| |
Collapse
|
17
|
Chou YR, Lo WC, Dubey NK, Lu JH, Liu HY, Tsai CY, Deng YH, Wu CM, Huang MS, Deng WP. Platelet-derived biomaterials-mediated improvement of bone injury through migratory ability of embryonic fibroblasts: in vitro and in vivo evidence. Aging (Albany NY) 2021; 13:3605-3617. [PMID: 33461165 PMCID: PMC7906152 DOI: 10.18632/aging.202311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 01/25/2023]
Abstract
Bony injuries lead to compromised skeletal functional ability which further increase in aging population due to decreased bone mineral density. Therefore, we aimed to investigate the therapeutic potential of platelet-derived biomaterials (PDB) against bone injury. Specifically, we assessed the impact of PDB on osteo-inductive characteristics and migration of mouse embryonic fibroblasts (MEFs). Osteogenic lineage, matrix mineralization and cell migration were determined by gene markers (RUNX2, OPN and OCN), alizarin Red S staining, and migration markers (FAK, pFAK and Src) and EMT markers, respectively. The therapeutic impact of TGF-β1, a key component of PDB, was confirmed by employing inhibitor of TGF-β receptor I (Ti). Molecular imaging-based in vivo cellular migration in mice was determined by establishing bone injury at right femurs. Results showed that PDB markedly increased expression of osteogenic markers, matrix mineralization, migration and EMT markers, revealing higher osteogenic and migratory potential of PDB-treated MEFs. In vivo cell migration was manifested by expression of migratory factors, SDF-1 and CXCR4. Compared to control, PDB-treated mice exhibited higher bone density and volume. Ti treatment inhibited both migration and osteogenic potential of MEFs, affirming impact of TGF-β1. Collectively, our study clearly indicated PDB-rescued bone injury through enhancing migratory potential of MEFs and osteogenesis.
Collapse
Affiliation(s)
- Yen-Ru Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wen-Cheng Lo
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Navneet Kumar Dubey
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jui-Hua Lu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hen-Yu Liu
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yue-Hua Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ming Wu
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mao-Suan Huang
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Taipei, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan
| |
Collapse
|
18
|
Sadie-Van Gijsen H. Is Adipose Tissue the Fountain of Youth? The Impact of Adipose Stem Cell Aging on Metabolic Homeostasis, Longevity, and Cell-Based Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:225-250. [PMID: 33725357 DOI: 10.1007/978-3-030-55035-6_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aging is driven by four interlinked processes: (1) low-grade sterile inflammation; (2) macromolecular and organelle dysfunction, including DNA damage, telomere erosion, and mitochondrial dysfunction; (3) stem cell dysfunction; and (4) an accumulation of senescent cells in tissues. Adipose tissue is not immune to the effects of time, and all four of these processes contribute to a decline of adipose tissue function with advanced age. This decline is associated with an increase in metabolic disorders. Conversely, optimally functioning adipose tissue generates signals that promote longevity. As tissue-resident progenitor cells that actively participate in adipose tissue homeostasis and dysregulation, adipose stem cells (ASCs) have emerged as a key feature in the relationship between age and adipose tissue function. This review will give a mechanistic overview of the myriad ways in which age affects ASC function and, conversely, how ASC function contribute to healthspan and lifespan. A central mediator in this relationship is the degree of resilience of ASCs to maintain stemness into advanced age and the consequent preservation of adipose tissue function, in particular subcutaneous fat. The last sections of this review will discuss therapeutic options that target senescent ASCs to extend healthspan and lifespan, as well as ASC-based therapies that can be used to treat age-related pathologies, and collectively, these therapeutic applications may transform the way we age.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Parow, South Africa.
