1
|
Wu Y, Yang L, Jiang W, Zhang X, Yao Z. Glycolytic dysregulation in Alzheimer's disease: unveiling new avenues for understanding pathogenesis and improving therapy. Neural Regen Res 2025; 20:2264-2278. [PMID: 39101629 PMCID: PMC11759019 DOI: 10.4103/nrr.nrr-d-24-00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments. The current therapeutic strategies, primarily based on cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, offer limited symptomatic relief without halting disease progression, highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease. Recent studies have provided insights into the critical role of glycolysis, a fundamental energy metabolism pathway in the brain, in the pathogenesis of Alzheimer's disease. Alterations in glycolytic processes within neurons and glial cells, including microglia, astrocytes, and oligodendrocytes, have been identified as significant contributors to the pathological landscape of Alzheimer's disease. Glycolytic changes impact neuronal health and function, thus offering promising targets for therapeutic intervention. The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression. Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments, emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.
Collapse
Affiliation(s)
- You Wu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijie Yang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wanrong Jiang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xinyuan Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhaohui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Xu Z, Li J, Liu X, Liu L, Lin W, Sun D, Zeng Y. Curcuma longa L. extract and residue prevent Alzheimer's disease in mice by regulating microglia and TLR4/NF-κB signaling pathway. J Pharm Pharmacol 2025:rgaf034. [PMID: 40424559 DOI: 10.1093/jpp/rgaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/02/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Curcuma longa L. (CL) is renowned for its various health benefits and has shown potential in alleviating Alzheimer's disease (AD). The post-aqueous extraction residues (CLR) may retain valuable nutritional components. The research aimed to explore their chemical composition and neuroprotective mechanism against Aβ1-42-induced AD mice. METHODS We employed UPLC-Q-Exactive/MS to characterize the chemical constituents of CL and CLR. An HPLC method was developed to quantify three predominant curcuminoids. To investigate their neuroprotective effects against Aβ1-42-induced AD mice, we assessed cognitive function using the Morris water maze and evaluated neuronal damage through histopathological examination. Molecular mechanisms were explored using immunofluorescence, ELISA, and qRT-PCR assays. RESULTS The study unveiled 47 and 36 compounds in CL and CLR, respectively, and eight significant differential components. HPLC analysis revealed that CLR contained substantial curcuminoids. In Aβ1-42-induced AD mice, CL and CLR improved spatial learning and memory ability, ameliorated pathological alterations in the hippocampal region, and regulated overactivated microglia. Moreover, CL and CLR inhibited the TLR4/NF-κB inflammatory pathway. CONCLUSION CL and CLR exhibit the anti-AD effect by regulating microglia and suppressing the TLR4/NF-κB signaling pathway, which provides a scientific basis for future nutraceutical and pharmaceutical development.
Collapse
Affiliation(s)
- Zhihui Xu
- School of Traditional Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Jianlin Li
- School of Traditional Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaotong Liu
- School of Traditional Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Liaoyuan Liu
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula Granule, Guangdong Yifang Pharmaceutical Co., Ltd., Foshan, Guangdong 528244, P.R. China
| | - Weixiong Lin
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula Granule, Guangdong Yifang Pharmaceutical Co., Ltd., Foshan, Guangdong 528244, P.R. China
| | - Dongmei Sun
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula Granule, Guangdong Yifang Pharmaceutical Co., Ltd., Foshan, Guangdong 528244, P.R. China
| | - Yu Zeng
- School of Traditional Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
3
|
Yang W, Yu Q, Wang N, Lam KK, Lin ZX, Xian YF. Far-Infrared Radiation Ameliorates the Cognitive Dysfunction in an Alzheimer's Disease Transgenic Mouse via Modulating Jak-2/Stat3 and Nrf-2/HO-1 Pathways. Neuromolecular Med 2025; 27:34. [PMID: 40374872 DOI: 10.1007/s12017-025-08860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025]
Abstract
Alzheimer's disease (AD) is the primary cause of dementia in the elderly. However, effective therapies that modify the disease process in AD remain elusive. Far-infrared radiation (FIR) is commonly utilized as a complementary treatment a range of disease, for example insomnia and rheumatoid arthritis. In this research, we explored how FIR light impacts the cognitive functions of TgCRND8 AD mice and elucidated its underlying molecular mechanism. The cognitive capabilities of TgCRND8 mice assessed by employing the Morris water maze. The concentrations of IL-1β, TNF-α, IL-4, Aβ40, and Aβ42 protein were assessed by enzyme-linked immunosorbent assay. Immunostaining was conducted to assess the Aβ deposits and microglial presence in the brains of TgCRND8 mice. Western blot was applied to detect the protein expressions of tau phosphorylation, amyloid-β (Aβ) production, Jak-2/Stat3, and Nrf-2/HO-1 pathways. The results indicated that FIR light notably ameliorated the cognitive impairments of the AD mice, reduced both Aβ deposition and tau protein hyperphosphorylation at sites of Thr205, Ser369, Ser404, and Thr181, suppressed the release of TNF-α and IL-1β, attenuated the ratios of p-Jak-2/Jak-2 and p-Stat3/Stat3, while increased the protein levels of IL-4, Nrf-2, and HO-1 in the brains of TgCRND8 mice. These findings amply demonstrated that FIR light ameliorated cognitive deficits of TgCRND8 mice via reducing both Aβ burden and tau protein hyperphosphorylation, suppressing the neuroinflammation, and restoring the levels of the oxidative-related proteins through modulating Jak-2/Stat3 and Nrf-2/HO-1 pathways. These experimental findings indicate that FIR light treatment is a promising treatment approach for AD.
