1
|
Hou S, Ma W, Zhou X. FastCCC: A permutation-free framework for scalable, robust, and reference-based cell-cell communication analysis in single cell transcriptomics studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635115. [PMID: 39975391 PMCID: PMC11838302 DOI: 10.1101/2025.01.27.635115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Detecting cell-cell communications (CCCs) in single-cell transcriptomics studies is fundamental for understanding the function of multicellular organisms. Here, we introduce FastCCC, a permutation-free framework that enables scalable, robust, and reference-based analysis for identifying critical CCCs and uncovering biological insights. FastCCC relies on fast Fourier transformation-based convolution to compute p -values analytically without permutations, introduces a modular algebraic operation framework to capture a broad spectrum of CCC patterns, and can leverage atlas-scale single cell references to enhance CCC analysis on user-collected datasets. To support routine reference-based CCC analysis, we constructed the first human CCC reference panel, encompassing 19 distinct tissue types, over 450 unique cell types, and approximately 16 million cells. We demonstrate the advantages of FastCCC across multiple datasets, most of which exceed the analytical capabilities of existing CCC methods. In real datasets, FastCCC reliably captures biologically meaningful CCCs, even in highly complex tissue environments, including differential interactions between endothelial and immune cells linked to COVID-19 severity, dynamic communications in thymic tissue during T-cell development, as well as distinct interactions in reference-based CCC analysis.
Collapse
|
2
|
Jalilian S, Vasei M, Garshasbi A, Nabavi SS, Bastani MN. Viral intruders in the heart: A review of RNA viruses and their role in cardiac disorders. APMIS 2025; 133:e13500. [PMID: 39530180 DOI: 10.1111/apm.13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Viral cardiac diseases have a significant impact on global health, and RNA viruses play a crucial role in their pathogenesis. This literature review aims to provide a comprehensive understanding of the complex relationship between RNA viruses and cardiac diseases, focusing on the molecular processes and clinical implications of these interactions. The paper begins by discussing the various RNA viruses that have been linked to cardiac infections. Subsequently, the study explores the mechanisms through which RNA viruses can cause cardiac injury, including direct viral invasion, immune-mediated responses, and molecular mimicry. The review extensively examines the intricate interplay between the host immune system and RNA viruses, shedding light on both protective and harmful immune responses. Additionally, it investigates the role of viral persistence and chronic inflammation in the long-term effects on cardiac health. The thorough analysis presented not only enhances our scientific understanding of how RNA viruses contribute to the development of cardiac diseases but also highlights potential avenues for future research and breakthroughs in this field. Given the significant global health threat posed by viral cardiac disorders, unraveling the molecular foundations of these diseases is essential for advancing diagnostic capabilities and therapeutic interventions.
Collapse
Affiliation(s)
- Shahram Jalilian
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mona Vasei
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ashkan Garshasbi
- Immunology Department of Immunology and Microbiology, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Salaheddin Nabavi
- Department of General Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Navid Bastani
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Alcalá-Santiago Á, Rodriguez-Barranco M, Sánchez MJ, Gil Á, García-Villanova B, Molina-Montes E. Micronutrients, Vitamin D, and Inflammatory Biomarkers in COVID-19: A Systematic Review and Meta-analysis of Causal Inference Studies. Nutr Rev 2024:nuae152. [PMID: 39449666 DOI: 10.1093/nutrit/nuae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
CONTEXT Experimental and observational studies suggest that circulating micronutrients, including vitamin D (VD), may increase COVID-19 risk and its associated outcomes. Mendelian randomization (MR) studies provide valuable insight into the causal relationship between an exposure and disease outcomes. OBJECTIVES The aim was to conduct a systematic review and meta-analysis of causal inference studies that apply MR approaches to assess the role of these micronutrients, particularly VD, in COVID-19 risk, infection severity, and related inflammatory markers. DATA SOURCES Searches (up to July 2023) were conducted in 4 databases. DATA EXTRACTION AND ANALYSIS The quality of the studies was evaluated based on the MR-STROBE guidelines. Random-effects meta-analyses were conducted where possible. RESULTS There were 28 studies (2 overlapped) including 12 on micronutrients (8 on VD) and COVID-19, 4 on micronutrients (all on VD) and inflammation, and 12 on inflammatory markers and COVID-19. Some of these studies reported significant causal associations between VD or other micronutrients (vitamin C, vitamin B6, iron, zinc, copper, selenium, and magnesium) and COVID-19 outcomes. Associations in terms of causality were also nonsignificant with regard to inflammation-related markers, except for VD levels below 25 nmol/L and C-reactive protein (CRP). Some studies reported causal associations between cytokines, angiotensin-converting enzyme 2 (ACE2), and other inflammatory markers and COVID-19. Pooled MR estimates showed that VD was not significantly associated with COVID-19 outcomes, whereas ACE2 increased COVID-19 risk (MR odds ratio = 1.10; 95% CI: 1.01-1.19) but did not affect hospitalization or severity of the disease. The methodological quality of the studies was high in 13 studies, despite the majority (n = 24) utilizing 2-sample MR and evaluated pleiotropy. CONCLUSION MR studies exhibited diversity in their approaches but do not support a causal link between VD/micronutrients and COVID-19 outcomes. Whether inflammation mediates the VD-COVID-19 relationship remains uncertain, and highlights the need to address this aspect in future MR studies exploring micronutrient associations with COVID-19 outcomes. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022328224.
