1
|
Yamamura S, Horiguchi H, Kadomatsu T, Miyata K, Torigoe D, Suzuki T, Sato M, Araki K, Suzuki A, Fukushima S, Oike Y. Aging-Associated Mitochondrial Decline Accelerates Skin Aging and Obesity. J Invest Dermatol 2025:S0022-202X(25)00395-1. [PMID: 40210116 DOI: 10.1016/j.jid.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
Skin tissue, which consists of epidermal, dermal, and hypodermal cells, plays an important role in biological defense and physical appearance. External and internal stresses occurring with aging disrupt skin homeostasis, promoting the development of phenotypes associated with aging. Although many studies of skin aging focus on the dermis, potential epidermal changes have largely remained uncharacterized. In this study, we demonstrate that epidermal cells do not exhibit cellular senescence phenotypes with aging but instead show age-related decreases in mitochondrial number. We also found that mice lacking TFAM in epidermal cells exhibit delayed hair regrowth and impaired wound healing by middle age, resembling changes seen in skin of aged mice. Furthermore, middle-aged epidermis-specific TFAM-deficient mice exhibited obesity, suggesting that impaired fatty acid metabolism in epidermal cells resulting from mitochondrial decline may lead to obesity. These findings overall suggest that mitochondrial decline occurs as a primary event in epidermal aging and that antiaging strategies to enhance activity or number of epidermal mitochondria could antagonize both skin-aging phenotypes and age-related metabolic disease.
Collapse
Affiliation(s)
- Shuji Yamamura
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Daisuke Torigoe
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Laboratory Animal Science, Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Takehisa Suzuki
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Developmental Genetics, Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Liu Z, Sun C, Zhang Z, Jiang Y, Zhao C. Telomeres in skin aging. Biogerontology 2025; 26:83. [PMID: 40159528 DOI: 10.1007/s10522-025-10228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Skin aging is influenced by both intrinsic and extrinsic factors. The gradual manifestation of changes in telomere length and telomerase activity, as crucial indicators of aging, elucidates the underlying mechanism of skin aging. This review aims to comprehensively analyze the association between telomeres and aging, along with their impact on skin biological function. Firstly, we summarize the structure and function of telomeres and their role in cell division. Subsequently, we discuss the mechanisms through which telomere regulation contributes to aging processes while analyzing its involvement in skin aging by elaborating on biological markers. Furthermore, this paper presents a summary of recent research progress that reveals the correlation between telomere length and skin aging as well as model building methods; it also proposes telomere length as a potential indicator for predicting skin aging. Finally, anti-aging strategies based on telomere protection are discussed including drug therapy and lifestyle adjustments. This paper provides a systematic overview of the role played by telomeres in the field of skin aging for the first time, offering new perspectives and ideas for future prevention and treatment.
Collapse
Affiliation(s)
- Zibin Liu
- Beijing Qingyan Boshi Health Management Co., Ltd, No. 36, Chuangyuan Road, Chaoyang District, Beijing, China
| | - Chang Sun
- Beijing Qingyan Boshi Health Management Co., Ltd, No. 36, Chuangyuan Road, Chaoyang District, Beijing, China
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Peking University Medical-Qingyan Boshi Joint Laboratory for Skin Nutrition and Anti-Aging, School of Public Health, Peking University, Beijing, China
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd, No. 36, Chuangyuan Road, Chaoyang District, Beijing, China.
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd, No. 36, Chuangyuan Road, Chaoyang District, Beijing, China.
| |
Collapse
|
3
|
Ma H, Zou Y, Liu L, Yu J, Wang P, Lin L, Chen M, Jia R, Fan Y. A nanochitin-drived natural biological adhesive with high cohesive for wound healing. Int J Biol Macromol 2025; 297:139505. [PMID: 39788259 DOI: 10.1016/j.ijbiomac.2025.139505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
The weak cohesive strength of tissue adhesives hinders their practical applications. To overcome this challenge, we develop a green bio-adhesive that balances both cohesion and adhesion, drawing inspiration from the natural adhesion mechanisms of mussels. This bio-adhesive, referred to as OTS, was ingeniously crafted through the co-assembly of multi-surface-charged chitin nanofibers (OAChN) and tannic acid (TA), integrated with silk fibroin (SF), resulting in a material with enhanced cohesive strength and robust adhesive properties. The adhesive achieved significant cohesion through hydrogen-bonded crosslinking among OAChN, SF, and TA, boasting a tensile strength of 24.53 KPa and allowing for 150 % elastic deformation. OTS adheres effectively to diverse complex surfaces, with adhesive strengths of 14.55 MPa underwater and 8.83 MPa in air, demonstrating excellent versatility. The biocompatibility and degradability of OTS were confirmed by a wound healing model in SD rats, showing no nanotoxicity and effectively promoting wound healing, rapid hemostasis, and sealing. This green adhesive strategy offers a novel approach to augmenting the cohesive strength of tissue adhesives suitable for complex conditions and has potential medical applications ranging from rapid hemostasis to wound healing enhancement.