Collapse
Affiliation(s)
- Wen Yang
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Qiuxia Yu
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Nick Wang
- Nick Wang Technology Limited, TML Tower, 3 Hoi Shing Road, Tsuen Wan, Kowloon, Hong Kong SAR, People's Republic of China
| | - Koon Kit Lam
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.
| | - Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
4
|
Chen J, Xu S, Wang L, Liu X, Liu G, Tan Q, Li W, Zhang S, Du Y. Refining the interactions between microglia and astrocytes in Alzheimer's disease pathology. Neuroscience 2025; 573:183-197. [PMID: 40120713 DOI: 10.1016/j.neuroscience.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Microglia and astrocytes are central to the pathogenesis and progression of Alzheimer's Disease (AD), working both independently and collaboratively to regulate key pathological processes such as β-amyloid protein (Aβ) deposition, tau aggregation, neuroinflammation, and synapse loss. These glial cells interact through complex molecular pathways, including IL-3/IL-3Ra and C3/C3aR, which influence disease progression and cognitive decline. Emerging research suggests that modulating these pathways could offer therapeutic benefits. For instance, recombinant IL-3 administration in mice reduced Aβ plaques and improved cognitive functions, while C3aR inhibition alleviated Aβ and tau pathologies, restored synaptic function, and corrected immune dysregulation. However, the effects of these interactions are context-dependent. Acute C3/C3aR activation enhances microglial Aβ clearance, whereas chronic activation impairs it, highlighting the dual roles of glial signaling in AD. Furthermore, C3/C3aR signaling not only impacts Aβ clearance but also modulates tau pathology and synaptic integrity. Given AD's multifactorial nature, understanding the specific pathological environment is crucial when investigating glial cell contributions. The interplay between microglia and astrocytes can be both neuroprotective and neurotoxic, depending on the disease stage and brain region. This complexity underscores the need for targeted therapies that modulate glial cell activity in a context-specific manner. By elucidating the molecular mechanisms underlying microglia-astrocyte interactions, this research advances our understanding of AD and paves the way for novel therapeutic strategies aimed at mitigating neurodegeneration and cognitive decline in AD and related disorders.
Collapse
Affiliation(s)
- Jiangmin Chen
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuyu Xu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Li Wang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Xinyuan Liu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Qian Tan
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Weixian Li
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuai Zhang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Yanjun Du
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China; Hubei Shizhen Laboratory, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, China; Hubei Provincial Hospital of Traditional Chinese Medicine, China.
| |
Collapse
|
5
|
Potokar M, Jorgačevski J. Targeting autophagy in astrocytes: a potential for neurodegenerative disease intervention. Front Cell Neurosci 2025; 19:1584767. [PMID: 40357169 PMCID: PMC12066609 DOI: 10.3389/fncel.2025.1584767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Autophagy contributes to cellular homeostasis by regulating the degradation and recycling of damaged organelles and misfolded proteins. In the central nervous system (CNS), impaired autophagy contributes to inflammation, disrupts cellular metabolism, and leads to the accumulation of toxic protein aggregates that accelerate the progression of neurodegenerative diseases. In addition to its role in protein and organelle turnover, autophagy facilitates the elimination of pathogenic bacteria and viruses, whose infections can also lead to neurological diseases and neuroinflammatory processes. Astrocytes, the most abundant glial cells in the CNS, play a crucial role in maintaining neuronal homeostasis by regulating neurotransmitter balance, ion exchange, and metabolic support. During neurodegeneration, they become reactive, actively participating in neuroinflammatory responses by releasing proinflammatory cytokines, activating microglia, and removing toxic aggregates. Cytokine-mediated responses and metabolic changes in astrocytes influence neuronal viability and neurotransmission. Autophagy in astrocytes plays an important role in tuning the astrocyte-dependent activity of neurons under physiological conditions and in pathological activation of astrocytes by disease, injury or pathogenic stimuli. In this review, we highlight the contribution of astrocytes to neurodegeneration from the perspective of changes in their cytoskeleton, the autophagy process in which the cytoskeleton plays a crucial role, and the metabolic support of neurons. The modulation of autophagy at different stages has the potential to serve as an additional therapeutic target in CNS diseases.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
6
|