| |
Collapse
|
19
|
An X, Wang T, Zhang W, Yu H, Chunhua Zhao R, Guo Y, Wang C, Qin L, Guo C. Chondroprotective Effects of Combination Therapy of Acupotomy and Human Adipose Mesenchymal Stem Cells in Knee Osteoarthritis Rabbits via the GSK3β-Cyclin D1-CDK4/CDK6 Signaling Pathway. Aging Dis 2020; 11:1116-1132. [PMID: 33014527 PMCID: PMC7505269 DOI: 10.14336/ad.2019.1104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are highly chondrogenic and can be used to treat knee osteoarthritis (KOA) by alleviating cartilage defects. Acupotomy, a biomechanical therapy guided by traditional Chinese medicine theory, alleviates cartilage degradation and is widely used in the clinic to treat KOA by correcting abnormal mechanics. However, whether combining acupotomy with ASCs will reverse cartilage degeneration by promoting chondrocyte proliferation in KOA rabbits is unknown. The present study aimed to investigate the effects of combination therapy of acupotomy and ASCs on chondrocyte proliferation and to determine the underlying mechanism in rabbits with KOA induced by knee joint immobilization for 6 weeks. After KOA modeling, five groups of rabbits (acupotomy, ASCs, acupotomy + ASCs, model and control groups) received the indicated intervention for 4 weeks. The combination therapy significantly restored the KOA-induced decrease in passive range of motion (PROM) in the knee joint and reduced the elevated serum level of cartilage oligomeric matrix protein (COMP), a marker for cartilage degeneration. Furthermore, magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) images showed that the combination therapy inhibited cartilage injury. The combination therapy also significantly blocked increases in the mRNA and protein expression of glycogen synthase kinase-3β (GSK3β) and decreases in the mRNA and protein expression of cyclin D1/CDK4 and cyclin D1/CDK6 in cartilage. These findings indicated that the combination therapy mitigated knee joint immobility, promoted chondrocyte proliferation and alleviated cartilage degeneration in KOA rabbits, and these effects may be mediated by specifically regulating the GSK3β-cyclin D1-CDK4/CDK6 pathway.
Collapse
Affiliation(s)
- Xingyan An
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wang
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhang
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hongliang Yu
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China
| | - Robert Chunhua Zhao
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China
| | - Yan Guo
- 3Acupuncture and Moxibustion Department, Beijing Traditional Chinese Medicine Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chunjiu Wang
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Luxue Qin
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Changqing Guo
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Stavely R, Nurgali K. The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Transl Med 2020; 9:985-1006. [PMID: 32497410 PMCID: PMC7445024 DOI: 10.1002/sctm.19-0446] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/05/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (multipotent stromal cells; MSCs) have been under investigation for the treatment of diverse diseases, with many promising outcomes achieved in animal models and clinical trials. The biological activity of MSC therapies has not been fully resolved which is critical to rationalizing their use and developing strategies to enhance treatment efficacy. Different paradigms have been constructed to explain their mechanism of action, including tissue regeneration, trophic/anti-inflammatory secretion, and immunomodulation. MSCs rarely engraft and differentiate into other cell types after in vivo administration. Furthermore, it is equivocal whether MSCs function via the secretion of many peptide/protein ligands as their therapeutic properties are observed across xenogeneic barriers, which is suggestive of mechanisms involving mediators conserved between species. Oxidative stress is concomitant with cellular injury, inflammation, and dysregulated metabolism which are involved in many pathologies. Growing evidence supports that MSCs exert antioxidant properties in a variety of animal models of disease, which may explain their cytoprotective and anti-inflammatory properties. In this review, evidence of the antioxidant effects of MSCs in in vivo and in vitro models is explored and potential mechanisms of these effects are discussed. These include direct scavenging of free radicals, promoting endogenous antioxidant defenses, immunomodulation via reactive oxygen species suppression, altering mitochondrial bioenergetics, and donating functional mitochondria to damaged cells. Modulation of the redox environment and oxidative stress by MSCs can mediate their anti-inflammatory and cytoprotective properties and may offer an explanation to the diversity in disease models treatable by MSCs and how these mechanisms may be conserved between species.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Sebag J. Vitreous and Vision Degrading Myodesopsia. Prog Retin Eye Res 2020; 79:100847. [PMID: 32151758 DOI: 10.1016/j.preteyeres.2020.100847] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
Macromolecules comprise only 2% of vitreous, yet are responsible for its gel state, transparency, and physiologic function(s) within the eye. Myopia and aging alter collagen and hyaluronan association causing concurrent gel liquefaction and fibrous degeneration. The resulting vitreous opacities and collapse of the vitreous body during posterior vitreous detachment are the most common causes for the visual phenomenon of vitreous floaters. Previously considered innocuous, the vitreous opacities that cause floaters sometimes impact vision by profoundly degrading contrast sensitivity function and impairing quality-of-life. While many people adapt to vitreous floaters, clinically significant cases can be diagnosed with Vision Degrading Myodesopsia based upon echographic assessment of vitreous structure and by measuring contrast sensitivity function. Perhaps due to the ubiquity of floaters, the medical profession has to date largely ignored the plight of those with Vision Degrading Myodesopsia. Improved diagnostics will enable better disease staging and more accurate identification of severe cases that merit therapy. YAG laser treatments may occasionally be slightly effective, but vitrectomy is currently the definitive cure. Future developments will usher in more informative diagnostic approaches as well as safer and more effective therapeutic strategies. Improved laser treatments, new pharmacotherapies, and possibly non-invasive optical corrections are exciting new approaches to pursue. Ultimately, enhanced understanding of the underlying pathogenesis of Vision Degrading Myodesopsia should result in prevention, the ultimate goal of modern Medicine.
