1
|
Yang Q, Wu J, Zhao J, Xu T, Han P, Song X. The Expression Profiles of lncRNAs and Their Regulatory Network During Smek1/2 Knockout Mouse Neural Stem Cells Differentiation. Curr Bioinform 2020. [DOI: 10.2174/1574893614666190308160507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Previous studies indicated that the cell fate of neural stem cells (NSCs)
after differentiation is determined by Smek1, one isoform of suppressor of Mek null (Smek). Smek
deficiency prevents NSCs from differentiation, thus affects the development of nervous system. In
recent years, lncRNAs have been found to participate in numerous developmental and biological
pathways. However, the effects of knocking out Smek on the expression profiles of lncRNAs
during the differentiation remain unknown.
Objective:
This study is to explore the expression profiles of lncRNAs and their possible function
during the differentiation from Smek1/2 knockout NSCs.
Methods:
We obtained NSCs from the C57BL/6J mouse fetal cerebral cortex. One group of NSCs
was from wildtype mouse (WT group), while another group was from knocked out Smek1/2 (KO
group).
Results:
By analyzing the RNA-Seq data, we found that after knocking out Smek1/2, the
expression profiles of mRNAs and lncRNAs revealed significant changes. Analyses indicated that
these affected mRNAs have connections with the pathway network for the differentiation and
proliferation of NSCs. Furthermore, we performed a co-expression network analysis on the
differentially expressed mRNAs and lncRNAs, which helped reveal the possible regulatory rules
of lncRNAs during the differentiation after knocking out Smek1/2.
Conclusion:
By comparing group WT with KO, we found 366 differentially expressed mRNAs
and 12 lncRNAs. GO and KEGG enrichment analysis on these mRNAs suggested their
relationships with differentiation and proliferation of NSCs. Some of these mRNAs and lncRNAs
have been verified to play regulatory roles in nervous system. Analyses on the co-expression
network also indicated the possible functions of affected mRNAs and lncRNAs during NSCs
differentiation after knocking out Smek1/2.
Collapse
Affiliation(s)
- Qichang Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Jing Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Tianyi Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Ping Han
- The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210019, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| |
Collapse
|
2
|
Niethamer TK, Bush JO. Getting direction(s): The Eph/ephrin signaling system in cell positioning. Dev Biol 2019; 447:42-57. [PMID: 29360434 PMCID: PMC6066467 DOI: 10.1016/j.ydbio.2018.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
In vertebrates, the Eph/ephrin family of signaling molecules is a large group of membrane-bound proteins that signal through a myriad of mechanisms and effectors to play diverse roles in almost every tissue and organ system. Though Eph/ephrin signaling has functions in diverse biological processes, one core developmental function is in the regulation of cell position and tissue morphology by regulating cell migration and guidance, cell segregation, and boundary formation. Often, the role of Eph/ephrin signaling is to translate patterning information into physical movement of cells and changes in morphology that define tissue and organ systems. In this review, we focus on recent advances in the regulation of these processes, and our evolving understanding of the in vivo signaling mechanisms utilized in distinct developmental contexts.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
3
|
TBC1d24-ephrinB2 interaction regulates contact inhibition of locomotion in neural crest cell migration. Nat Commun 2018; 9:3491. [PMID: 30154457 PMCID: PMC6113226 DOI: 10.1038/s41467-018-05924-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 08/02/2018] [Indexed: 11/08/2022] Open
Abstract
Although Eph-ephrin signalling has been implicated in the migration of cranial neural crest (CNC) cells, it is still unclear how ephrinB transduces signals regulating this event. We provide evidence that TBC1d24, a putative Rab35-GTPase activating protein (Rab35 GAP), complexes with ephrinB2 via the scaffold Dishevelled (Dsh) and mediates a signal affecting contact inhibition of locomotion (CIL) in CNC cells. Moreover, we found that, in migrating CNC, the interaction between ephrinB2 and TBC1d24 negatively regulates E-cadherin recycling in these cells via Rab35. Upon engagement of the cognate Eph receptor, ephrinB2 is tyrosine phosphorylated, which disrupts the ephrinB2/Dsh/TBC1d24 complex. The dissolution of this complex leads to increasing E-cadherin levels at the plasma membrane, resulting in loss of CIL and disrupted CNC migration. Our results indicate that TBC1d24 is a critical player in ephrinB2 control of CNC cell migration via CIL.
Collapse
|
4
|
Abstract
Ephrins and Eph receptors enable contact-mediated interactions between cells at every stage of nervous system development. In spite of their broad binding affinities, Eph proteins facilitate specificity in neuronal migration and axon targeting. This review focuses on recent studies that demonstrate how these proteins interact with each other, and with other signaling pathways, to guide specificity in a diverse set of developmental processes.