Han J, Zhang X, Kang L, Guan J. Extracellular vesicles as therapeutic modulators of neuroinflammation in Alzheimer's disease: a focus on signaling mechanisms. J Neuroinflammation 2025; 22:120. [PMID: 40281600 PMCID: PMC12023694 DOI: 10.1186/s12974-025-03443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ) plaques and tau tangles, which contribute significantly to neuroinflammation, a central driver of disease pathogenesis. The activation of microglia and astrocytes, coupled with the complex interactions between Aβ and tau pathologies and the innate immune response, leads to a cascade of inflammatory events. This process triggers the release of pro-inflammatory cytokines and chemokines, exacerbating neuronal damage and fostering a cycle of chronic inflammation that accelerates neurodegeneration. Key signaling pathways, such as nuclear factor-kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), are involved in regulating the production of these inflammatory mediators, offering potential therapeutic targets for AD. Recently, extracellular vesicles (EVs) have emerged as a promising tool for AD therapy, due to their ability to cross the blood-brain barrier (BBB) and deliver therapeutic agents. Despite challenges in standardizing EV-based therapies and ensuring their safety, EVs offer a novel approach to modulating neuroinflammation and promoting neuroregeneration. This review aims to highlight the intricate relationship between neuroinflammation, signaling pathways, and the emerging role of EV-based therapeutics in advancing AD treatment strategies.
Collapse
Affiliation(s)
- Jingnan Han
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China.
| | - Jian Guan
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China.
| |
Collapse
|
7
|
Wu J, Xu W, Su Y, Wang GH, Ma JJ. Targeting chaperone-mediated autophagy in neurodegenerative diseases: mechanisms and therapeutic potential. Acta Pharmacol Sin 2025; 46:816-828. [PMID: 39548290 PMCID: PMC11950187 DOI: 10.1038/s41401-024-01416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The pathological hallmarks of various neurodegenerative diseases including Parkinson's disease and Alzheimer's disease prominently feature the accumulation of misfolded proteins and neuroinflammation. Chaperone-mediated autophagy (CMA) has emerged as a distinct autophagic process that coordinates the lysosomal degradation of specific proteins bearing the pentapeptide motif Lys-Phe-Glu-Arg-Gln (KFERQ), a recognition target for the cytosolic chaperone HSC70. Beyond its role in protein quality control, recent research underscores the intimate interplay between CMA and immune regulation in neurodegeneration. In this review, we illuminate the molecular mechanisms and regulatory pathways governing CMA. We further discuss the potential roles of CMA in maintaining neuronal proteostasis and modulating neuroinflammation mediated by glial cells. Finally, we summarize the recent advancements in CMA modulators, emphasizing the significance of activating CMA for the therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| | - Wan Xu
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Ying Su
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Guang-Hui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
8
|
Wang X, Feng S, Deng Q, Wu C, Duan R, Yang L. The role of estrogen in Alzheimer's disease pathogenesis and therapeutic potential in women. Mol Cell Biochem 2025; 480:1983-1998. [PMID: 39088186 DOI: 10.1007/s11010-024-05071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Estrogens are pivotal regulators of brain function throughout the lifespan, exerting profound effects from early embryonic development to aging. Extensive experimental evidence underscores the multifaceted protective roles of estrogens on neurons and neurotransmitter systems, particularly in the context of Alzheimer's disease (AD) pathogenesis. Studies have consistently revealed a greater risk of AD development in women compared to men, with postmenopausal women exhibiting heightened susceptibility. This connection between sex factors and long-term estrogen deprivation highlights the significance of estrogen signaling in AD progression. Estrogen's influence extends to key processes implicated in AD, including amyloid precursor protein (APP) processing and neuronal health maintenance mediated by brain-derived neurotrophic factor (BDNF). Reduced BDNF expression, often observed in AD, underscores estrogen's role in preserving neuronal integrity. Notably, hormone replacement therapy (HRT) has emerged as a sex-specific and time-dependent strategy for primary cardiovascular disease (CVD) prevention, offering an excellent risk profile against aging-related disorders like AD. Evidence suggests that HRT may mitigate AD onset and progression in postmenopausal women, further emphasizing the importance of estrogen signaling in AD pathophysiology. This review comprehensively examines the physiological and pathological changes associated with estrogen in AD, elucidating the therapeutic potential of estrogen-based interventions such as HRT. By synthesizing current knowledge, it aims to provide insights into the intricate interplay between estrogen signaling and AD pathogenesis, thereby informing future research directions and therapeutic strategies for this debilitating neurodegenerative disorder.