Collapse
Affiliation(s)
- J Sebag
- VMR Institute for Vitreous Macula Retina, Huntington Beach, CA, USA; Doheny Eye Institute, Pasadena, CA, USA; Department of Ophthalmology, Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Membrane-Free Stem Cell Components Inhibit Interleukin-1α-Stimulated Inflammation and Cartilage Degradation in vitro and in vivo: A Rat Model of Osteoarthritis. Int J Mol Sci 2019; 20:ijms20194869. [PMID: 31575035 PMCID: PMC6801847 DOI: 10.3390/ijms20194869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Membrane-free stem cell components (MFSCC) from basal adipose tissue-derived stem cells (ADSCs) are unknown for the treatment strategies in osteoarthritis (OA). OA has been considered to be associated with inflammatory damage and cartilage degradation. In this study, we intended to investigate the molecular mechanism of the anti-inflammation and cartilage protection effect of MFSCC in vitro (rat primary chondrocytes) and in vivo (rat OA model). The MFSCC treatment significantly inhibited interleukin-1α (IL-1α) stimulated inflammation and cartilage degradation. The MFSCC considerably reduced the levels of inflammatory factors such as iNOS, COX-2, NO, and PGE2 and was suppressed NF-κB and MAPKs signaling pathways in IL-1α-stimulated rat chondrocytes. Additionally, biomarkers of OA such as MMP-9, COMP, and CTX-II decreased in the monosodium iodoacetate (MIA)-induced rat OA model by MFSCC treatment. In conclusion, the MFSCC was established to suppress IL-1α induced inflammation and cartilage degradation in vitro and in vivo. These findings provide new insight for understanding OA therapy using membrane-free stem cell approaches.
Collapse
|
23
|
Tran TDX, Wu CM, Dubey NK, Deng YH, Su CW, Pham TT, Thi Le PB, Sestili P, Deng WP. Time- and Kellgren⁻Lawrence Grade-Dependent Changes in Intra-Articularly Transplanted Stromal Vascular Fraction in Osteoarthritic Patients. Cells 2019; 8:E308. [PMID: 30987218 PMCID: PMC6523621 DOI: 10.3390/cells8040308] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Knee osteoarthritis (OA) is one of the most prevalent disorders in elderly population. Among various therapeutic alternatives, we employed stromal vascular fraction (SVF), a heterogeneous cell population, to regenerate damaged knee cartilage. OA patients were classified on the basis of age, gender, body mass index (BMI), and x-ray-derived Kellgren-Lawrence (KL) grade. They were treated with SVF and followed-up for 24 months. Visual analogue scale (VAS) and Western Ontario and McMaster Universities Osteoarthritis (WOMAC) Index were used to determine treatment efficacy. Cartilage healing was assessed using the MRI-based Outerbridge score (OS) and evaluation of bone marrow edema (BME) lesions, while a placebo group was used as a control. Time- and KL-dependent changes were also monitored. We observed a decreasing trend in VAS score and WOMAC index in the SVF-treated group up to 24 months, as compared with the placebo group. Besides, a significant increase and decrease in Lysholm and OS, respectively, were observed in the treatment group. Compared with the values before treatment, the greatly reduced WOMAC scores of KL3 than KL2 groups at 24 months, indicate more improvement in the KL3 group. Highly decreased BME in the treated group was also noted. In conclusion, the SVF therapy is effective in the recovery of OA patients of KL3 grade in 24 months.
Collapse
Affiliation(s)
- Tung Dang Xuan Tran
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan.
- Van Hanh Stem Cells Unit, Van Hanh Hospital, Ho Chi Minh City 700000, Vietnam.
| | - Chi-Ming Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Navneet Kumar Dubey
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yue-Hua Deng
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Chun-Wei Su
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Tu Thanh Pham
- Van Hanh Stem Cells Unit, Van Hanh Hospital, Ho Chi Minh City 700000, Vietnam.
| | - Phuong Bich Thi Le
- Department of Pulmonary Medicine, Vietnam Military Medical Academy, Ha Noi 12108, Vietnam.
| | - Piero Sestili
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo Via "I Maggetti" 26, 61029 Urbino, Italy.
| | - Win-Ping Deng
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan.
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|