Collapse
Affiliation(s)
- Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Ilona J Miko
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
5
|
Noh H, Park S. Over-Expression of Ephrin-A5 in Mice Results in Decreasing the Size of Progenitor Pool through Inducing Apoptosis. Mol Cells 2016; 39:136-40. [PMID: 26674965 PMCID: PMC4757801 DOI: 10.14348/molcells.2016.2245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 11/27/2022] Open
Abstract
Eph receptors and their ligands, ephrins, mediate cell-to-cell contacts in a specific brain region and their bidirectional signaling is implicated in the regulation of apoptosis during early brain development. In this report, we used the alpha(α)-Cre transgenic line to induce ephrin-A5 over-expression in the distal region of the neural retina. Using this double transgenic embryo, we show that the over-expression of ephrin-A5 was responsible for inducing massive apoptosis in both the nasal and temporal retinas. In addition, the number of differentiated retinal neurons with the exception of the bipolar neuron was significantly reduced, whereas the laminar organization of the mature retina remained intact. Consistent with this finding, an analysis of the mature retina revealed that the size of the whole retina--particularly the nasal and temporal regions--is markedly reduced. These results strongly suggest that the level of ephrin-A5 expression plays a role in the regulation of the size of the retinal progenitor pool in the neural retina.
Collapse
Affiliation(s)
- Hyuna Noh
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Soochul Park
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| |
Collapse
|
6
|
Fantauzzo KA, Soriano P. Receptor tyrosine kinase signaling: regulating neural crest development one phosphate at a time. Curr Top Dev Biol 2015; 111:135-82. [PMID: 25662260 PMCID: PMC4363133 DOI: 10.1016/bs.ctdb.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Receptor tyrosine kinases (RTKs) bind to a subset of growth factors on the surface of cells and elicit responses with broad roles in developmental and postnatal cellular processes. Receptors in this subclass consist of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular domain harboring a catalytic tyrosine kinase and regulatory sequences that are phosphorylated either by the receptor itself or by various interacting proteins. Once activated, RTKs bind signaling molecules and recruit effector proteins to mediate downstream cellular responses through various intracellular signaling pathways. In this chapter, we highlight the role of a subset of RTK families in regulating the activity of neural crest cells (NCCs) and the development of their derivatives in mammalian systems. NCCs are migratory, multipotent cells that can be subdivided into four axial populations, cranial, cardiac, vagal, and trunk. These cells migrate throughout the vertebrate embryo along defined pathways and give rise to unique cell types and structures. Interestingly, individual RTK families often have specific functions in a subpopulation of NCCs that contribute to the diversity of these cells and their derivatives in the mammalian embryo. We additionally discuss current methods used to investigate RTK signaling, including genetic, biochemical, large-scale proteomic, and biosensor approaches, which can be applied to study intracellular signaling pathways active downstream of this receptor subclass during NCC development.
Collapse
Affiliation(s)
- Katherine A Fantauzzo
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
7
|
Shu Y, Xiao B, Wu Q, Liu T, Du Y, Tang H, Chen S, Feng L, Long L, Li Y. The Ephrin-A5/EphA4 Interaction Modulates Neurogenesis and Angiogenesis by the p-Akt and p-ERK Pathways in a Mouse Model of TLE. Mol Neurobiol 2014; 53:561-576. [PMID: 25502292 DOI: 10.1007/s12035-014-9020-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/18/2014] [Indexed: 02/07/2023]
Abstract
Studies have shown that neurogenesis and angiogenesis do exist in temporal lobe epilepsy (TLE). The ephrin ligands and Eph receptors are the largest members of receptor tyrosine kinases, and their interaction via cell-cell contact participates in cell proliferation, differentiation, migration, and tissue remodeling. However, there is little information about the function of the ephrin-A5/EphA4 complex in TLE. In the current study, we found that ephrin-A5 was expressed in astrocytes, while EphA4 existed in endothelial cells in the hippocampus in a mouse model of TLE. Furthermore, the messenger RNA (mRNA) and protein levels of both ephrin-A5 and EphA4 and the binding capacity of ephrin-A5/EphA4 showed gradual increase in spatiotemporal course. When ephrin-A5-Fc was injected into the hippocampus at 3 days post-status epilepticus (SE) for 7 days, the spontaneous recurrent seizure (SRS) frequency and intensity of the mice attenuated in the following 2 weeks. Furthermore, doublecortin-positive neuronal progenitor cells were reduced in the subgranular zone, and the density of microvessels decreased in the hilus. The molecular mechanism was attributed to ephrin-A5-Fc-induced inhibition of phosphorylated ERK (p-ERK) and phosphorylated Akt (p-Akt), and also EphA4 and VEGF reduction. In summary, interaction between ephrin-A5 and EphA4 could mediate the ERK and Akt signaling pathways in pilocarpine-induced epilepsy, and intervention of the ephrin/Eph interaction may play an essential role in the suppression of newborn neuron generation, microvessel remodeling, and SRS in a mouse model of TLE. The ephrin-A5/EphA4 communication may provide a potential therapy for the treatment of TLE.
Collapse
Affiliation(s)
- Yi Shu
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China.
| | - Qian Wu
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Tiantian Liu
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Yang Du
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Haiyun Tang
- Department of Radiology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Yi Li
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China.
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01604, USA.
| |
Collapse
|