Collapse
Affiliation(s)
- Xinyi Wang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Que X, Zhang T, Liu X, Yin Y, Xia X, Gong P, Song W, Qin Q, Xu ZQD, Tang Y. The role of TREM2 in myelin sheath dynamics: A comprehensive perspective from physiology to pathology. Prog Neurobiol 2025; 247:102732. [PMID: 40021075 DOI: 10.1016/j.pneurobio.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Demyelinating disorders, characterizing by the loss of myelin integrity, present significant challenges due to their impact on neurological function and lack of effective treatments. Understanding the mechanisms underlying myelin damage is crucial for developing therapeutic strategies. Triggering receptor expressed on myeloid cells 2 (TREM2), a pivotal immune receptor predominantly found on microglial cells, plays essential roles in phagocytosis and lipid metabolism, vital processes in neuroinflammation and immune regulation. Emerging evidence indicates a close relationship between TREM2 and various aspects of myelin sheath dynamics, including maintenance, response to damage, and regeneration. This review provides a comprehensive discussion of TREM2's influence on myelin physiology and pathology, highlighting its therapeutic potential and putative mechanisms in the progression of demyelinating disorders.
Collapse
Affiliation(s)
- Xinwei Que
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China; Departments of Neurobiology and Pathology, Capital Medical University, Beijing 100069, China
| | - Tongtong Zhang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Xueyu Liu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Yunsi Yin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Xinyi Xia
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Ping Gong
- Departments of Neurobiology and Pathology, Capital Medical University, Beijing 100069, China
| | - Weiyi Song
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China; Departments of Neurobiology and Pathology, Capital Medical University, Beijing 100069, China
| | - Qi Qin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China.
| | - Zhi-Qing David Xu
- Departments of Neurobiology and Pathology, Capital Medical University, Beijing 100069, China.
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China.
| |
Collapse
|
10
|
Zhang XY, Zhang JH, Li XC, Lu H, Liu TCY. Exercise-induced upregulation of TRIM9 attenuates neuroinflammation in Alzheimer's disease-like rat. Int Immunopharmacol 2025; 144:113676. [PMID: 39580859 DOI: 10.1016/j.intimp.2024.113676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVE Exercise exerts protective effects against Alzheimer's disease (AD). However, the factors and mechanisms underlying these effects remain largely unknown. This study aims to elucidate the molecular mechanisms by which exercise exerts its protective effects against AD. METHODS Male 7-week-old Sprague-Dawley rats were randomly allocated to four groups (n = 10 per group): control (CON), exercise control (EXE), sedentary AD model induced by intracerebroventricular streptozotocin (STZ) injection, and AD model with treadmill exercise (EXE + STZ). The exercise groups underwent a 13-week treadmill exercise. An intracerebroventricular injection of STZ was used to induce a rat model of AD. The Barnes maze task was employed as an assessment of spatial learning and memory. Hippocampal tissues from three rats per group was collected for proteomic analysis. Immunofluorescence staining, western blot analysis and polymerase chain reaction were performed for the evaluation of Aβ production, tau hyperphosphorylation, differential protein and corresponding signaling pathway. RESULTS Treadmill exercise could significantly improve STZ-induced cognitive dysfunction and provide neuroprotection by reducing Aβ deposition and tau hyperphosphorylation. Proteomic analysis and further studies demonstrated that treadmill training could significantly increase the expression of tripartite motif-containing 9 (TRIM9). Subsequent research indicated that the upregulation of TRIM9 maybe due, in part,to the inhibition of the NF-κB pathway, thereby reducing the pro-inflammatory factor, and exerting an anti-inflammatory effect. CONCLUSIONS Treadmill exercise attenuates cognitive decline in AD models by upregulating TRIM9 expression, which in turn inhibits NF-κB-mediated neuroinflammation. These findings suggest that TRIM9 may serve as a potential therapeutic target for immunomodulatory strategies against AD.