Collapse
Affiliation(s)
- Ángela Alcalá-Santiago
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) "José Mataix", Biomedical Research Centre, University of Granada, 18071 Granada, Spain
| | - Miguel Rodriguez-Barranco
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Andalusian School of Public Health, 18012 Granada, Spain
| | - María-José Sánchez
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Andalusian School of Public Health, 18012 Granada, Spain
| | - Ángel Gil
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) "José Mataix", Biomedical Research Centre, University of Granada, 18071 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- CIBER de Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Belén García-Villanova
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Esther Molina-Montes
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) "José Mataix", Biomedical Research Centre, University of Granada, 18071 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
4
|
Zhong Z, Wang X, Guo J, Li X, Han Y. Comparison of Clinical Characteristics and Outcomes in Intensive Care Units Between Patients with Coronavirus Disease 2019 (COVID-19) and Patients with Influenza: A Systematic Review and Meta-Analysis. J Intensive Care Med 2024; 39:840-852. [PMID: 38404127 DOI: 10.1177/08850666241232888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
BACKGROUND Severe infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or influenza virus can cause patients to be admitted to intensive care units (ICUs). It is necessary to understand the differences in clinical characteristics and outcomes between these two types of critically ill patients. METHODS We searched Embase, PubMed, and Web of Science for articles and performed a meta-analysis using Stata 14.0 with a random-effects model. This paper was written in strict accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Thirty-five articles involving 131,692 ICU patients with coronavirus disease 2019 (COVID-19) and 30,286 ICU patients with influenza were included in our meta-analysis. Compared with influenza patients, COVID-19 patients were more likely to be male (odds ratio (OR) = 1.75, 95% CI: 1.54-1.99) and older (standardized mean difference (SMD) = 0.16, 95% CI: 0.03-0.29). In terms of laboratory test results, COVID-19 patients had higher lymphocyte (SMD = 0.38, 95% CI: 0.17-0.59) and platelet counts (SMD = 0.52, 95% CI: 0.29-0.75) but lower creatinine (SMD = -0.29, 95% CI: -0.55-0.03) and procalcitonin levels (SMD = -0.78, 95% CI: -1.11-0.46). Diabetes (SMD = 1.27, 95% CI: 1.08-1.48) and hypertension (SMD = 1.30, 95% CI: 1.05-1.60) were more prevalent in COVID-19 patients, while influenza patients were more likely to have cancer (OR = 0.52, 95% CI: 0.44-0.62), cirrhosis (OR = 0.52, 95% CI: 0.44-0.62), immunodepression (OR = 0.38, 95% CI: 0.25-0.58), and chronic pulmonary diseases (OR = 0.35, 95% CI: 0.24-0.52). We also found that patients with COVID-19 had longer ICU stays (SMD = 0.20, 95% CI: 0.05-0.34), were more likely to develop acute respiratory distress syndrome (OR = 4.90, 95% CI: 2.77-8.64), and had higher mortality (OR = 1.35, 95% CI: 1.17-1.55). CONCLUSIONS There are some differences in the basic characteristics, comorbidities, laboratory test results and complications between ICU patients with COVID-19 and ICU patients with influenza. Critically ill patients with COVID-19 often require more medical resources and have worse clinical outcomes. PROSPERO Registration Number: CRD42023452238.