Collapse
Affiliation(s)
- Huazhong Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Yujun Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Lin Lin
- Jiangsu Opera Medical Supplies Co., Ltd, China
| | | | - Ruoxian Jia
- Jiangsu Opera Medical Supplies Co., Ltd, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| |
Collapse
|
4
|
Feifei W, Wenrou S, Jinyue S, Qiaochu D, Jingjing L, Jin L, Junxiang L, Xuhui L, Xiao L, Congfen H. Anti-ageing mechanism of topical bioactive ingredient composition on skin based on network pharmacology. Int J Cosmet Sci 2025; 47:134-154. [PMID: 39246148 DOI: 10.1111/ics.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE To elucidate the anti-ageing mechanism of the combination of eight ingredients on the skin from a multidimensional view of the skin. METHODS The target pathway mechanisms of composition to delay skin ageing were investigated by a network pharmacology approach and experimentally validated at three levels: epidermal, dermal, and tissue. RESULTS We identified 24 statistically significant skin ageing-related pathways, encompassing crucial processes such as epidermal barrier repair, dermal collagen and elastin production, inhibition of reactive oxygen species (ROS), as well as modulation of acetylcholine and acetylcholine receptor binding. Furthermore, our in vitro experimental findings exhibited the following outcomes: the composition promotes fibroblast proliferation and the expression of barrier-related genes in the epidermis; it also stimulated the expression of collagen I, collagen III, and elastic fibre while inhibiting ROS and β-Gal levels in HDF cells within the dermis. Additionally, Spilanthol in the Acmella oleracea extract contained in the composition demonstrated neuro-relaxing activity in Zebrafish embryo, suggesting its potential as an anti-wrinkle ingredient at the hypodermis level. CONCLUSIONS In vitro experiments validated the anti-ageing mechanism of composition at multiple skin levels. This framework can be extended to unravel the functional mechanisms of other clinically validated compositions, including traditional folk recipes utilized in cosmeceuticals.
Collapse
Affiliation(s)
- Wang Feifei
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Su Wenrou
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Sun Jinyue
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Beijing Key Lab of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Du Qiaochu
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Li Jingjing
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Liu Jin
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Li Junxiang
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Harvest Biotech (Zhejiang) Co., Ltd., Zhejiang, China
| | - Li Xuhui
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Lin Xiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - He Congfen
- Beijing Key Lab of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
5
|
Zang S, Chen J, Chevalier C, Zhang J, Li S, Wang H, Li J, Chen Y, Xu H, Sheng L, Zhang Z, Qiu J. Holistic investigation of the anti-wrinkle and repair efficacy of a facial cream enriched with C-xyloside. J Cosmet Dermatol 2024; 23:4017-4028. [PMID: 39107974 PMCID: PMC11626324 DOI: 10.1111/jocd.16489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE To investigate the repairing and anti-wrinkle efficacy of the facial cream enriched with C-xyloside, aiming at comprehensively evaluating its skin anti- aging effect and clarify its potential mechanism of action. METHODS The repairing efficacy was studied on 3D epidermis skin model and the antiaging efficacy was studied on ex-vivo human skin. Two clinical studies were conducted with Chinese females. In the first study, 49 subjects aged between 30 and 50 with wrinkle concerns were recruited and instructed to apply the investigational cream containing C-xyloside for 8 weeks. Wrinkles attributes were assessed by dermatologist. Instrumental measurements on skin hydration, trans-epidermal water loss (TEWL), and skin elasticity were also conducted. In the second study, 30 subjects aged between 25 and 60 with self-declared sensitive skin and facial redness were recruited and instructed to apply the cream for 4 weeks. Biomarker analysis of the stratum corneum was conducted through facial tape strips. RESULTS The cream improved the histomorphology of the 3D epidermis skin model after SLS stimulation, and significantly increase the expression of LOR and FLG. On human skin, the cream improved the histopathology induced by UV, and significantly increased the protein content of COL I and COL III, collagen density and the number of Ki-67 positive cell of skin compared with model group (n = 3, p < 0.01). The results from the first clinical study demonstrate a significant increased the skin hydration and elasticity by 21.90%, 13.08% (R2) and 12.30% (R5), respectively (n = 49, p < 0.05), and the TEWL values decreased by 33.94% (n = 49, p < 0.05), after 8 weeks application of the cream. In addition, the scores for nasolabial folds, glabellar wrinkle, underneath eye wrinkles, crow's feet wrinkle and forehead wrinkle in the volunteers exhibited a significant reduction of 34.02%, 43.34%, 50.03%, 33.64% and 55.81% respectively (n = 49, p < 0.05). The (rCE)/(fCE) ratio of volunteers based on tape stripping significant increased after using the sample cream (n = 30, p < 0.05). CONCLUSION The cream containing C-xyloside showed improvement of skin wrinkles and enhancement of skin barrier function. These efficacies may be attributed to the fact that the sample cream can increase the expression of skin barrier related proteins LOR and FLG, promote the maturation of cornified envelope, enhance collagen I and III protein expression and stimulate skin cell proliferation, to provide sufficient evidence supporting its antiaging efficacy of skin.