Collapse
Affiliation(s)
- Xin-Yang Zhang
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Jia-Hao Zhang
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Xiao-Chuan Li
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Hui Lu
- Open Mind Digital Life and Mental Model Laboratory, Shenzhen, Guangzhou 518000, China.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Katola FO, Adana MY, Olajide OA. Inhibition of neuroinflammation and neuronal damage by the selective non-steroidal ERβ agonist AC-186. Inflamm Res 2024; 73:2109-2121. [PMID: 39361032 PMCID: PMC11632062 DOI: 10.1007/s00011-024-01952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND AC-186 (4-[4-4-Difluoro-1-(2-fluorophenyl) cyclohexyl] phenol) is a neuroprotective non-steroidal selective oestrogen receptor modulator. This study investigated whether inhibition of neuroinflammation contributed to neuroprotective activity of this compound. METHODS BV-2 microglia were treated with AC-186 (0.65-5 μM) prior to stimulation with LPS (100 ng/mL). Levels of pro-inflammatory mediators and proteins were then evaluated. RESULTS Treatment of LPS-activated BV-2 microglia with AC-186 resulted in significant (p < 0.05) reduction in TNFα, IL-6, NO, PGE2, iNOS and COX-2. Further investigations showed that AC-186 decreased LPS-induced elevated levels of phospho-p65, phospho-IκBα and acetyl-p65 proteins, while blocking DNA binding and luciferase activity of NF-κB. AC-186 induced significant (p < 0.05) increase in protein expression of ERβ, while enhancing ERE luciferase activity in BV-2 cells. Effects of the compound on oestrogen signalling in the microglia was confirmed in knockdown experiments which revealed a loss of anti-inflammatory activity following transfection with ERβ siRNA. In vitro neuroprotective activity of AC-186 was demonstrated by inhibition of activated microglia-mediated damage to HT-22 neurons. CONCLUSIONS This study established that AC-186 produces NF-κB-mediated anti-inflammatory activity, which is proposed as a contributory mechanism involved in its neuroprotective actions. It is suggested that the anti-inflammatory activity of this compound is linked to its agonist effect on ERβ.
Collapse
Affiliation(s)
- Folashade O Katola
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
- Current Address: Peter O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Misturah Y Adana
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
12
|
Dastan M, Rajaei Z, Sharifi M, Salehi H. Gallic acid ameliorates LPS-induced memory decline by modulating NF-κB, TNF-α, and Caspase 3 gene expression and attenuating oxidative stress and neuronal loss in the rat hippocampus. Metab Brain Dis 2024; 40:12. [PMID: 39556267 DOI: 10.1007/s11011-024-01441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/19/2024] [Indexed: 11/19/2024]
Abstract
Neuroinflammation and apoptosis play critical roles in the pathogenesis of Alzheimer's disease (AD), which is responsible for most cases of dementia in the elderly people. Gallic acid is a phenolic compound with radical scavenging, anti-inflammatory and anti-apoptotic activities. This study aimed to explore the protective effects of gallic acid on LPS-induced spatial memory impairment and find the underlying mechanisms. Gallic acid was orally administered (100 mg/kg) to male Wistar rats for 12 days. LPS was injected intraperitoneally at a dose of 1 mg/kg on days 8-12. Morris water maze paradigm was used to evaluate spatial learning and memory. The mRNA level of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α) and Caspase 3, lipid peroxidation and total thiol level was assessed in the rat hippocampus. Neuronal loss and histological changes were also evaluated in the brain. LPS treatment resulted in spatial learning and memory impairment, upregulation of NF-κB, TNF-α, and Caspase 3 mRNA expression, increased lipid peroxidation, decreased total thiol level, and neuronal loss in the hippocampus. Moreover, treatment with gallic acid at a dosage of 100 mg/kg ameliorated memory decline, reduced the mRNA level of NF-κB, TNF-α, and Caspase 3, decreased lipid peroxidation and increased total thiol level in the hippocampus. Gallic acid also prevented LPS-induced neuronal loss and histological changes in the brain. Conclusively, our study demonstrated that gallic acid exerts neuroprotective effect against LPS-induced memory decline in rats. This outcome could be due to anti-inflammatory, antioxidant, and anti-apoptotic activities of gallic acid.
Collapse
Affiliation(s)
- Maryam Dastan
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Rajaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Hao F, Zeng M, Cao B, Liang X, Ye K, Jiao X, Feng W, Zheng X. Neobavaisoflavone Ameliorates Memory Deficits and Brain Damage in Aβ 25-35-Induced Mice by Regulating SIRT1. CNS Neurosci Ther 2024; 30:e70068. [PMID: 39392360 PMCID: PMC11469773 DOI: 10.1111/cns.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/29/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a common chronic neurodegenerative disease in older people, and there is no specific treatment that can stop or reverse its progression. Neobavaisoflavone (NBIF) is a flavonoid that has been shown to have neuroprotective effects, but its role in AD has not been revealed. The present study investigated the role and mechanism of NBIF on Aβ25-35-induced brain injury. METHODS In this experiment, the AD mouse model was established by injection of Aβ25-35 peptides (200 μM, icv), and Donepezil (Don, 10 mg/kg/days), NBIF-L (15 mg/kg/days), and NBIF-H (30 mg/kg/days) were administered orally for 4 weeks. Learning memory, hippocampal pathological changes, pathological markers, apoptosis, oxidative stress, inflammation, immune cells were measured in mice. Network pharmacology combined with the GEO database led to the identification of SIRT1, a key target for NBIF intervention in AD, and levels of SIRT1, p-STAT3 and FOXO1 were measured. In addition, the antagonistic activity of SIRT1 transfection silencing against NBIF in Aβ25-35-induced in N9 cells and N2a-APP69 cells was investigated to assess whether the effects caused by NBIF were mediated by SIRT1. RESULTS The results showed that NBIF ameliorated learning memory and hippocampal neuronal damage, reduced pathological markers, apoptosis, oxidative stress and neuroinflammation, and modulated immune cells. SIRT1 is a key target for NBIF intervention in AD, and NBIF upregulates SIRT1 and reduces the expression levels of p-STAT3 and FOXO1. Furthermore, silencing SIRT1 effectively reduced the protective effect of NBIF on Aβ25-35-induced N9 cells and N2a-APP69 cells, which indicated that the protective effect of NBIF on AD is related to SIRT1. CONCLUSIONS NBIF ameliorated Aβ25-35-induced brain injury by inhibiting apoptosis, oxidative stress, and neuroinflammation, which may be mediated through SIRT1 signaling. These findings provide a rationale for NBIF in the treatment of AD and help facilitate the development of clinical therapeutic agents for AD.