Collapse
Affiliation(s)
- Zhuan Zhong
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin Province 130000, China
| | - Xin Wang
- Infection Management Department of Hospital, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130000, China
| | - Jia Guo
- Department of Respiratory, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130000, China
| | - Xingzhao Li
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130000, China
| | - Yingying Han
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130000, China
| |
Collapse
|
5
|
Jang S, Hong W, Moon Y. Obesity-compromised immunity in post-COVID-19 condition: a critical control point of chronicity. Front Immunol 2024; 15:1433531. [PMID: 39188722 PMCID: PMC11345197 DOI: 10.3389/fimmu.2024.1433531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Post-COVID-19 condition is recognized as a multifactorial disorder, with persistent presence of viral antigens, discordant immunity, delayed viral clearance, and chronic inflammation. Obesity has emerged as an independent risk factor for both SARS-CoV-2 infection and its subsequent sequelae. In this study, we aimed to predict the molecular mechanisms linking obesity and post-COVID-19 distress. Viral antigen-exposed adipose tissues display remarkable levels of viral receptors, facilitating viral entry, deposition, and chronic release of inflammatory mediators and cells in patients. Subsequently, obesity-associated inflammatory insults are predicted to disturb cellular and humoral immunity by triggering abnormal cell differentiation and lymphocyte exhaustion. In particular, the decline in SARS-CoV-2 antibody titers and T-cell exhaustion due to chronic inflammation may account for delayed virus clearance and persistent activation of inflammatory responses. Taken together, obesity-associated defective immunity is a critical control point of intervention against post-COVID-19 progression, particularly in subjects with chronic metabolic distress.
Collapse
Affiliation(s)
- Soonwoo Jang
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
| | - Wooyoung Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
6
|
Sideratou CM, Papaneophytou C. Persistent Vascular Complications in Long COVID: The Role of ACE2 Deactivation, Microclots, and Uniform Fibrosis. Infect Dis Rep 2024; 16:561-571. [PMID: 39051242 PMCID: PMC11270324 DOI: 10.3390/idr16040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), a key regulator in vasoregulation and the renin-angiotensin system, is hypothesized to be downregulated in patients with COVID-19, leading to a cascade of cardiovascular complications. This deactivation potentially results in increased blood pressure and vessel injury, contributing to the formation and persistence of microclots in the circulation. Herein, we propose a hypothesis regarding the prolonged vascular complications observed in long COVID, focusing on the role of ACE2 deactivation and/or shedding, the persistence of microclots, and the unique pattern of fibrosis induced by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Furthermore, we propose that the distinctive, uniform fibrosis associated with COVID-19, which is challenging to detect through conventional X-ray imaging, exacerbates vascular injury and impairs oxygenation. The persistence of these microclots and the unique fibrosis pattern are suggested as key factors in the extended duration of vascular complications post-COVID-19 infection, regardless of the initial disease severity. Moreover, plasma ACE2 activity has the potential to serve as prognostic or diagnostic biomarkers for monitoring disease severity and managing long COVID symptoms. Elucidating the role of ACE2 deactivation and the consequent events is vital for understanding the long-term effects of COVID-19. The experimental verification of this hypothesis through in vitro studies, clinical longitudinal studies, and advanced imaging techniques could yield significant insights into the pathophysiological mechanisms underlying long COVID, thereby improving the management of patients, particularly those with cardiovascular complications.