Collapse
Affiliation(s)
- Shanshan Zang
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Juanjuan Chen
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Cyril Chevalier
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Ji Zhang
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Shumei Li
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Hequn Wang
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Jing Li
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Yangdong Chen
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Hongling Xu
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Le Sheng
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Zhiming Zhang
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Jie Qiu
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| |
Collapse
|
6
|
Zhang Y, Liu L, Yue L, Huang Y, Wang B, Liu P. Uncovering key mechanisms and intervention therapies in aging skin. Cytokine Growth Factor Rev 2024; 79:66-80. [PMID: 39198086 DOI: 10.1016/j.cytogfr.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Advancements in understanding skin aging mechanisms, which encompass both external and internal aging processes, have spurred the development of innovative treatments primarily aimed at improving cosmetic appearance. These findings offer the potential for the development of novel therapeutic strategies aimed at achieving long-term, non-therapy-dependent clinical benefits, including the reversal of aging and the mitigation of associated health conditions. Realizing this goal requires further research to establish the safety and efficacy of targeting aging-related skin changes, such as pigmentation, wrinkling, and collagen loss. Systematic investigation is needed to identify the most effective interventions and determine optimal anti-aging treatment strategies. These reviews highlight the features and possible mechanisms of skin aging, as well as the latest progress and future direction of skin aging research, to provide a theoretical basis for new practical anti-skin aging strategies.
Collapse
Affiliation(s)
- Yuqin Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China
| | - Lin Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China
| | - Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China.
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China.
| |
Collapse
|
7
|
Zhang Z, Shi M, Li J, Chen D, Ren J, Li Z, Tuan H, Zhao Y. The Characteristics and Inheriting Pattern of Skin Aging in Chinese Women: An Intergenerational Study of Mothers and Daughters. Clin Cosmet Investig Dermatol 2024; 17:1773-1782. [PMID: 39132029 PMCID: PMC11315646 DOI: 10.2147/ccid.s468477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Introduction The aging of the skin, which is affected by both external and internal causes, can reflect the external age and the internal health status. While the aging characteristics differ across ethnic groups, the specific changes in skin aging within the Chinese population have been underexplored. Moreover, investigating the similarity of aging skin characteristics between parent-offspring pairs remains uncharted territory. This study aims to fill these gaps by examining the skin aging features of Chinese women and assessing the similarity in aging skin characteristics between mother-daughter pairs. Methods A total of 40 mother-daughter pairs were recruited and analyzed. The perceived ages of the participants were evaluated, and their aging skin traits were systematically graded. Statistical methods were employed to discern the trends of the aging skin characteristics. By introducing a novel similarity parameter, we compared whether various skin aging characteristics have similar patterns between mothers and daughters. Results Our findings indicate that age 50 represents a pivotal point in skin aging. Beyond this age, the increase in rhytides and laxity scores accelerated noticeably, whereas the escalation in dyschromia scores became less marked. By introducing similar parameters between mother-daughter pairs and the radar map, we discovered that the skin aging characteristics are remarkably consistent between mother-daughter pairs. Conclusion Understanding the main aging skin characteristics of different age groups can allow caregivers to devise treatments for preventing skin aging in women of various ages. The mother's skin aging trend is also significant for the daughter's skin aging prevention.