Collapse
Affiliation(s)
- Fengxiao Hao
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- The Engineering and Technology Center for Chinese Medicine Development of Henan ProvinceZhengzhouChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.RZhengzhouChina
| | - Mengnan Zeng
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- The Engineering and Technology Center for Chinese Medicine Development of Henan ProvinceZhengzhouChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.RZhengzhouChina
| | - Bing Cao
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- The Engineering and Technology Center for Chinese Medicine Development of Henan ProvinceZhengzhouChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.RZhengzhouChina
| | - Xiwen Liang
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Kaili Ye
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- The Engineering and Technology Center for Chinese Medicine Development of Henan ProvinceZhengzhouChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.RZhengzhouChina
| | - Xinmian Jiao
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- The Engineering and Technology Center for Chinese Medicine Development of Henan ProvinceZhengzhouChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.RZhengzhouChina
| | - Weisheng Feng
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- The Engineering and Technology Center for Chinese Medicine Development of Henan ProvinceZhengzhouChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.RZhengzhouChina
| | - Xiaoke Zheng
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- The Engineering and Technology Center for Chinese Medicine Development of Henan ProvinceZhengzhouChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.RZhengzhouChina
| |
Collapse
|
15
|
Ge Y. Vascular Contributions to Healthy Aging and Dementia. Aging Dis 2024; 15:1432-1437. [PMID: 39059424 PMCID: PMC11272195 DOI: 10.14336/ad.2023.1719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Vascular pathologies are among the most common contributors to neurodegenerative changes across the spectrum of normal aging to dementia. Cerebral small vessel disease (SVD) encompasses a wide range of conditions affecting capillaries, small arteries, and arterioles, as well as perivascular spaces and fluid dynamics in the brain, playing a significant role in vascular contributions to cognitive impairment and dementia (VCID). These factors can accelerate the progression of SVD and neuronal degeneration. Since aging is the primary risk factor for Alzheimer's disease (AD) and AD-related dementias (ADRD), this Research Topic aims to gather recent research to better understand vascular contributions to healthy aging and age-related cognitive impairment. Other risk factors include diabetes, lifestyle factors, high cholesterol, vascular inflammation, and immune remodeling, all of which can accelerate cognitive dysfunction progression. This special issue includes a total of 21 articles comprising Reviews, Perspectives, and Original Research articles. The articles cover various technical and biological aspects related to recent progress in aging and dementia research. We aim to promote research exchange across different fields, including imaging, VCID, molecular biology, neuroinflammation, and immunology. Most papers in this special issue focus on understanding the disease mechanisms of AD/ADRD and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
16
|
Wahl D, Risen SJ, Osburn SC, Emge T, Sharma S, Gilberto VS, Chatterjee A, Nagpal P, Moreno JA, LaRocca TJ. Nanoligomers targeting NF-κB and NLRP3 reduce neuroinflammation and improve cognitive function with aging and tauopathy. J Neuroinflammation 2024; 21:182. [PMID: 39068433 PMCID: PMC11283709 DOI: 10.1186/s12974-024-03182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Neuroinflammation contributes to impaired cognitive function in brain aging and neurodegenerative disorders like Alzheimer's disease, which is characterized by the aggregation of pathological tau. One major driver of both age- and tau-associated neuroinflammation is the NF-κB and NLRP3 signaling axis. However, current treatments targeting NF-κB or NLRP3 may have adverse/systemic effects, and most have not been clinically translatable. In this study, we tested the efficacy of a novel, nucleic acid therapeutic (Nanoligomer) cocktail specifically targeting both NF-κB and NLRP3 in the brain for reducing neuroinflammation and improving cognitive function in old (aged 19 months) wildtype mice, and in rTg4510 tau pathology mice (aged 2 months). We found that 4 weeks of NF-κB/NLRP3-targeting Nanoligomer treatment strongly reduced neuro-inflammatory cytokine profiles in the brain and improved cognitive-behavioral function in both old and rTg4510 mice. These effects of NF-κB/NLRP3-targeting Nanoligomers were also associated with reduced glial cell activation and pathology, favorable changes in transcriptome signatures of glia-associated inflammation (reduced) and neuronal health (increased), and positive systemic effects. Collectively, our results provide a basis for future translational studies targeting both NF-κB and NLRP3 in the brain, perhaps using Nanoligomers, to inhibit neuroinflammation and improve cognitive function with aging and neurodegeneration.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Sydney J Risen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Brain Research Center, Colorado State University, Fort Collins, CO, USA
| | - Shelby C Osburn
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Tobias Emge
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Sadhana Sharma
- Sachi Bio, Colorado Technology Center, Louisville, CO, USA
| | | | | | | | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Brain Research Center, Colorado State University, Fort Collins, CO, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA.