Collapse
Affiliation(s)
| | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus;
| |
Collapse
|
7
|
Wolszczak-Biedrzycka B, Dorf J, Matowicka-Karna J, Wojewódzka-Żeleźniakowicz M, Żukowski P, Zalewska A, Maciejczyk M. Significance of nitrosative stress and glycoxidation products in the diagnosis of COVID-19. Sci Rep 2024; 14:9198. [PMID: 38649417 PMCID: PMC11035544 DOI: 10.1038/s41598-024-59876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Nitrosative stress promotes protein glycoxidation, and both processes can occur during an infection with the SARS-CoV-2 virus. Therefore, the aim of this study was to assess selected nitrosative stress parameters and protein glycoxidation products in COVID-19 patients and convalescents relative to healthy subjects, including in reference to the severity of COVID-19 symptoms. The diagnostic utility of nitrosative stress and protein glycoxidation biomarkers was also evaluated in COVID-19 patients. The study involved 218 patients with COVID-19, 69 convalescents, and 48 healthy subjects. Nitrosative stress parameters (NO, S-nitrosothiols, nitrotyrosine) and protein glycoxidation products (tryptophan, kynurenine, N-formylkynurenine, dityrosine, AGEs) were measured in the blood plasma or serum with the use of colorimetric/fluorometric methods. The levels of NO (p = 0.0480), S-nitrosothiols (p = 0.0004), nitrotyrosine (p = 0.0175), kynurenine (p < 0.0001), N-formylkynurenine (p < 0.0001), dityrosine (p < 0.0001), and AGEs (p < 0.0001) were significantly higher, whereas tryptophan fluorescence was significantly (p < 0.0001) lower in COVID-19 patients than in the control group. Significant differences in the analyzed parameters were observed in different stages of COVID-19. In turn, the concentrations of kynurenine (p < 0.0001), N-formylkynurenine (p < 0.0001), dityrosine (p < 0.0001), and AGEs (p < 0.0001) were significantly higher, whereas tryptophan levels were significantly (p < 0.0001) lower in convalescents than in healthy controls. The ROC analysis revealed that protein glycoxidation products can be useful for diagnosing infections with the SARS-CoV-2 virus because they differentiate COVID-19 patients (KN: sensitivity-91.20%, specificity-92.00%; NFK: sensitivity-92.37%, specificity-92.00%; AGEs: sensitivity-99,02%, specificity-100%) and convalescents (KN: sensitivity-82.22%, specificity-84.00%; NFK: sensitivity-82,86%, specificity-86,00%; DT: sensitivity-100%, specificity-100%; AGE: sensitivity-100%, specificity-100%) from healthy subjects with high sensitivity and specificity. Nitrosative stress and protein glycoxidation are intensified both during and after an infection with the SARS-CoV-2 virus. The levels of redox biomarkers fluctuate in different stages of the disease. Circulating biomarkers of nitrosative stress/protein glycoxidation have potential diagnostic utility in both COVID-19 patients and convalescents.
Collapse
Affiliation(s)
- Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, 10-900, Olsztyn, Poland.
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-089, Białystok, Poland
| | | | - Piotr Żukowski
- Department of Restorative Dentistry, Croydon University Hospital, 530 London Road, Croydon, Surrey, CR7 7YE, UK
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-089, Białystok, Poland
| |
Collapse
|
8
|
Li H, Zhao X, Peng S, Li Y, Li J, Zheng H, Zhang Y, Zhao Y, Tian Y, Yang J, Wang Y, Zhang X, Liu L. The Abundant Distribution and Duplication of SARS-CoV-2 in the Cerebrum and Lungs Promote a High Mortality Rate in Transgenic hACE2-C57 Mice. Int J Mol Sci 2024; 25:997. [PMID: 38256071 PMCID: PMC10815841 DOI: 10.3390/ijms25020997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Patients with COVID-19 have been reported to experience neurological complications, although the main cause of death in these patients was determined to be lung damage. Notably, SARS-CoV-2-induced pathological injuries in brains with a viral presence were also found in all fatal animal cases. Thus, an appropriate animal model that mimics severe infections in the lungs and brain needs to be developed. In this paper, we compared SARS-CoV-2 infection dynamics and pathological injuries between C57BL/6Smoc-Ace2em3(hACE2-flag-Wpre-pA)Smoc transgenic hACE2-C57 mice and Syrian hamsters. Importantly, the greatest viral distribution in mice occurred in the cerebral cortex neuron area, where pathological injuries and cell death were observed. In contrast, in hamsters, viral replication and distribution occurred mainly in the lungs but not in the cerebrum, although obvious ACE2 expression was validated in the cerebrum. Consistent with the spread of the virus, significant increases in IL-1β and IFN-γ were observed in the lungs of both animals. However, in hACE2-C57 mice, the cerebrum showed noticeable increases in IL-1β but only mild increases in IFN-γ. Notably, our findings revealed that both the cerebrum and the lungs were prominent infection sites in hACE2 mice infected with SARS-CoV-2 with obvious pathological damage. Furthermore, hamsters exhibited severe interstitial pneumonia from 3 dpi to 5 dpi, followed by gradual recovery. Conversely, all the hACE2-C57 mice experienced severe pathological injuries in the cerebrum and lungs, leading to mortality before 5 dpi. According to these results, transgenic hACE2-C57 mice may be valuable for studying SARS-CoV-2 pathogenesis and clearance in the cerebrum. Additionally, a hamster model could serve as a crucial resource for exploring the mechanisms of recovery from infection at different dosage levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (H.L.); (X.Z.); (S.P.); (Y.L.); (J.L.); (H.Z.); (Y.Z.); (Y.Z.); (Y.T.); (J.Y.); (Y.W.); (X.Z.)