Collapse
Affiliation(s)
- Zhuying Zhang
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, Beijing, People’s Republic of China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Mai Shi
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, Beijing, People’s Republic of China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Jinghui Li
- School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Dian Chen
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, Beijing, People’s Republic of China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Jie Ren
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, Beijing, People’s Republic of China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Zhenghui Li
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, Beijing, People’s Republic of China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Hsiaohan Tuan
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, Beijing, People’s Republic of China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Yi Zhao
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, Beijing, People’s Republic of China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Swartz Z. Perioperative Care of the Older Adult. AORN J 2024; 120:43-49. [PMID: 38923473 DOI: 10.1002/aorn.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 06/28/2024]
|
9
|
Pozzo LD, Xu Z, Lin S, Wang J, Wang Y, Enechojo OS, Abankwah JK, Peng Y, Chu X, Zhou H, Bian Y. Role of epigenetics in the regulation of skin aging and geroprotective intervention: A new sight. Biomed Pharmacother 2024; 174:116592. [PMID: 38615608 DOI: 10.1016/j.biopha.2024.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Multiple epigenetic factors play a regulatory role in maintaining the homeostasis of cutaneous components and are implicated in the aging process of the skin. They have been associated with the activation of the senescence program, which is the primary contributor to age-related decline in the skin. Senescent species drive a series of interconnected processes that impact the immediate surroundings, leading to structural changes, diminished functionality, and heightened vulnerability to infections. Geroprotective medicines that may restore the epigenetic balance represent valid therapeutic alliances against skin aging. Most of them are well-known Western medications such as metformin, nicotinamide adenine dinucleotide (NAD+), rapamycin, and histone deacetylase inhibitors, while others belong to Traditional Chinese Medicine (TCM) remedies for which the scientific literature provides limited information. With the help of the Geroprotectors.org database and a comprehensive analysis of the referenced literature, we have compiled data on compounds and formulae that have shown potential in preventing skin aging and have been identified as epigenetic modulators.
Collapse
Affiliation(s)
- Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhe Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shan Lin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ogbe Susan Enechojo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Joseph Kofi Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanfei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoqian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huifang Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
Natarelli N, Gahoonia N, Aflatooni S, Bhatia S, Sivamani RK. Dermatologic Manifestations of Mitochondrial Dysfunction: A Review of the Literature. Int J Mol Sci 2024; 25:3303. [PMID: 38542277 PMCID: PMC10970650 DOI: 10.3390/ijms25063303] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
Mitochondria are eukaryotic cellular organelles that function in energy metabolism, ROS production, and programmed cell death. Cutaneous epithelial and hair follicle dermal papilla cells are energy-rich cells that thereby may be affected by mitochondrial dysfunction and DNA mutation accumulation. In this review, we aimed to summarize the medical literature assessing dermatologic conditions and outcomes associated with mitochondrial dysfunction. A search of PubMed and Embase was performed with subsequent handsearching to retrieve additional relevant articles. Mitochondrial DNA (mtDNA) deletions, mutation accumulation, and damage are associated with phenotypic signs of cutaneous aging, hair loss, and impaired wound healing. In addition, several dermatologic conditions are associated with aberrant mitochondrial activity, such as systemic lupus erythematosus, psoriasis, vitiligo, and atopic dermatitis. Mouse model studies have better established causality between mitochondrial damage and dermatologic outcomes, with some depicting reversibility upon restoration of mitochondrial function. Mitochondrial function mediates a variety of dermatologic conditions, and mitochondrial components may be a promising target for therapeutic strategies.
Collapse
Affiliation(s)
- Nicole Natarelli
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (N.N.); (S.A.)
| | - Nimrit Gahoonia
- College of Osteopathic Medicine, Touro University, 1310 Club Dr, Vallejo, CA 94592, USA;
| | - Shaliz Aflatooni
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (N.N.); (S.A.)
| | - Sahibjot Bhatia
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA;
| | - Raja K. Sivamani
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA;
- Integrative Skin Science and Research, 1495 River Park Drive, Sacramento, CA 95819, USA
- Pacific Skin Institute, 1495 River Park Dr Suite 200, Sacramento, CA 95815, USA
- Department of Dermatology, University of California-Davis, 3301 C St #1400, Sacramento, CA 95816, USA
| |
Collapse
|
11
|
Minoretti P, Emanuele E. Clinically Actionable Topical Strategies for Addressing the Hallmarks of Skin Aging: A Primer for Aesthetic Medicine Practitioners. Cureus 2024; 16:e52548. [PMID: 38371024 PMCID: PMC10874500 DOI: 10.7759/cureus.52548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
In this narrative review, we sought to provide a comprehensive overview of the mechanisms underlying cutaneous senescence, framed by the twelve traditional hallmarks of aging. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, impaired macroautophagy, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. We also examined how topical interventions targeting these hallmarks can be integrated with conventional aesthetic medicine techniques to enhance skin rejuvenation. The potential of combining targeted topical therapies against the aging hallmarks with minimally invasive procedures represents a significant advancement in aesthetic medicine, offering personalized and effective strategies to combat skin aging. The reviewed evidence paves the way for future advancements and underscores the transformative potential of integrating scientifically validated interventions targeted against aging hallmarks into traditional aesthetic practices.
Collapse
|