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
17
|
Zhang F, Zhang W. Research progress in Alzheimer's disease and bone-brain axis. Ageing Res Rev 2024; 98:102341. [PMID: 38759893 DOI: 10.1016/j.arr.2024.102341] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Alzheimer's disease (AD) is the most common type of cognitive impairment. AD is closely related to orthopedic diseases, such as osteoporosis and osteoarthritis, in terms of epidemiology and pathogenesis. Brain and bone tissues can regulate each other in different manners through bone-brain axis. This article reviews the research progress of the relationship between AD and orthopedic diseases, bone-brain axis mechanisms of AD, and AD therapy by targeting bone-brain axis, in order to deepen the understanding of bone-brain communication, promote early diagnosis and explore new therapy for AD patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
18
|
Wahl D, Risen SJ, Osburn SC, Emge T, Sharma S, Gilberto VS, Chatterjee A, Nagpal P, Moreno JA, LaRocca TJ. Nanoligomers targeting NF-κB and NLRP3 reduce neuroinflammation and improve cognitive function with aging and tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578493. [PMID: 38370618 PMCID: PMC10871285 DOI: 10.1101/2024.02.03.578493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Neuroinflammation contributes to impaired cognitive function in brain aging and neurodegenerative disorders like Alzheimer's disease, which is characterized by the aggregation of pathological tau. One major driver of both age- and tau-associated neuroinflammation is the NF-κB and NLRP3 signaling axis. However, current treatments targeting NF-κB or NLRP3 may have adverse/systemic effects, and most have not been clinically translatable. In this study, we tested the efficacy of a novel, nucleic acid therapeutic (Nanoligomer) cocktail specifically targeting both NF-κB and NLRP3 in the brain for reducing neuroinflammation and improving cognitive function in old (aged 19 months) wildtype mice, and in rTg4510 tau pathology mice (aged 2 months). We found that 4 weeks of NF-κB/NLRP3-targeting Nanoligomer treatment strongly reduced neuro-inflammatory cytokine profiles in the brain and improved cognitive-behavioral function in both old and rTg4510 mice. These effects of NF-κB/NLRP3-targeting Nanoligomers were also associated with reduced glial cell activation and pathology, favorable changes in transcriptome signatures of glia-associated inflammation (reduced) and neuronal health (increased), and positive systemic effects. Collectively, our results provide a basis for future translational studies targeting both NF-κB and NLRP3 in the brain, perhaps using Nanoligomers, to inhibit neuroinflammation and improve cognitive function with aging and neurodegeneration.
Collapse
|
19
|
Deng Q, Parker E, Wu C, Zhu L, Liu TCY, Duan R, Yang L. Repurposing Ketamine in the Therapy of Depression and Depression-Related Disorders: Recent Advances and Future Potential. Aging Dis 2024; 16:804-840. [PMID: 38916735 PMCID: PMC11964445 DOI: 10.14336/ad.2024.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Depression represents a prevalent and enduring mental disorder of significant concern within the clinical domain. Extensive research indicates that depression is very complex, with many interconnected pathways involved. Most research related to depression focuses on monoamines, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, tryptophan metabolism, energy metabolism, mitochondrial function, the gut-brain axis, glial cell-mediated inflammation, myelination, homeostasis, and brain neural networks. However, recently, Ketamine, an ionotropic N-methyl-D-aspartate (NMDA) receptor antagonist, has been discovered to have rapid antidepressant effects in patients, leading to novel and successful treatment approaches for mood disorders. This review aims to summarize the latest findings and insights into various signaling pathways and systems observed in depression patients and animal models, providing a more comprehensive view of the neurobiology of anxious-depressive-like behavior. Specifically, it highlights the key mechanisms of ketamine as a rapid-acting antidepressant, aiming to enhance the treatment of neuropsychiatric disorders. Moreover, we discuss the potential of ketamine as a prophylactic or therapeutic intervention for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Ling Zhu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
20
|