| |
Collapse
|
9
|
Zheng M. Clinical Significance of Viral Sociology Emerges as Influenza Season Collides With COVID-19 Pandemic. Mayo Clin Proc 2023; 98:1729-1731. [PMID: 37923531 DOI: 10.1016/j.mayocp.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Ming Zheng
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China; Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Zhou X, Wang N, Liu W, Chen R, Yang G, Yu H. Identification of the potential association between SARS-CoV-2 infection and acute kidney injury based on the shared gene signatures and regulatory network. BMC Infect Dis 2023; 23:655. [PMID: 37789254 PMCID: PMC10548629 DOI: 10.1186/s12879-023-08638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is identified as the cause of coronavirus disease 2019 (COVID-19) pandemic. Acute kidney injury (AKI), one of serious complications of COVID-19 infection, is the leading contributor to renal failure, associating with high mortality of the patients. This study aimed to identify the shared gene signatures and construct the gene regulatory network between COVID-19 and AKI, contributing to exploring the potential pathogenesis. METHODS Utilizing the machine learning approach, the candidate gene signatures were derived from the common differentially expressed genes (DEGs) obtained from COVID-19 and AKI. Subsequently, receiver operating characteristic (ROC), consensus clustering and functional enrichment analyses were performed. Finally, protein-protein interaction (PPI) network, transcription factor (TF)-gene interaction, gene-miRNA interaction, and TF-miRNA coregulatory network were systematically undertaken. RESULTS We successfully identified the shared 6 candidate gene signatures (RRM2, EGF, TMEM252, RARRES1, COL6A3, CUBN) between COVID-19 and AKI. ROC analysis showed that the model constructed by 6 gene signatures had a high predictive efficacy in COVID-19 (AUC = 0.965) and AKI (AUC = 0.962) cohorts, which had the potential to be the shared diagnostic biomarkers for COVID-19 and AKI. Additionally, the comprehensive gene regulatory networks, including PPI, TF-gene interaction, gene-miRNA interaction, and TF-miRNA coregulatory networks were displayed utilizing NetworkAnalyst platform. CONCLUSIONS This study successfully identified the shared gene signatures and constructed the comprehensive gene regulatory network between COVID-19 and AKI, which contributed to predicting patients' prognosis and providing new ideas for developing therapeutic targets for COVID-19 and AKI.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Nephrology, Haihe Hospital, Tianjin University, 890 Jingu Road, Jinnan District, Tianjin, 300350, China.
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, 300350, China.
- Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China.
- Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China.
| | - Ning Wang
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | - Wenjing Liu
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, 300350, China
| | - Ruixue Chen
- Tianjin Haihe Hospital, Tianjin, 300350, China
| | - Guoyue Yang
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China.
| | - Hongzhi Yu
- Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China.
- Department of Respiratory Medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
11
|
Verdiguel-Fernández L, Arredondo-Hernández R, Mejía-Estrada JA, Ortiz A, Verdugo-Rodríguez A, Orduña P, Ponce de León-Rosales S, Calva JJ, López-Vidal Y. Differential expression of biomarkers in saliva related to SARS-CoV-2 infection in patients with mild, moderate and severe COVID-19. BMC Infect Dis 2023; 23:602. [PMID: 37715121 PMCID: PMC10502992 DOI: 10.1186/s12879-023-08573-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Severe COVID-19 is a disease characterized by profound dysregulation of the innate immune system. There is a need to identify highly reliable prognostic biomarkers that can be rapidly assessed in body fluids for early identification of patients at higher risk for hospitalization and/or death. This study aimed to assess whether differential gene expression of immune response molecules and cellular enzymes, detected in saliva samples of COVID-19 patients, occurs according to disease severity staging. METHODS In this cross-sectional study, subjects with a COVID-19 diagnosis were classified as having mild, moderate, or severe disease based on clinical features. Transcripts of genes encoding 6 biomarkers, IL-1β, IL-6, IL-10, C-reactive protein, IDO1 and ACE2, were measured by RT‒qPCR in saliva samples of patients and COVID-19-free individuals. RESULTS The gene expression levels of all 6 biomarkers in saliva were significantly increased in severe disease patients compared to mild/moderate disease patients and healthy controls. A significant strong inverse relationship between oxemia and the level of expression of the 6 biomarkers (Spearman's correlation coefficient between -0.692 and -0.757; p < 0.001) was found. CONCLUSIONS Biomarker gene expression determined in saliva samples still needs to be validated as a potentially valuable predictor of severe clinical outcomes early at the onset of COVID-19 symptoms.
Collapse
Affiliation(s)
- Lázaro Verdiguel-Fernández
- Departamento de Microbiología Y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, UNAM, CDMX, México
| | | | - Jesús Andrés Mejía-Estrada
- Departamento de Microbiología Y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, UNAM, CDMX, México
| | - Adolfo Ortiz
- Departamento de Microbiología E Inmunología, Unidad de Bioseguridad de Brucella, Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, CDMX, México
| | - Antonio Verdugo-Rodríguez
- Departamento de Microbiología E Inmunología, Laboratorio de Microbiología Molecular, Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, CDMX, México
| | - Patricia Orduña
- Laboratorio de Microbioma, División de Investigación, Facultad de Medicina, UNAM, CDMX, México
| | | | - Juan José Calva
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", CDMX, México.
| | - Yolanda López-Vidal
- Departamento de Microbiología Y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, UNAM, CDMX, México.
| |
Collapse
|
12
|
Pi P, Zeng Z, Zeng L, Han B, Bai X, Xu S. Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition. Front Pharmacol 2023; 14:1218059. [PMID: 37601070 PMCID: PMC10436482 DOI: 10.3389/fphar.2023.1218059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
As the outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in Hubei Province, China, at the end of 2019. It has brought great challenges and harms to global public health. SARS-CoV-2 mainly affects the lungs and is mainly manifested as pulmonary disease. However, one of the biggest crises arises from the emergence of COVID-19-induced fibrosis. At present, there are still many questions about how COVID-19 induced pulmonary fibrosis (PF) occurs and how to treat and regulate its long-term effects. In addition, as an important process of fibrosis, the effect of COVID-19 on epithelial-mesenchymal transition (EMT) may be an important factor driving PF. This review summarizes the main pathogenesis and treatment mechanisms of COVID-19 related to PF. Starting with the basic mechanisms of PF, such as EMT, transforming growth factor-β (TGF-β), fibroblasts and myofibroblasts, inflammation, macrophages, innate lymphoid cells, matrix metalloproteinases and tissue inhibitors of metalloproteinases, hedgehog pathway as well as Notch signaling. Further, we highlight the importance of COVID-19-induced EMT in the process of PF and provide an overview of the related molecular mechanisms, which will facilitate future research to propose new clinical therapeutic solutions for the treatment of COVID-19-induced PF.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shousheng Xu
- School of Sports Engineering, Beijing Sport University, Beijing, China
| |
Collapse
|
13
|
Xia X. Identification of host receptors for viral entry and beyond: a perspective from the spike of SARS-CoV-2. Front Microbiol 2023; 14:1188249. [PMID: 37560522 PMCID: PMC10407229 DOI: 10.3389/fmicb.2023.1188249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Identification of the interaction between the host membrane receptor and viral receptor-binding domain (RBD) represents a crucial step for understanding viral pathophysiology and for developing drugs against pathogenic viruses. While all membrane receptors and carbohydrate chains could potentially be used as receptors for viruses, prioritized searches focus typically on membrane receptors that are known to have been used by the relatives of the pathogenic virus, e.g., ACE2 used as a receptor for SARS-CoV is a prioritized candidate receptor for SARS-CoV-2. An ideal receptor protein from a viral perspective is one that is highly expressed in epithelial cell surface of mammalian respiratory or digestive tracts, strongly conserved in evolution so many mammalian species can serve as potential hosts, and functionally important so that its expression cannot be readily downregulated by the host in response to the infection. Experimental confirmation of host receptors includes (1) infection studies with cell cultures/tissues/organs with or without candidate receptor expression, (2) experimental determination of protein structure of the complex between the putative viral RDB and the candidate host receptor, and (3) experiments with mutant candidate receptor or homologues of the candidate receptor in other species. Successful identification of the host receptor opens the door for mechanism-based development of candidate drugs and vaccines and facilitates the inference of what other animal species are vulnerable to the viral pathogen. I illustrate these approaches with research on identification of the receptor and co-factors for SARS-CoV-2.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