Das D, Sonthalia S, Stein-O 'Brien G, Wahbeh MH, Feuer K, Goff L, Colantuoni C, Mahairaki V, Avramopoulos D. Insights for disease modeling from single-cell transcriptomics of iPSC-derived Ngn2-induced neurons and astrocytes across differentiation time and co-culture. BMC Biol 2024; 22:75. [PMID: 38566045 PMCID: PMC10985965 DOI: 10.1186/s12915-024-01867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Trans-differentiation of human-induced pluripotent stem cells into neurons via Ngn2-induction (hiPSC-N) has become an efficient system to quickly generate neurons a likely significant advance for disease modeling and in vitro assay development. Recent single-cell interrogation of Ngn2-induced neurons, however, has revealed some similarities to unexpected neuronal lineages. Similarly, a straightforward method to generate hiPSC-derived astrocytes (hiPSC-A) for the study of neuropsychiatric disorders has also been described. RESULTS Here, we examine the homogeneity and similarity of hiPSC-N and hiPSC-A to their in vivo counterparts, the impact of different lengths of time post Ngn2 induction on hiPSC-N (15 or 21 days), and the impact of hiPSC-N/hiPSC-A co-culture. Leveraging the wealth of existing public single-cell RNA-seq (scRNA-seq) data in Ngn2-induced neurons and in vivo data from the developing brain, we provide perspectives on the lineage origins and maturation of hiPSC-N and hiPSC-A. While induction protocols in different labs produce consistent cell type profiles, both hiPSC-N and hiPSC-A show significant heterogeneity and similarity to multiple in vivo cell fates, and both more precisely approximate their in vivo counterparts when co-cultured. Gene expression data from the hiPSC-N show enrichment of genes linked to schizophrenia (SZ) and autism spectrum disorders (ASD) as has been previously shown for neural stem cells and neurons. These overrepresentations of disease genes are strongest in our system at early times (day 15) in Ngn2-induction/maturation of neurons, when we also observe the greatest similarity to early in vivo excitatory neurons. We have assembled this new scRNA-seq data along with the public data explored here as an integrated biologist-friendly web-resource for researchers seeking to understand this system more deeply: https://nemoanalytics.org/p?l=DasEtAlNGN2&g=NES . CONCLUSIONS While overall we support the use of the investigated cellular models for the study of neuropsychiatric disease, we also identify important limitations. We hope that this work will contribute to understanding and optimizing cellular modeling for complex brain disorders.
Collapse
Affiliation(s)
- D Das
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 E. Broadway, Baltimore, MD, 21205, USA
| | - S Sonthalia
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - G Stein-O 'Brien
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 E. Broadway, Baltimore, MD, 21205, USA
| | - M H Wahbeh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 E. Broadway, Baltimore, MD, 21205, USA
| | - K Feuer
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 E. Broadway, Baltimore, MD, 21205, USA
| | - L Goff
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 E. Broadway, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - C Colantuoni
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - V Mahairaki
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 E. Broadway, Baltimore, MD, 21205, USA
| | - D Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 E. Broadway, Baltimore, MD, 21205, USA.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
21
|
Lei Y, Zhang R, Cai F. Role of MARK2 in the nervous system and cancer. Cancer Gene Ther 2024; 31:497-506. [PMID: 38302729 DOI: 10.1038/s41417-024-00737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Microtubule-Affinity Regulating Kinase 2 (MARK2), a member of the serine/threonine protein kinase family, phosphorylates microtubule-associated proteins, playing a crucial role in cancer and neurodegenerative diseases. This kinase regulates multiple signaling pathways, including the WNT, PI3K/AKT/mTOR (PAM), and NF-κB pathways, potentially linking it to cancer and the nervous system. As a crucial regulator of the PI3K/AKT/mTOR pathway, the loss of MARK2 inhibits the growth and metastasis of cancer cells. MARK2 is involved in the excessive phosphorylation of tau, thus influencing neurodegeneration. Therefore, MARK2 emerges as a promising drug target for the treatment of cancer and neurodegenerative diseases. Despite its significance, the development of inhibitors for MARK2 remains limited. In this review, we aim to present detailed information on the structural features of MARK2 and its role in various signaling pathways associated with cancer and neurodegenerative diseases. Additionally, we further characterize the therapeutic potential of MARK2 in neurodegenerative diseases and cancer, and hope to facilitate basic research on MARK2 and the development of inhibitors targeting MARK2.
Collapse
Affiliation(s)
- Yining Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
22
|
He L, Duan X, Li S, Zhang R, Dai X, Lu M. Unveiling the role of astrocytes in postoperative cognitive dysfunction. Ageing Res Rev 2024; 95:102223. [PMID: 38325753 DOI: 10.1016/j.arr.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Xiyuan Duan
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Shikuo Li
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Xulei Dai
- Department of Clinical Laboratory Science, Xingtai Medical College, Xingtai 050054, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|