14
|
Warpechowski J, Leszczyńska P, Juchnicka D, Olichwier A, Szczerbiński Ł, Krętowski AJ. Assessment of the Immune Response in Patients with Insulin Resistance, Obesity, and Diabetes to COVID-19 Vaccination. Vaccines (Basel) 2023; 11:1203. [PMID: 37515018 PMCID: PMC10383449 DOI: 10.3390/vaccines11071203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
The SARS-CoV-19 pandemic overwhelmed multiple healthcare systems across the world. Patients with underlying medical conditions such as obesity or diabetes were particularly vulnerable, had more severe symptoms, and were more frequently hospitalized. To date, there have been many studies on the severity of SARS-CoV-2 in patients with metabolic disorders, but data on the efficiency of vaccines against COVID-19 are still limited. This paper aims to provide a comprehensive overview of the effectiveness of COVID-19 vaccines in individuals with diabetes, insulin resistance, and obesity. A comparison is made between the immune response after vaccination in patients with and without metabolic comorbidities. Additionally, an attempt is made to highlight the mechanisms of immune stimulation affected by SARS-CoV-2 vaccines and how metabolic comorbidities modulate these mechanisms. The focus is on the most common COVID-19 vaccines, which include mRNA vaccines such as Pfizer-BioNTech and Moderna, as well as viral vector vaccines such as AstraZeneca and Johnson & Johnson. Furthermore, an effort is made to clarify how the functional differences between these vaccines may impact the response in individuals with metabolic disorders, drawing from available experimental data. This review summarizes the current knowledge regarding the post-vaccination response to COVID-19 in the context of metabolic comorbidities such as diabetes, insulin resistance, and obesity.
Collapse
Affiliation(s)
- Jędrzej Warpechowski
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Paula Leszczyńska
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Dominika Juchnicka
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Adam Olichwier
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Łukasz Szczerbiński
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Diseases, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Diseases, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
15
|
Kuo CW, Su PL, Huang TH, Lin CC, Chen CW, Tsai JS, Liao XM, Chan TY, Shieh CC. Cigarette smoke increases susceptibility of alveolar macrophages to SARS-CoV-2 infection through inducing reactive oxygen species-upregulated angiotensin-converting enzyme 2 expression. Sci Rep 2023; 13:7894. [PMID: 37193781 DOI: 10.1038/s41598-023-34785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
Alveolar macrophages (AMs) are the drivers of pulmonary cytokine storm in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This study aimed to investigate clinical-regulatory factors for the entrance protein of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) in AMs. Human AMs were collected from 56 patients using bronchoalveolar lavage. ACE2 expression in AMs was positively correlated with smoking pack-year (Spearman's r = 0.347, P = 0.038). In multivariate analysis, current smoking was associated with increased ACE2 in AMs (β-coefficient: 0.791, 95% CI 0.019-1.562, P = 0.045). In vitro study, ex-vivo human AMs with higher ACE2 were more susceptible to SARS-CoV-2 pseudovirus (CoV-2 PsV). Treating human AMs using cigarette smoking extract (CSE) increases the ACE2 and susceptibility to CoV-2 PsV. CSE did not significantly increase the ACE2 in AMs of reactive oxygen species (ROS) deficient Cybb-/- mice; however, exogenous ROS increased the ACE2 in Cybb-/- AMs. N-acetylcysteine (NAC) decreases ACE2 by suppressing intracellular ROS in human AMs. In conclusion, cigarette smoking increases the susceptibility to SARS-CoV-2 by increasing ROS-induced ACE2 expression of AMs. Further investigation into the preventive effect of NAC on the pulmonary complications of COVID-19 is required.
Collapse
Affiliation(s)
- Chin-Wei Kuo
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lan Su
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tang-Hsiu Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chung Lin
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chian-Wei Chen
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jeng-Shiuan Tsai
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Xin-Min Liao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yi Chan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan.
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|